


CN Profile: A vector V=(v1,v2,…,vn), where each vi is 
a nonnegative integer. 
   - Example: (1,2,1,0,3,3). 
 

Amplification: A triple c = (l,h,1), where 1≤l≤h≤n. 
   - Effect (example): c = (3,5,1); 
                                     c(1,2,1,0,3,3) = (1,2,2,0,4,3). 
 

Deletion: A triple c = (l,h,-1), where 1≤l≤h≤n. 
   - Effect (example): c = (3,5,-1); 
                                     c(1,2,1,0,3,3) = (1,2,0,0,2,3). 



Genome rearrangement: The majority of the extant 
models either assume that each gene has a single copy or 
result in an NP-hard problem. 
 

Detecting CN abnormalities: G-banding and fluorescence 
in situ hybridization (FISH); array comparative genomic 
hybridization (array CGH); next generation sequencing 
techniques. 
 

Distances between CN profiles: Algorithmic aspects of 
questions related to these distances gained little scientific 
attention to date. We use the definition of Schwarz et al. 
(PLOS Comp. Biol., 2014). 



Let S=(s1,s2,…,sn) and T=(t1,t2,…,tn) be two CN profiles. 
 

Copy Number Transformation (CNT) from S to T: A 
vector C = (c1,c2,…,cm) of amplifications and deletions 
such that cm(cm-1(∙∙∙(c1(S))))=T. 
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Let S=(s1,s2,…,sn) and T=(t1,t2,…,tn) be two CN profiles. 
 

Copy Number Transformation (CNT) from S to T: A 
vector C = (c1,c2,…,cm) of amplifications and deletions 
such that cm(cm-1(∙∙∙(c1(S))))=T. 
 

dist(S,T): The smallest size of a CNT from S to T. 
 

The CNT Problem: Compute dist(S,T). 



The CNT problem can be solved in linear time and 
constant space. 
 

Our approach: 

Prove four key propositions. 
 

An O(nN2)-time, O(N)-space algorithm, DP-Alg, that is 
based dynamic programming. 
 

By using piecewise linear functions, we modify DP-Alg 
to obtain an O(n)-time, O(1)-space algorithm. 

•  

•  

•  



Proposition 1: It is sufficient to examine CNTs were all of the 
deletions precede all of the amplifications. 
 
 
 
 
 
 
 
 

Proposition 2: It is sufficient to examine CNTs that do not 
contain both a deletion that affects si but not si+1 and a deletion 
that affects si+1 but not si. The same is true for amplifications. 



If ti>0 and d deletions affect si>0, then max{ti-(si-d),0} 
amplifications should affect si. 
 
Proposition 3: It is not necessary to store 
information indicating how many deletions/ 
amplifications affect si if ti=0. 
 
Proposition 4: The maximum number of 
deletions/amplifications that affect each si can be 
bounded by N. 



M[i,d] (1≤i≤n, 0≤d≤N): The size of an optimal 
transformation from Si=(s1,s2,…,si) to Ti=(t1,t2,…,ti) such 
that exactly d deletions affect si. 
 

Recursive formula:  

 
 
 
 
O(nN) entries + each entry is computed in time O(N) → 
an O(nN2)-time algorithm. 



Main Idea: M can be described by O(n) piecewise linear 
functions, where each function encapsulates O(N) entries. 
 

Each function is “well-behaved” – in particular, each 
function has only three linear segments. 
→ The computation of an entry can be performed in time 
O(1) rather than O(N). 
 

Each function can be represented in a compact manner. 
→ the size of the table shrinks from O(nN) to O(n). 
 

→ Running time: O(n); space complexity: O(1) (at each 
point of time, we store one piecewise linear function). 




