Fall 2021

Optimization Under Symmetry

Nov 29, 2021 to Dec 3, 2021 

Add to Calendar


Nisheeth Vishnoi (Yale University; chair), Michael Walter (University of Amsterdam and QuSoft), Ashia Wilson (MIT)

Optimization and sampling problems over group orbits and their convex hulls, called orbitopes, capture various important problems in computer science, mathematics, and physics. For instance, the problem of finding minimum norm vectors in orbits has connections with scaling problems, linear programming, and testing algebraic identities; and the set of density matrices, central to semidefinite programming and quantum computing, is an orbitope. It turns out that several orbit problems, while not convex, are geodesically convex optimization problems. There are also deep connections between orbits/orbitopes and polytopes. Recent works have developed algorithms for a number of problems that leverage these connections and, crucially, the symmetry of the problems. 

This workshop will focus on algorithms for computational problems related to orbits and orbitopes, and explore connections of these objects with theoretical computer science, discrete optimization, quantum physics, statistics, mathematics, and machine learning.

This event will be held in-person and virtually.

Enquiries may be sent to the organizersworkshop-gm3 [at] ( at this address.)

Registration is required to attend this workshop. Space may be limited, and you are advised to register early. To submit your name for consideration, please register and await confirmation of your acceptance before booking your travel.