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Classical versus Quantum Computers

e Can a classical computer verify a
quantum computation?

» Classical output (decision problem)

e Quantum computers compute in
superposition

» Classical description is exponentially
large!

e Classical access is limited to
measurement outcomes

8 «——

» Only n bits of information
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Verification through Interactive Proofs

Can a classical computer verify the result of a quantum
computation through interaction (Gottesman, 2004)?

H -3
*
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Verification through Interactive Proofs

¢ Classical complexity theory: IP = PSPACE [Shamir92]

e BQP C PSPACE: Quantum computations can be verified, but
only through interaction with a much more powerful prover

e Scaled down to an efficient quantum prover?
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Relaxations

7
g

Error correcting codes Bell inequalities
[BFKO8][ABEO08][FK17][ABEM17] [RUV12]
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Verification with Post Quantum Cryptography

B[S
?

¢ In this talk: use post quantum classical cryptography to control
the BQP prover

¢ To do this, require a specific primitive: trapdoor claw-free
functions
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o Trapdoor claw-free functions f:
» Two to one

v

Trapdoor allows for efficient inversion: given y, can output xg, X1
such that f(xp) = f(x1) =y

v

Hard to find a claw (xo, x1): f(x0) = f(x1)

v

Approximate version built from learning with errors in
[BCMVV18]

¢ Quantum advantage: sample y and create a superposition
over a random claw

1
—(|x0) + |x
\@(| 0) +[x1))

which allows sampling of a string d # 0 such that

d~(X0€BX1):O
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T5(b0) +1x)) o d- (0 x) =0

o Classical verifier can challenge quantum prover
» Verifier selects f and asks for y

» Verifier has leverage through the trapdoor: can compute xg, X1
o First challenge: ask for preimage of y

e Second challenge: ask for d
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(o) + b)) or d-(x0®x1) =0

V2

¢ In [BCMVV18], used to generate randomness:

» Hardcore bit: hard to hold both d and either xp, x; at the same
time

» Prover must be probabilistic to pass
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7(‘)(0) +x)) or d-(%®x)=0

S

o Verification:
» TCFs are used to constrain prover

» Use extension of approximate TCF family built in [BCMVV18]
e Require [BCMVV18] hardcore bit property: hard to hold both d
and either (xo, x1)
e Require one more hardcore bit property: there exists d such that
for all claws (xo, x1), d - (Xo @ x1) is the same bit and is hard to
compute
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How to Create a Superposition Over a Claw

1
—(|x0) + |x
\@(\ 0) + [x1))

© Begin with a uniform superposition over the domain:

T

® Apply the function f in superposition:

S S bl

Xex

©® Measure the last register to obtain y
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\}2(\XO> )

¢ Performing a Hadamard transform on the above state results
in:

1
—= > (=)0 + (1)) a)
VIX 5
¢ By measuring, obtain a string d such that

d-(X%®x)=0
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Verification Outline

Goal: classical verification of quantum computations through
interaction

3]
-l

e Define a measurement protocol
» The prover constructs an n qubit state p of his choice

» The verifier chooses 1 of 2 measurement bases for each qubit
» The prover reports the measurement result of p in the chosen
basis
¢ Link measurement protocol to verifiability

e Construct and describe soundness of the measurement
protocol
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Hadamard and Standard Basis Measurements

[¥) = a0 |0) + a1 [1)

« Standard: obtain b with probability |a|?

o Hadamard:
1 1 1
W71 L)
HI) = (ap + 1) 0) + —=(ag — o) [1)

V2 V2

2
Obtain b with probability %}ao + (—1)Pay ’
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Measurement Protocol Definition

Measurement protocol: interactive protocol which forces the prover
to behave as the verifier's trusted measurement device

(A —

H/S

lI - Ip
&

a—_

Measurement Protocol Ideal Behavior
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Measurement Protocol Definition

A R
H - 1,

Measurement Protocol Ideal Behavior

o Key issue: adaptivity; what if p changes based on
measurement basis?

» Maybe the prover never constructs a quantum state, and
constructs classical distributions instead
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Measurement Protocol Soundness

A &
l] = TP

Measurement Protocol Ideal Behavior

e Soundness: if the verifier accepts, there exists a quantum
state independent of the verifier's measurement choice
underlying the measurement results
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Measurement Protocol Soundness

h e {0,1}" h e {0,1}"

. CI?SQ
: Dp,h
l"'TDP”‘ i Tp

L.

Measurement Protocol Ideal Behavior

e Soundness: if P is accepted with high probability, there exists
a state p such that for all h, D, , and Dp 4 are computationally
indistinguishable.
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Using the Measurement Protocol for Verification

e The measurement protocol implements the following model:

e Prover sends qubits of state p and verifier measures

¢ Next: show that quantum computations can be verified in the
above model
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Quantum Analogue of NP

« To verify an efficient classical computation, reduce to a 3-SAT
instance, ask for satisfying assignment and verify that it is
satisfied

3-SAT <= Local Hamiltonian
n bit variable assighment X <= n qubit quantum state

Number of unsatisfied clauses <= Energy

¢ To verify an efficient quantum computation, reduce to a local
Hamiltonian instance H, ask for ground state and verify that it
has low energy

» If the instance is in the language, there exists a state with low
energy
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Quantum Analogue of NP

3SAT <= Local Hamiltonian
Assignment <= Quantum state

Number of unsatisfied clauses <= Energy

To verify that a state has low energy with respectto H = Z H;:

I

e Each H; acts on at most 2 qubits

o To measure with respect to H;, only Hadamard/ standard basis
measurements are required [BL08]
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Verification with a Quantum Verifier

H/S

o Prover sends each qubit of p to the quantum verifier

e The quantum verifier chooses H; at random and measures,
using only Hadamard/ standard basis measurements
[MF2016]

o Measurement protocol can be used in place of the
measurement device to achieve verifiability
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Measurement Protocol Construction

e Use a TCF with more structure: pair fy, fi which are injective
with the same image

e Given fy, f, the honest quantum prover entangles a single
qubit of his choice with a claw (xop, x1) (¥ = fo(x0) = fi(x1)).

[W) = > ab|b)|xe) = Enc(|¢))

be{0,1}

e Once y is sent to the verifier, the verifier now has leverage
over the prover’s state: he knows Xy, xq but the prover does not
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Measurement Protocol Construction

e The verifier generates a TCF fy, fi and the trapdoor

e Given fy, f, the honest quantum prover entangles a single
qubit of his choice with a claw (xg, x1) (¥ = fo(X0) = f1(x1)).

[Wy=> aplb) = D > aplb) ) [f(x))

bef{0,1} XeX be{0,1}
f, =
BOIZY, ST apb) Ix) = Enc(|1))
be{0,1}

e Given y, the verifier uses the trapdoor to extract xg, x4
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Measurement Protocol Testing

e Upon receiving y, the verifier chooses either to test or to
delegate measurements

o If a test round is chosen, the verifier requests a preimage
(b, xp) of y

e The honest prover measures his encrypted state in the
standard basis:

Enc(|¢)) = Z ap |b) [Xp)

be{0,1}

¢ Point: the verifier now knows the prover’s state must be in a
superposition over preimages
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Delegating Hadamard Basis Measurements

e Prover needs to apply a Hadamard transform:

Enc(|¢) = Y aplb)xp) — H( Y aplb)) =H|v)

be{0,1} be{0,1}

e Issue: xp, X1 prevent interference, and prevent the application
of a Hadamard transform

e Solution: apply the Hadamard transform to the entire encoded
state, and measure the second register to obtain d
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Delegating Hadamard Basis Measurements

e This results in a different encoding (X is the bit flip operator):
Enc([4:)) = XF 0% H )
« Verifier decodes measurement result b by XORing d - (xo & x1)

¢ Protocol with honest prover:

Bnc(l) — | 7] — B 2= o

H
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Measurement Protocol So Far
(fo, f1)

- Y
< (("@?
Test/ Hadamard Measurement =\

<

e Soundness: there exists a quantum state independent of the
verifier's measurement choice underlying the measurement
results

o Necessary condition: messages required to delegate standard
basis must be computationally indistinguishable

o To delegate standard basis measurements: only need to
change the first message
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Delegating Standard Basis Measurements

o Let go, g1 be trapdoor injective functions: the images of gq, g1
do not overlap
» The functions (fy, fi) and (go, g1) are computationally
indistinguishable

« If prover encodes with g, g; rather than fy, f;, this acts as a
standard basis measurement:

Yo aplb) = Y aplb)[x)[gs(x))

be{0,1} be{0,1},x

o With use of trapdoor, standard basis measurement b can be
obtained from y = gp(x)
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Delegating Standard Basis Measurements

¢ Protocol is almost the same, except fy, f; is replaced with gg, 94

(907 gl)
Yy

Test/ Hadamard Measurement

<
«

<
«

o Verifier ignores Hadamard measurement results; only uses y
to recover standard basis measurement
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Measurement Protocol Recap
(fo, f1) or (go, 91)‘
Y

Test/ Hadamard Measurement

«

<
«

e Goal: use the prover as a blind, verifiable measurement device

o Verifier selects basis choice; sends claw free function for
Hadamard basis and injective functions for standard basis

o Verifier either tests the structure of the state or requests
measurement results
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Soundness Intuition: Example of Cheating Prover

¢ Recall adaptive cheating strategy: prover fixes two bits, by
and bg, which he would like the verifier to stores as his
Hadamard/ standard basis measurement results

e Assume there is a claw (xg, X;) and a string d for which the
prover knows both X, and d - (xo @ X1)

Enc(|)) —= |/ 70 _.. e

H

e How to cheat:
» To compute y: prover evaluates received function on xp,
(Y = Gbs(Xpg) OF y = fog(Xbs))-
» When asked for a Hadamard measurement: prover reports d
and by @ d - (Xo ® x1)
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Hardcore Bit Properties

Soundness rests on two hardcore bit property of TCFs:

@ For all d # 0 and all claws (xp, X1), it is computationally difficult
to compute both d - (xp @ xq) and either xp or x;.

® There exists a string d such that for all claws (xp, x1), the bit
d - (xo @ xq) is the same and computationally indistinguishable
from uniform.
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How to Prove Soundness

B @
[ Jon

[BFKO8][ABEO8][FK17][ABEM17] [RUV12]

Key step: enforcing structure in prover’s state
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How to Prove Soundness: Quasi Classical Verifier

" 1

Verifier sends qubits encoded with secret error correcting code to
the prover.
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How to Prove Soundness: Two Provers

Verifier plays CHSH with the provers and checks for a Bell
inequality violation. If prover passes, he must be holding Bell pairs.
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How to Prove Soundness: Measurement Protocol

Enforcing structure?

* No way of using previous techniques

¢ Use test round of measurement protocol as starting point

(fo, f1) or (g0, 91)
T >
Test
(b, zp)

<
<

<
<

At some point in time, prover’s state must be of the form:

S ap[b) %) [tbx,) o [b) [Xe) [bu,)

be{0,1}
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How to Prove Soundness: Measurement Protocol

Why is this format useful in proving the existence of an underlying
quantum state?

S ap|b) [X) [ex,) o [b) [Xe) [bu,)

be{0,1}

e Can be used as starting point for prover, followed by deviation
from the protocol, measurement and decoding by the verifier
» Deviation is an arbitrary unitary operator U

» Verifier's decoding is d - (xo & X1)

e The part of the unitary U acting on the first qubit is therefore
computationally randomized, by both the initial state and the
verifier's decoding

» Pauli twirl technique?
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How to Prove Soundness: Measurement Protocol

Why is this format useful in proving the existence of an underlying
quantum state?

> aplb) Ixo) [ox,)  oF  |B)[X6) Wbk,

be{0,1}

e Difficulty in using Pauli twirl: converting this computational
randomness into a form which can be used to simplify the
prover’s deviation

» Rely on hardcore bit properties regarding d - (xo @ x1)
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Conclusion

o Verifiable, secure delegation of quantum computations is
possible with a classical machine

¢ Rely on quantum secure trapdoor claw-free functions (from
learning with errors)

» Use TCF to characterize the intial space of the prover

» Strengthen the claw-free property to complete the
characterization and prove the existence of a quantum state
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Thanks!
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