Spring 2022

Econometrics in Games and Auctions (Part II)

Thursday, Jan. 27, 2022 11:00 am12:00 pm PST

Add to Calendar


Vasilis Syrgkanis (Microsoft Research)


Calvin Lab Auditorium

This short course will review recent advances in econometric theory for datasets that stem from the strategic interaction of participants in a game theoretic scenario. The course will cover basics of identification and estimation strategies for structural parameters of game theoretic models in settings like market entry games, dynamic games and auctions. In the first part, I will review basic econometric theory and in particular large sample asymptotic theory of generalized method of moment estimators and M-estimators, which forms the basis of many estimation and identification strategies proposed for game theoretic settings. I will then give an application of this theory to entry games of incomplete information. I will finish with an overview of how this approach extends to dynamic games of incomplete information. In the second part, I will analyze games of complete information and focus on the problem arising from the multiplicity of equilibria in these games, due to the unobserved heterogeneity of the participants. The latter leads to partial identification of the parameters of interest and set estimation. Finally, I will focus on econometrics of auction games and in particular estimation of the private value distribution in simple single item auctions. I will finish with a brief description of recent progress at the intersection of algorithmic game theory and econometrics.