Summer 2022

Summer Cluster: Interpretable Machine Learning

NOTE: This event is rescheduled for Summer 2022. Program and workshop dates are tentative at this point. Please check back for updated information.

This cluster will convene an interdisciplinary group of scholars to develop firm theoretical and philosophical foundations for addressing some major issues concerning interpretability of machine learning⁠–based models. Program participants include experts in theoretical computer science, machine learning, statistics, causal inference, and fairness and the present community on interpretability. We aim to address the following fundamental questions about how to best use machine learning for real-life tasks:

  1. What notions of interpretability might render models that are more amenable to monitoring by regulators?
  2. How can the quality and usefulness of interpretation in a given context (such as a particular human audience and for a particular domain problem) be evaluated both empirically and theoretically?
  3. For which of the desiderata that interpretability purports to address must we sacrifice predictive accuracy?
  4. Are there any feasibly measurable properties of neural networks that can yield significant insights into their input-output functionality? More generally, are there sound theoretical principles under which today’s deep learning tools can be leveraged to confer insights beyond their predictive accuracy?
  5. What role, if any, do various interpretation or explanation techniques have to offer the discourse on algorithmic fairness and discrimination? Are there any inherent trade-offs between notions of interpretability and fairness?

The cluster will address a variety of perspectives on defining and developing tools for achieving these goals in automated decision-making systems. 

sympa [at] (body: (Click here to subscribe to our announcements email list for this program).


Shai Ben-David (University of Waterloo; chair), Zachary Lipton (Carnegie Mellon University), Ruth Urner (York University), and Bin Yu (UC Berkeley)

Long-Term Participants (including Organizers):

Shai Ben-David (University of Waterloo), Simina Brânzei (Purdue University), Rich Caruana (Microsoft Research Redmond), Sanjoy Dasgupta (UC San Diego), Sina Fazelpour (Carnegie Mellon University), Zachary Lipton (Carnegie Mellon University), Daniel Roy (University of Toronto), Gintare Karolina Roy (Element AI), Barna Saha (UC Berkeley), Nati Srebro Bartom (Toyota Technological Institute at Chicago), Ruth Urner (York University), Benjamin D Wandelt (Sorbonne University), Bin Yu (UC Berkeley)



Himabindu Lakkaraju (Harvard University), Zachary Lipton (Carnegie Mellon University), David Madigan (Columbia University), Deirdre Mulligan (UC Berkeley), Bin Yu (UC Berkeley)

Those interested in participating in this program should send an email to the organizers iml2020 [at] (at this address).

Past Internal Program Activities

Thursday, September 10 1:00 pm2:00 pm
Sina Fazelpour (Carnegie Mellon University)
Monday, August 10 11:00 am12:00 pm
Michal Moshkovitz
Monday, August 3 11:30 am12:00 pm
Shai Ben-David (University of Waterloo)
Monday, August 3 11:00 am11:30 am
Karolina Dziugaite (Element AI)
Thursday, July 30 1:00 pm2:30 pm
Richard Zemel
Monday, July 27 11:00 am12:30 pm
Chandan Singh (UC Berkeley)
Thursday, July 23 1:00 pm2:30 pm
Simina Branzei (Purdue University)
Monday, July 6 11:00 am12:30 pm
Atoosa Kasirzadeh (University of Toronto & Australian National University)
Thursday, July 2 1:00 pm2:30 pm
Monday, June 29 1:00 pm2:30 pm