![Geometry of Polynomials_hi-res logo](/sites/default/files/styles/workshop_banner_sm_1x/public/2023-01/Geometry%20of%20Polynomials_hi-res.png.jpg?itok=GzqUUw1q)
Abstract
We introduce a new set of generators for the Chow ring of a matroid. Geometrically, these generators behave like base-point-free divisors on a projective variety, and combinatorially, they encode matroid operations called principal truncations. By combining the theory of Lorentzian (a.k.a. strongly log-concave) polynomials with the properties of these generators, we obtain a simplified proof of the degree one Hodge-Riemann relations for matroids, which is the combinatorially relevant portion of the Hodge theory of matroids by Adiprasito-Huh-Katz.