Abstract

Monogamy relations and de Finetti theorems have broad application, including to quantum key distribution, Hamiltonian complexity, analyzing non-local games and even classical optimization algorithms. One limitation of most work in this space is that the number of systems needs to grow like a power of the dimension of each system. Brandao, Christandl and Yard achieved a major breakthrough by making use of information theory to reduce the number of systems needed to scale only like the logarithm of the local dimension. I will describe a further improvement of their theorem which has a simpler proof and generalizes to multipartite states and non-signaling distributions. Next I'll describe several applications to non-local games, quantum complexity theory, and other topics. Finally, I'll explain how conjectured improvements of these results could resolve several major open problems in classical and quantum complexity theory.

Video Recording