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Copy Numbers (CNs)

CN Profile: A vector V=(v,,v,,...,v,), where each v; is
a honnegative integer.
- Example: (1,2,1,0,3,3).

Amplification: A triple c = (/,h,1), where 1</<h<n.
- Effect (example): ¢ =(3,5,1);
c(1,2,1,0,3,3) =(1,2,2,0,4,3).

Deletion: A triple c = (/,h,-1), where 1</<h<n.
- Effect (example): ¢ = (3,5,-1);
c(1,2,1,0,3,3) =(1,2,0,0,2,3).



Motivation

Genome rearrangement: The majority of the extant
models either assume that each gene has a single copy or
result in an NP-hard problem.

Detecting CN abnormalities: G-banding and fluorescence
in situ hybridization (FISH); array comparative genomic
hybridization (array CGH), next generation sequencing
techniques.

Distances between CN profiles: Algorithmic aspects of
guestions related to these distances gained little scientific
attention to date. We use the definition of Schwarz et al.
(PLOS Comp. Biol., 2014).



Problem Statement
Let S=(s,,5,,...,5,) and T=(t,,t,,...,t,) be two CN profiles.

Copy Number Transformation (CNT) from Sto T: A
vector C = (c¢,,C,,...,C,,) Of amplifications and deletions

such thatc,(c,, ,(--*(c,(5))))=T.

C=(c4,C,C5) > U'Li* e ¢, =(2.2.-1)
e(S) = (1.0, 1.E|1)

v e, = (4.4.-1)
es(e(S) = (1,0,1,0. 1)

v c;=(1.5+1)
I'=csi(ex(ei(S) = (2.0,2,0,2)




Problem Statement
Let S=(s,,5,,...,5,) and T=(t,,t,,...,t,) be two CN profiles.

Copy Number Transformation (CNT) from Sto T: A
vector C = (c¢,,C,,...,C,,) Of amplifications and deletions
such thatc,(c,, ,(--*(c,(5))))=T.

dist(S,T): The smallest size of a CNT from Sto T.

The CNT Problem: Compute dist(S,T).



The Algorithm: Overview

The CNT problem can be solved in linear time and
constant space.

Our approach:
*Prove four key propositions.

«An O(nN?)-time, O(N)-space algorithm, DP-Alg, that is
based dynamic programming.

*By using piecewise linear functions, we modify DP-Alg
to obtain an O(n)-time, O(1)-space algorithm.



Key Propositions (Informal)

Proposition 1: It is sufficient to examine CNTs were all of the
deletions precede all of the amplifications.

s=aftlh.1.n

} ;= (2.2.-1)

ens) = (1.0, 1[1]n
v c;=(4.4.-1)

es(e(S) = (1,0,1,0. 1)
v c;=(1.5+1)

IT'=ci(exei(S) =(2,0,2.0,2)

Proposition 2: It is sufficient to examine CNTs that do not
contain both a deletion that affects s; but not s;,, and a deletion
that affects s;,, but not s.. The same is true for amplifications.



Key Propositions (Informal)

If t>0 and d deletions affect s>0, then max{t-(s-d),0}
amplifications should affect s..

Proposition 3: It is not necessary to store
information indicating how many deletions/
amplifications affect s; if t=0.

Proposition 4: The maximum number of
deletions/amplifications that affect each s; can be
bounded by N.



Dynamic Programming

Ml[i,d] (1<isn, 0<d<N): The size of an optimal
transformation from S'=(s,,s,,...,s;) to T'=(t,,t,,...,t;) such
that exactly d deletions affect s..
Recursive formula: M[i,d] <+~ min {M[prev(i),d']
0<d <N
+max{d—d ,0}+max{a(i,d)—a(prev(i),d),0}

+max{Q; — max{d,d’},0}}.

O(nN) entries + each entry is computed in time O(N) -
an O(nN?%)-time algorithm.



Piecewise Linear Functions

Main Idea: M can be described by O(n) piecewise linear
functions, where each function encapsulates O(N) entries.

Each function is “well-behaved” — in particular, each
function has only three linear segments.

—> The computation of an entry can be performed in time
O(1) rather than O(N).

Each function can be represented in a compact manner.
— the size of the table shrinks from O(nN) to O(n).

- Running time: O(n); space complexity: O(1) (at each
point of time, we store one piecewise linear function).






