Events Summer 2021

Breakthroughs — An Almost Constant Lower Bound of the Isoperimetric Coefficient in the KLS Conjecture

Aug 5, 2021 10:00 am – 11:00 am 

Add to Calendar


Yuansi Chen (Duke University)

Kannan, Lovász, and Simonovits (KLS) conjectured in 1995 that the Cheeger isoperimetric coefficient of any log-concave density is achieved by half-spaces up to a universal constant factor. This conjecture also implies other important conjectures such as Bourgain's slicing conjecture (1986) and the thin-shell conjecture (2003). In this talk, first we briefly survey the origin and the main consequences of these conjectures. Then we present the development and the refinement of the main proof technique, Eldan's stochastic localization scheme. Finally, we explain a few proof details which result in the current best bound of the Cheeger isoperimetric coefficient in the KLS conjecture.

Breakthroughs is a lecture series highlighting major new developments in theoretical computer science and is geared toward a scientific audience. 

If you require accommodation for communication, please contact our Access Coordinator at simonsevents [at] with as much advance notice as possible.