# Streaming Symmetric Norms via Measure Concentration

Robert Krauthgamer, Weizmann Institute of Science

Room 116

A long line of research studies the space complexity of estimating a norm l(x) in the data-stream model, i.e., when x is the frequency vector of an input stream consisting of insertions and deletions of items of n types. I will focus on norms l (in R^n) that are *symmetric*, meaning that l is invariant under sign-flips and coordinate-permutations, and show that the streaming space complexity is essentially determined by the measure-concentration characteristics of l. These characteristics are known to govern other phenomena in high-dimensional spaces, such as the critical dimension in Dvoretzky's Theorem. The family of symmetric norms contains several well-studied norms, such as all l_p norms, and indeed we provide a new explanation for the disparity in space complexity between p<=2 and p>2. We also obtain bounds for other norms that are useful in applications.