Abstract

Problems of genome rearrangement are central in both evolution and cancer. Most evolutionary scenarios have been studied under the assumption that the genome contains a single copy of each gene. In contrast, tumor genomes undergo deletions and duplications, and thus the number of copies of genes varies. The number of copies of each gene along a chromosome is called its copy number profile. Understanding copy number profile changes can assist in predicting disease progression and treatment. To date, questions related to distances between copy number profiles gained little scientific attention. We focus on the following problem, introduced by Schwarz et al. (PLOS Comp. Biol., 2014): given two copy number profiles, u and v, compute the edit distance from u to v, where the edit operations are segmental deletions and amplifications. We establish the computational complexity of this problem, showing that it is solvable in linear time and constant space.
 
 

Video Recording