

CN Profile: A vector V=(v1,v2,…,vn), where each vi is
a nonnegative integer.
 - Example: (1,2,1,0,3,3).

Amplification: A triple c = (l,h,1), where 1≤l≤h≤n.
 - Effect (example): c = (3,5,1);
 c(1,2,1,0,3,3) = (1,2,2,0,4,3).

Deletion: A triple c = (l,h,-1), where 1≤l≤h≤n.
 - Effect (example): c = (3,5,-1);
 c(1,2,1,0,3,3) = (1,2,0,0,2,3).

Genome rearrangement: The majority of the extant
models either assume that each gene has a single copy or
result in an NP-hard problem.

Detecting CN abnormalities: G-banding and fluorescence
in situ hybridization (FISH); array comparative genomic
hybridization (array CGH); next generation sequencing
techniques.

Distances between CN profiles: Algorithmic aspects of
questions related to these distances gained little scientific
attention to date. We use the definition of Schwarz et al.
(PLOS Comp. Biol., 2014).

Let S=(s1,s2,…,sn) and T=(t1,t2,…,tn) be two CN profiles.

Copy Number Transformation (CNT) from S to T: A
vector C = (c1,c2,…,cm) of amplifications and deletions
such that cm(cm-1(∙∙∙(c1(S))))=T.

C = (c1,c2,c3)

Let S=(s1,s2,…,sn) and T=(t1,t2,…,tn) be two CN profiles.

Copy Number Transformation (CNT) from S to T: A
vector C = (c1,c2,…,cm) of amplifications and deletions
such that cm(cm-1(∙∙∙(c1(S))))=T.

dist(S,T): The smallest size of a CNT from S to T.

The CNT Problem: Compute dist(S,T).

The CNT problem can be solved in linear time and
constant space.

Our approach:

Prove four key propositions.

An O(nN2)-time, O(N)-space algorithm, DP-Alg, that is
based dynamic programming.

By using piecewise linear functions, we modify DP-Alg
to obtain an O(n)-time, O(1)-space algorithm.

•

•

•

Proposition 1: It is sufficient to examine CNTs were all of the
deletions precede all of the amplifications.

Proposition 2: It is sufficient to examine CNTs that do not
contain both a deletion that affects si but not si+1 and a deletion
that affects si+1 but not si. The same is true for amplifications.

If ti>0 and d deletions affect si>0, then max{ti-(si-d),0}
amplifications should affect si.

Proposition 3: It is not necessary to store
information indicating how many deletions/
amplifications affect si if ti=0.

Proposition 4: The maximum number of
deletions/amplifications that affect each si can be
bounded by N.

M[i,d] (1≤i≤n, 0≤d≤N): The size of an optimal
transformation from Si=(s1,s2,…,si) to Ti=(t1,t2,…,ti) such
that exactly d deletions affect si.

Recursive formula:

O(nN) entries + each entry is computed in time O(N) →
an O(nN2)-time algorithm.

Main Idea: M can be described by O(n) piecewise linear
functions, where each function encapsulates O(N) entries.

Each function is “well-behaved” – in particular, each
function has only three linear segments.
→ The computation of an entry can be performed in time
O(1) rather than O(N).

Each function can be represented in a compact manner.
→ the size of the table shrinks from O(nN) to O(n).

→ Running time: O(n); space complexity: O(1) (at each
point of time, we store one piecewise linear function).

