Abstract

A classical problem in scheduling is to optimize load balancing objectives in an online assignment of jobs to machines. If the machines have non-uniform speed, then the problem is called scheduling on related machines. In this talk, I will describe a new algorithm for this problem that achieves a constant-competitive assignment for any l-p norm objective. Previous to this work, a constant competitive ratio was known only for the makespan objective (l-infinity norm), via the well-known "slowest-fit" algorithm. Our new algorithm uses gradient descent to solve a convex relaxation of the problem, followed by a rounding technique based on a new framework called machine smoothing. In contrast, most previous relax-and-round algorithms for online problems have employed multiplicative weights to solve the convex relaxation, which incurs a super-constant loss in the competitive ratio. Our techniques also give new results for more general vector scheduling problems. This is joint work with Sungjin Im, Nat Kell, and Maryam Shadloo.

Video Recording