Abstract
The simplest homogeneous polynomials with nonnegative coefficients are products of linear forms Prod_{A}(X) associated with nonnegative matrices A. We prove that for any H-Stable(homogeneous and stable) polynomial p with P(E) = 1, where E is the vector of all ones, it's value p(X) = Prod_{A(X)}(X), where A(X) is nonnegative matrix with unit row sums and the vector of column sums equal to the gradient of p at E. I will first explain some intuition, and history, behind the result; sketch the proof and present a few applications and generalizations of this "productization" property. (Joint work with Jonathan Leake).