Events Spring 2020

A Tale of Turing Machines, Quantum-Entangled Particles, and Operator Algebras | Richard M. Karp Distinguished Lecture

Apr. 20, 2020 11:00 am12:00 pm

Add to Calendar

Speaker: 

Henry Yuen (University of Toronto)

In a recent result known as "MIP* = RE," ideas from three disparate fields of study — computational complexity theory, quantum information, and operator algebras — have come together to simultaneously resolve long-standing open problems in each field, including a 44-year old mystery in mathematics known as Connes’ Embedding Problem. In this talk, I will describe the evolution and convergence of ideas behind MIP* = RE: it starts with three landmark discoveries from the 1930s (Turing’s notion of a universal computing machine, the phenomenon of quantum entanglement, and von Neumann’s theory of operators), and ends with some of the most cutting-edge developments from theoretical computer science and quantum computing. 

This talk is aimed at a general scientific audience, and will not assume any specialized background in complexity theory, quantum physics, or operator algebras.