Abstract

We present the first protocol allowing a classical computer to interactively verify the result of an efficient quantum computation. We achieve this by constructing a measurement protocol, which enables a classical verifier to ensure that the quantum prover holds an n qubit quantum state, and correctly reports the results of measuring it in a basis of the verifier's choice. This is enforced based on the assumption that the learning with errors problem is computationally intractable for efficient quantum machines.

Video Recording