The Copy Number Transformation Problem

Meirav Zehavi Tel Aviv University

Joint work with Ron Shamir and Ron Zeira

Copy Numbers (CNs)

CN Profile: A vector $V=(v_1, v_2, ..., v_n)$, where each v_i is a nonnegative integer.

- Example: (1,2,1,0,3,3).

Amplification: A triple c = (l,h,1), where $1 \le l \le h \le n$. - Effect (example): c = (3,5,1); c(1,2,1,0,3,3) = (1,2,2,0,4,3).

Deletion: A triple c = (l, h, -1), where $1 \le l \le h \le n$.

- Effect (example): *c* = (3,5,-1);

c(1,2,1,0,3,3)=(1,2,0,0,2,3).

Motivation

Genome rearrangement: The majority of the extant models either assume that each gene has a single copy or result in an NP-hard problem.

Detecting CN abnormalities: G-banding and fluorescence in situ hybridization (FISH); array comparative genomic hybridization (array CGH); next generation sequencing techniques.

Distances between CN profiles: Algorithmic aspects of questions related to these distances gained little scientific attention to date. We use the definition of Schwarz *et al.* (PLOS Comp. Biol., 2014).

Problem Statement

Let $S=(s_1,s_2,...,s_n)$ and $T=(t_1,t_2,...,t_n)$ be two CN profiles.

Copy Number Transformation (CNT) from S to T: A vector $C = (c_1, c_2, ..., c_m)$ of amplifications and deletions such that $c_m(c_{m-1}(\cdots(c_1(S))))=T$.

$$C = (c_1, c_2, c_3)$$

$$S = (1, 1, 1, 1, 1)$$

$$c_1(S) = (1, 0, 1, 1, 1)$$

$$c_2 = (4, 4, -1)$$

$$c_2(c_1(S)) = (1, 0, 1, 0, 1)$$

$$C_3 = (1, 5, +1)$$

$$C_3 = (1, 5, +1)$$

Problem Statement

Let $S=(s_1, s_2, ..., s_n)$ and $T=(t_1, t_2, ..., t_n)$ be two CN profiles.

Copy Number Transformation (CNT) from S to T: A vector $C = (c_1, c_2, ..., c_m)$ of amplifications and deletions such that $c_m(c_{m-1}(\cdots(c_1(S))))=T$.

dist(S,T): The smallest size of a CNT from S to T.

The CNT Problem: Compute dist(*S*,*T*).

The Algorithm: Overview

The CNT problem can be solved in linear time and constant space.

Our approach:

- Prove four key propositions.
- •An $O(nN^2)$ -time, O(N)-space algorithm, DP-Alg, that is based dynamic programming.
- By using piecewise linear functions, we modify DP-Alg to obtain an O(n)-time, O(1)-space algorithm.

Key Propositions (Informal)

Proposition 1: It is sufficient to examine CNTs were all of the deletions precede all of the amplifications.

$$S = (1, 1, 1, 1, 1)$$

$$c_{1}(S) = (1, 0, 1, 1, 1)$$

$$c_{2}(c_{1}(S)) = (1, 0, 1, 0, 1)$$

$$c_{3} = (1, 5, +1)$$

$$T = c_{3}(c_{2}(c_{1}(S))) = (2, 0, 2, 0, 2)$$

Proposition 2: It is sufficient to examine CNTs that do not contain both a deletion that affects s_i but not s_{i+1} and a deletion that affects s_i but not s_{i+1} and a deletion that affects s_{i+1} but not s_i . The same is true for amplifications.

Key Propositions (Informal)

If $t_i > 0$ and d deletions affect $s_i > 0$, then max{ $t_i - (s_i - d), 0$ } amplifications should affect s_i .

Proposition 3: It is not necessary to store information indicating how many deletions/ amplifications affect s_i if $t_i=0$.

Proposition 4: The maximum number of deletions/amplifications that affect each s_i can be bounded by *N*.

Dynamic Programming

M[*i*,*d*] (1≤*i*≤*n*, 0≤*d*≤*N*): The size of an optimal transformation from $S^i = (s_1, s_2, ..., s_i)$ to $T^i = (t_1, t_2, ..., t_i)$ such that exactly *d* deletions affect s_i .

Recursive formula: $M[i,d] \leftarrow \min_{0 \le d' \le N} \{M[\operatorname{prev}(i),d'] + \max\{d-d',0\} + \max\{a(i,d) - a(\operatorname{prev}(i),d'),0\} + \max\{Q_i - \max\{d,d'\},0\}\}.$

O(nN) entries + each entry is computed in time $O(N) \rightarrow$ an $O(nN^2)$ -time algorithm.

Piecewise Linear Functions

Main Idea: M can be described by O(n) piecewise linear functions, where each function encapsulates O(N) entries.

Each function is "well-behaved" – in particular, each function has only three linear segments.

 \rightarrow The computation of an entry can be performed in time O(1) rather than O(N).

Each function can be represented in a compact manner. \rightarrow the size of the table shrinks from O(nN) to O(n).

 \rightarrow Running time: O(n); space complexity: O(1) (at each point of time, we store one piecewise linear function).

