Fall 2014

Algebraic Geometry Program Seminar

Add to Calendar


Jaroslaw Buczynski (Polish Academy of Sciences)


Calvin Lab 116

Determinantal Criteria for Border Rank of High Degree Polynomials

(for an algebraic geometer):
We fix a projective space $\mathbb{P}^n$ and an integer $r$. We are interested in the defining equations of the $r$-th secant variety to the $d$-uple Veronese reembedding of $\mathbb{P}^n$ (i.e. the Veronese variety), where we assume $d$ is sufficiently large, for instance $d \ge 2r$. With these assumptions we prove that the $(r+1)$-minors of a catalecticant matrix with linear entries are sufficient to define the secant variety set-theoretically if and only if the Hilbert scheme parametrising $0$-dimensional Gorenstein subschemes of $\mathbb{P}^n$ of length $r$ is irreducible. In particular, if $n$ is at most $3$ or $r$ is at most $13$, then the minors are sufficient. If $n$ is at least $4$ and $r$ is sufficiently large, then the locus defined by the minors has some additional components. These results motivate introducing cactus varieties, which generalise the secant varieties, and receive a lot of attention recently.

(for a complexity theorist):
Given a homogeneous multivariate polynomial $F$ of degree $d$ in $n$ variables we can construct a sequence of $d-1$ catalecticant matrices whose entries depend linearly on $F$. Let $r$ be the rank of a "middle" matrix in this sequence. The integer $r$ is a lower bound for the border rank of $F$, but in general they are not equal. In our research we assume in addition that the degree of $F$ is sufficiently high ($d \ge 2r$ is enough), and ask if the border rank is equal to $r$. We show that it is equivalent to a deformation problem for certain non-radical ideals in a polynomial ring. In particular, if $r \le 13$, or $F$ depends only on at most $4$ variables, then the border rank is always equal to $r$. Otherwise, if the number of variables is at least $5$, and $r$ is sufficiently large, then there exist polynomials of any degree $d\ge 2r$, for which the rank of all catalecticant matrices is at most $r$, and the border rank is very high.
These results motivate introducing the cactus rank of polynomial, which generalise the border rank, and receives a lot of attention recently.

(joint work with Weronika Buczynska and Joachim Jelisiejew)