Abstract

There are many ways to estimate an overall average effect of a large-scale multisite individually randomized control trial. The researcher can target the average effect across individuals or sites. Furthermore, the researcher can target the effect for the experimental sample or a larger population. If treatment effects vary across sites, these estimands can differ. Once an estimand is selected, an estimator must be chosen. Standard estimators, such as fixed-effects regression, can be biased. We describe 15 different estimators commonly in use, consider which estimands they are appropriate for, and discuss their properties in the face of cross-site effect heterogeneity. Using data from 12 large multisite RCTs, we estimate the effect (and standard error) using each estimator and compare the results. We assess the extent that these decisions matter in practice and provide guidance for applied researchers. (Joint work with Michael J. Weiss, MDRC and Brit Henderson, MDRC)

Attachment

Video Recording