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1 Introduction

Recent advancements in machine learning have enabled progress on notoriously challenging 
artificial intelligence (AI) problems in a broad range of domains. These domains include com-
puter vision, robotics, speech recognition, language translation, autonomous transportation, 
and game playing. This progress initially prompted a general belief that existing machine 
learning techniques will play a central role in automation of human intelligence tasks and 
promote an economic and technological revolution. Recent findings, however, suggest that 
this belief is overly optimistic. It turns out that existing machine learning methods can be 
easily manipulated to make arbitrary classifications, introduce statistical biases that lead to 
discrimination, and compromise individuals’ privacy.

These critical vulnerabilities of existing machine learning methods are now the major 
obstacle to implementing artificial intelligence systems that necessitate reliability, depend-
ability, and security. Already today machine learning algorithms are ubiquitously applied, and 
their vulnerabilities have non-trivial societal implications.

1.1 Objective

The goal of this program is to build a general machine learning arsenal of robust models, 
both in terms of their reliability and resistance to malicious tampering. This will require a 
thorough investigation of the extent to which current machine learning techniques fail and 
designing reliable and secure frameworks that overcome these vulnerabilities. Our vision is 
that machine learning models should be dependable and modular. In particular, a system 
that incorporates a machine learning model should use it in the same black-box manner it 
uses a traditional data structure, without compromising reliability and resilience guarantees.

The directions we aim to pursue can be categorized into three major thrusts:

1. Robustness: Design machine learning algorithms that are resilient to adversarial data
poisoning and misclassification attacks;

2. Fairness and transparency: Design machine learning algorithms that appropriately
represent groups in a population in a fair and transparent manner;

3. Privacy: Design machine learning algorithms that do not compromise the privacy of
individuals in a dataset and can be deployed in a distributed and secure way.
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Figure 1: Example of misclassification of bus via noise from Szegedy et al. [50]. The image on the left is
a bus, correctly classified by a standard DNN; the figure in the middle depicts the perturbation of pixels
added to the image on the left; the image on the right is the image of the bus after noise has been applied,
where the DNN classified the bus as an ostrich.

1.2 Why DARPA?

Machine learning is currently an area that attracts substantial interest and resources from the
industry. We believe, however, that safe machine learning is unlikely to be championed by the
industry, largely due to two reasons. First, the development of safe machine learning requires
a long time horizon to come to fruition whereas industry, barring some exceptions, typically
invests in short term projects. Exploring vulnerabilities of machine learning and developing a
new way to think about machine learning requires a far grander time horizon. Secondly, this
effort requires an ensemble of experts from a broad range of areas and their collaboration.
In particular, it requires expertise in diverse areas such as optimization, machine learning,
cryptography, privacy, security, systems, and human-computer interaction. Moreover, every
direction towards robust machine learning requires synthesizing techniques from almost all
of these disciplines. DARPA is in a unique position to create a collaboration with world-class
experts at the necessary scale. Finally, the concerns we address in this document have deep
implications for national security, both in obvious ways in situations where machine learning
models are deployed in mission-critical systems, and far subtler ways when nation-state
adversaries can use vulnerabilities in these models to dictate the direction of our society.
We believe that investment in this effort goes along the DARPA mission of “making pivotal
investments in breakthrough technologies for national security”.

2 Key Research Directions

2.1 Robust machine learning

The root of the problem is that current machine learning solutions, despite achieving ex-
cellent performance in benign settings, fail – often in a truly catastrophic manner – in
more adversarial contexts. In particular, the machine learning models trained with existing
techniques are often extremely vulnerable to a wide spectrum of attacks, such as causing
misclassification by adversarial input perturbation and injection of false data to the training
data set. In fact, these models tend to fail even if the settings they are applied in are not
fully malicious but merely noisy in a way that conforms to fairly natural noise models.
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Fundamental limits of robust generalization

In recent years, classification using deep neural networks (DNNs) has produced state-of-the-
art performance on visual classification problems, achieving near-human-level performance
on image recognition tasks. Despite their empirical success, however, there are many open
questions related to our theoretical and intuitive understanding of deep learning methods.
One important open question relates to the robustness of deep neural networks to noise.

A series of recent papers show that standard deep learning classifiers are extremely sen-
sitive to adversarially chosen noise [49, 44, 39, 1, 19]. In particular, as many examples show,
one can take an image which is correctly classified by a DNN, and make the same image
become completely misclassified by perturbing the pixels of the image in a manner that is
not detectable to the human eye. In a world which develops an ever-growing dependence on
automatic classification using neural networks, with applications ranging from self-driving
cars to face recognition, such sensitivity to noise can have dire consequences.

Misclassification on perturbed images implies DNN models do not generalize well under
adversarial errors. Designing methods that are robust to adversarial noise requires un-
derstanding the fundamental limits of robust generalization. This brings to fore problems
addressing which raises modeling, algorithmic, and experimental challenges.

At a high level, the modeling challenge is that we are interested in providing provable
guarantees for the methods we suggest. The issue, however, is that training a deep learn-
ing classifier requires solving an intractable optimization problem. Thus, we must some-
how circumvent this issue. From an algorithmic perspective, designing robust optimization
techniques introduces a notoriously challenging set of problems. Robust optimization is
concerned with optimizing min-max loss functions which often becomes NP-hard even for
well-behaved objectives. Most importantly, we are interested in developing algorithms that
work well in practice. This requires designing architectures and training large-scale DNNs.

Intuitively, if we know the adversarial noise in advance, and have algorithms that generate
adversarial noise, we can improve classification accuracy by injecting adversarial noise to the
training data, and train a classifier on this corrupted data set. Such logic is sound and does
lead to improvements in test accuracy [42], but there are numerous complications. Since
there are multiple ways to generate adversarial noise, which noise should be used to corrupt
the training data? And if we want to use multiple noise types to corrupt the training data,
what is the optimal proportion for how the noises should be applied, and how can we compute
what this proportion is? Are there less intuitive methods that perform even better? Does
the fact that we care about the worst-case noise performance rather than, for instance, the
expected performance, make a difference? These are some of the complications that need to
be addressed en route to a constructing noise-robust DNNs.

Reducing the space/time overhead of training robust models

Recent work on attacks and defenses in adversarial machine learning rely on finding equilibria
in a zero sum game between two objectives. While theoretically sound, the computational
overhead of such algorithms is enormous which often makes the state-of-the-art algorithms
infeasible in practice.

The reason for the large computational overhead is two fold. First, computing the equi-
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libria relies on iterating between utility maximizing objectives. The guarantees often hold
when the number of iterations tend to infinity, which can make the results infeasible. The
second bottleneck is that in many cases, there is a large overhead of computing each itera-
tion. This is because one needs to optimize a non-convex high-dimensional utility function
which is computationally expensive.

One of the goals of this project is to investigate new methods for computing equilibria
in zero-sum games tailored to robust machine learning tasks. There has been a great deal of
advancement in our understanding of computing equilibria in recent years and we intend to
apply and develop new techniques for the benefit of robust machine learning.

Differential testing of models: how to evaluate robustness

An interesting question that we intend to explore is that of testing a model. Traditionally in
machine learning, the quality of a classifier can be evaluated by drawing random examples
from a data set similar to the one used to train the classifier. For robust machine learning
algorithms, such evaluations are no longer valid. An important goal of this project is to
establish principled criteria to evaluate robust models.

Adversarial examples beyond human perception

Recent adversarial machine learning research has maintained a significant focus on robustness
of vision systems [4, 50, 24, 45, 12, 19], in which human perception is inextricably linked
to formation of adversarial examples. Starting from a target instance, perturbation to an
adversarial example is deemed successful at model evasion, when the model’s prediction is
flipped relative to the target, but a human’s judgment of the example remains unchanged.
While this definition is motivated in vision, many learning domains in need of adversarial
treatment do not possess such an infallible oracle. In addition, the involvement of humans
as oracles precludes us from defining adversarial examples rigorously in a way that can be
analyzed formally.

One type of application domain includes a human operating in the loop, similar to appli-
cations of adversarial vision, video surveillance, security checkpoints, and self-driving cars.
Going beyond an infallible oracle, known classes of optical illusion could be exploited to
fool human perception [30]. Research addressing this direction would constitute an exciting
instance of cognitive science contributing to adversarial learning. In the reverse direction,
adversarial learning could inform cognitive science when the (human) victim in social engi-
neering is modeled as a learner. In order to train potential victims how to better identify and
react to phishing communications via email, phone, or in person, robust learners could play
an assistive role to ideas from teaching [22]. Many other (potentially adversarial) domains
exist in this broad class, e.g., predictive policing [25] and judicial support systems —an active
focus of algorithmic fairness research [15]–where robustness to adversarial tampering has so
far gone unexplored.

A second type of domain is that in which human perception does not provide a clear
advantage over existing algorithms, a prime example being malware analysis [32]. A human
expert may enjoy higher accuracy than a trained detection algorithm, however querying this
expertise comes at significantly greater financial and time costs: requirements on adversarial
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examples relative to a human could be realistically relaxed. The domains listed here still
only scratch the surface of those that would benefit from an adversarial treatment. Exploring
more diverse domains will arguably advance adversarial machine learning significantly, while
consideration of the role of human perception is vital to organize domains and uncover
connections to diverse areas of science and technology such as the cognitive sciences.

Robust ML beyond the adversarial setting

The recent research focus on machine learning in adversarial settings could be seen as prema-
ture from a quality-assurance perspective, given that ML models still fail somewhat consis-
tently in settings with no maliciously intentioned adversary. There are abundant examples
of ML systems failing dramatically when faced with rare conditions (e.g., cloudy weather
conditions [48]), which hint at more general issues with the development and evaluation
process of deployed ML systems [46, 47, 9, 43].

Compared to the quality-assurance pipeline of general software systems, studied exten-
sively since the 1980s, rigorous testing of ML software is still in its infancy. Machine learning,
and especially deep learning, offers little to no performance guarantees: average test classi-
fication error remains the metric of choice; more often than not the only reported metric.
Finally, even when errors in ML systems become apparent (e.g., [48]), principled methods
for understanding and fixing these errors are lacking.

Ultimately, the goal here may be both foundational (i.e., setting the right definitional
framework and guidelines, with preliminary work from [46, 47, 9]) and educational (i.e., rais-
ing awareness and getting the broader community to care about these important questions).
Arguably, the application of ML in security-sensitive settings is contingent on a mature de-
velopment, evaluation and deployment cycle. Given the little work overall in this area, it
seems that a number of core and possibly industry-shaping contributions may be achievable
in this direction.

Data poisoning: how to learn from data you can’t trust?

Machine learning systems trained on user-provided data are susceptible to data poisoning
attacks, whereby malicious users inject false training data with the aim of corrupting the
learned model. While recent work has proposed a number of attacks and defenses, little is
understood about the worst-case loss of a defense in the face of a determined attacker.

The majority of recent work on adversarial examples in machine learning considers attacks
on the test set. That is, once a classifier has been trained, the adversary fools the classifier by
distorting an image from the test set that the classifier did not use in training. A different
problem however, is that of noise on the training set introduced by Biggio, Nelson, and
Laskov showing that SVMs can easily be corrupted by introducing misclassified point in the
training set [4]. In recent work Koh and Liang show that even corrupting the classification of
a single data point in the training set can lead to consistent misclassification by a standard
DNN classifier [37].

One of the goals of this project is to design data poisoning attacks and defenses. In
particular, we are interested in characterizing the extent to which misclassified data points
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can affect a classifier and consider optimal attack strategies. Doing so would pave the road
to architectures that are robust to data poisoning attacks.

Beyond worst-case analysis of robustness

The design and analysis of provably robust estimators has been a central topic in statistics
and machine learning for several decades. But for even the most basic problems, being
robust seems fundamentally at odds with computational complexity. In supervised learning,
the Perceptron algorithm can learn a linear separator. But once an adversary is allowed to
corrupt a small fraction of the data there are no known algorithms that can find any halfspace
with non-trivial agreement. It has been recently proved [16] these problems are intractable
under natural conjectures about refuting random CSPs. In unsupervised learning, estimating
the mean and covariance are central topics in robust statistics (called robust estimates of
location and scale) but estimators with large breakdown point (i.e. the fraction of corruptions
they can tolerate before producing irrelevant results) need time exponential in the dimension
to compute. So while there are plenty of provable robust estimators in principle, they remain
largely out of reach of efficient algorithms [29, 26].

Recently, a unifying theme and way around these computational impediments has emerged,
which relies on reformulating the problems in more well-posed settings. For learning a half-
space, when the noise is stochastic rather than adversarial, Blum et al. gave an algorithm
for learning a halfspace with optimal agreement. In unsupervised learning, Diakonikolas
et al.[17], Lai et al. [40] and Charikar et al. [13] gave algorithms for robustly learning the
mean and covariance when the uncorrupted points come from a Gaussian distribution. These
algorithms extend to a number of other parameter learning problems. Candes et al. [10]
gave algorithms for finding low-rank approximations in the presence of noise by showing that
under incoherence assumptions, there are simple convex programs to decompose a matrix
into a low-rank and sparse part. These algorithms all rely on distributional or structural
assumptions that put us outside of the realm of worst-case hardness.

The idea of coping with computational intractability has been an important research
direction in theoretical computer science for many years, and the insights garnered (e.g. no-
tions like approximation stability of Balcan et al. [2]) by this community could potentially
have a transformative effect on machine learning and statistics, both in our ability to cir-
cumvent known hardness vs. robustness tradeoffs, as well as revisit popular and practical
algorithms that have only been analyzed in stochastic settings and rethink their behavior in
the presence of deviations from an idealized model (e.g. as in semirandom models of Feige
and Kilian [20]). In short, the need for provably robust algorithms is both a question of
algorithm design and of modeling. It is not merely about formulating the strongest notions
of robustness and hoping to achieve them algorithmically, but understanding what types of
compromises can be made and what types of properties of realistic data offer a way around
computational intractability.

Verification methods for machine learning models

Deployment of security-critical systems requires a careful verification that each of the sys-
tem?s components is indeed secure and reliable. Unfortunately, we currently lack adequate
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tools for performing such verification in the context of machine learning models, in general,
and deep learning models, in particular. The key bottleneck is that the existing methods,
which correspond to fairly direct adaptations of verification techniques developed for other,
non-ML context, are still rather impractical, even for modestly sized models [33, 11].

One of the directions this project will pursue is designing a new, more suitable framework
for verification of machine learning models. In particular, the goal will be to explore if the
rich algorithmic toolkit of convex programming and geometric approximation techniques
can lead to methods that enable us to analyze large-scale machine learning models efficiently
while still providing provable guarantees.

2.2 Fairness and Transparency

Artificial Intelligence (AI) technology increasingly supports mission critical systems affecting
labor and employment, the financial markets, energy and resource availability, transporta-
tion, health, the police force, and the military. Systems in these domains have profound
impact on the functioning of society, political and military decisions, and the daily lives of
human beings.

A major challenge is to ensure that AI promotes the well-being and advancement of so-
ciety. Addressing the societal impact of artificial intelligence is not only an ethical concern.
Systems perceived as unfair or opaque can prevent individuals from cooperating with the
system thus compromising its functionality. Similarly, lack of trust can compel individuals
to evade, second guess, or manipulate technological systems encountered in their lives. Ul-
timately, failure to address societal challenges raised by AI can lead to political instability,
as well as weakened infrastructure, both issues of great import to national security.

Fairness, accountability, and transparency

Over the past few years, fairness has emerged as a matter of serious concern within machine
learning. There is growing recognition that even models developed with the best of intentions
may exhibit discriminatory biases, perpetuate inequality, or perform less well for historically
disadvantaged groups. Considerable work is already underway within and outside machine
learning to both characterize and address algorithmic fairness in all stages of the algorithmic
pipeline, and particularly in the gathering and cleaning of training data as well as in learning
predictors and classifiers. At the same time, there is growing concern that the complexity of
modern machine learning solution limits the transparency of the system, as well as it may
dilute accountability and responsibility for the system’s malfunctioning or failure.

As the great successes in cryptography and privacy teach us, finding the right definitions
is key to theoretical and practical impact. Nevertheless, a flurry of recent research (cf.
[18, 36, 14, 27, 35, 34, 28] for a few examples) suggests that no single definition of algorithmic
fairness can capture all scenarios. Trade-offs are exposed between fairness for individual
members of a population (powerful and hard to attain) and fairness on average (easy to obtain
but weak); between machine-learning utility and equalized treatment; between observable
parameters and possibly hidden causality. Providing tools for identifying meaningful task-
dependent fairness criteria and developing tools to measure and implement these fairness
criteria is of critical importance if we expect machine-learning practitioners to implement
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fair algorithms. In many cases, the questions lead to trade-off scenarios where multiple
objectives have to be reconciled.

Artificial intelligence in almost all application faces uncertainty that makes prediction
errors and incorrect decisions unavoidable. Additional causes of error include poor or biased
training data, weak design, software bugs, as well as misspecified or poorly stated training
objectives. Errors are costly to multiple stakeholders including not only the operator of the
system, but also all individuals that are affected by the actions of the system. An important
direction is to characterize and define, measure and mitigate the concrete harms that a
system may cause.

Reliability in dynamic environments

When a learned model is used for consequential decision making, it faces the problem that the
environment will typically react and adapt to the model’s decision. This response presents
the model with unforeseen inputs that can lead to critical failure with devastating outcomes.

As of today, machine learning methods are based on finding patterns in historical data,
but largely fail to address how deployment of the model will change and affect future data.
The response of the environment to a model may be either strategic or adversarial. Individ-
uals might begin to strategically adapt to the model in order to gain a personal advantage.
Adversaries might actively seek to exploit the model. In either case, the performance of a
model may be compromised due to the dynamic nature of the environment that was not ac-
counted for when the model was trained. The primary paradigm to address these challenges
in practice practice is trial and error. Engineers frequently re-train and evaluate their models
either on holdout data or in deployment. Few, if any, a priori guarantees guide the design
of AI systems today. The problems of manipulation and gaming are insufficiently addressed
by ad-hoc measures of obscurity that enjoy no formal guarantees and limit the transparency
and explainability of the system.

2.3 Privacy and Security

An important direction we intend to pursue is that of privacy and security through the
entire pipeline of a machine learning workflow. A growing concern is that systems that rely
on machine learning sacrifice the privacy of the users, both in the model training phase and
in the model utilization stage where we use the model for classification.

An example arises in the setting of a hospital that uses patient data, including medical
records, demographic data, and genomic data, to train a machine learning model that pre-
dicts the probability of a medical condition given several patient attributes. The privacy
concern is that the model might reveal information about individuals in the training data.
The security concern arises when the training data is owned by multiple mutually distrusting
organizations, and thus, training has to be done in a distributed manner.

Having trained the model, the hospital would like to monetize the model by proving
predictions as a service. The privacy concern is that users with oracle access to the model
might reverse-engineer it, a scenario known as model-stealing. The security concern arises
because not only does the hospital want to protect the model, the users on the other hand
also want to protect their input data to the classification process.
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We remark that privacy loss can occur in many subtle ways, even unintentionally when
systems leak information about the training data which may contain sensitive information
about users. This is troublesome, not only in the medical domain, but in other areas such as
financial predictions, insurance decisions, and college admissions, where the data in question
is highly sensitive.

Secure ML training

Secure ML training deals with the scenario where two (or more) entities with disparate
types of data, such as genomic data and phenotypic data, wish to collaborate on their
datasets to come up with models for disease prediction. In such cases, it is important and
sometimes legally mandated by law (e.g. HIPAA and FERPA) to do this in a way that
does not expose the parties’ data to one another. A pressing question to be answered is:
Can we design efficient privacy-preserving machine learning algorithms in all these settings?
Secure multiparty computation and homomorphic encryption are cryptographic techniques
that allow parties to collaborate on their individual data to compute a common result,
without revealing anything else about their data. Secure multiparty computation starting
with [51, 23, 3], and modern day fully homomorphic encryption [21, 8, 7, 6, 41] are two
relevant technologies which promise to be useful to address collaboration on training data
by distrustful parties.

Likely the most pressing question at the forefront of encrypted computing is how to
do privacy-preserving training, a far more computationally intensive task than privacy-
preserving inference (just as it is in the world without privacy). Scalable protocols for
simple tasks such as linear regression have been developed. The next step would be to train
logistic regression models and subsequently, simple neural networks. An overarching hard
problem we will tackle in this domain is to design algorithms and protocols for encrypted
gradient descent (in its various forms). We believe that a fast encrypted gradient descent
protocol will prove to be an extraordinarily powerful tool in our arsenal.

Differential privacy-preserving machine learning

For well over a decade differential privacy has been used as a formal definition for privacy
and has evolved as the de-facto standard for statistical data privacy both academia and in
industry. Differential privacy ensures that from the output of an algorithm, an adversary
learns almost the same information about an individual irrespective of her presence/absence
in the data set. Although differential privacy has been adopted by Google, Apple, Uber,
Microsoft, and US Census, its adoption for many machine learning tasks has been slower
than anticipated. Several important research directions remain that could help fuel adoption.

First, if the data is distributed across various user devices, then can we design differen-
tially private learning algorithms that do not need multiple rounds of interactions with the
distributed data set? This question is important because, in distributed learning, one of the
major bottlenecks is communication, both in terms of turnaround time and monetary cost.

Second, many machine learning applications, including deep learning, are non-convex in
nature. There does not exist much work on non-convex learning in the context of privacy, in
part due to the lack of theory for non-convex formulations. Are there differentially private
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algorithms for non-convex learning that also have strong theoretical utility guarantees, and
work well in practice?

Third, a major issue with using the basic notion of differential privacy is that it inher-
ently hinders personalization, i.e., by definition the output of the algorithm cannot depend
too much on a particular user’s data. However, in many personalized recommendations
(e.g., movie recommendations) it is important that the learning models incorporate specific
attributes of individual users. Can we design effective private learning systems that allow
personalization? One approach may be to ensure that every user learns a different model
which can depend arbitrarily on her data but does not depend too much on other people’s
data.

Secure ML inference

The question of privacy during the classification stage has been partially explored in work
by [5], protocols for privacy-preserving inference with simple machine learning models such
as decision trees and linear classifiers and a more general classifier combining these using
AdaBoost have been developed. More recently, in [31], it has been shown how to do encrypted
classification of images using large convolutional neural networks with millions of parameters
(such as networks trained on the CIFAR-10 and ImageNet datasets [38]) with an end-to-end
runtime of a few seconds.

Such runtimes would have been unimaginable just a year or two ago, and were made
possible with two concerted lines of attack, together with many new algorithms and careful
optimizations: (1) while black-box approaches that use the existing cryptographic techniques
as-is incur an extremely high overhead, one can try and exploit the rich mathematical struc-
ture inherent in ML, and computations (concretely, convolutions and homomorphic encryp-
tion are made for each other); and (2) interactive protocols often reduce the cryptographic
burden and are order of magnitudes more efficient than puritan approaches that rely on
either multiparty computation or homomorphic encryption alone. That said, it is important
not to overspecialize these algorithms and ensure that they generalize well to the encrypted
computation of a wide set of machine learning algorithms. In addition, much work remains
to be done to improve efficiency of the current set of capabilities.

Defenses against model theft

In a model theft attack, an adversary seeks to determine the parameters of a proprietary
model held by a separate company or a government agency by making multiple queries to
it. The motivation of the adversary could be simply “stealing” the model that might have
been built using proprietary data. Model theft can also be used as a first step in a privacy
attack or a white box adversarial example attack. For example, if the model in question was
trained on sensitive data about people, the adversary could steal the model first, and then
launch a membership inference attack in order to violate the privacy of people whose data
was used to train the model. Similarly, the adversary could use model theft as a first step to
determine the model parameters before launching a white box adversarial example attack.
Thus, leaving model theft unsolved will leave machine learning models more vulnerable to
an adversary who wishes to launch a privacy attack or an adversarial example attack.
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The state-of-the-art in this area is that there are a few attacks known, but no defenses.
Model theft attacks also essentially boil down to active learning using membership queries;
thus existing active learning algorithms may be used to launch high quality attacks that only
need a few queries to successfully recover the model parameters. Finally, defense against
model theft followed by a privacy attack is possible if we answer queries with a differentially
private model; however, this may still leave the model vulnerable to other kinds of attacks.

The missing elements in the state of the art are (a) an understanding of what is possible
when the model class is unknown and (b) rigorous defenses that can prevent an adversary
from learning parameters of the model and still provide reasonably accurate answers to
queries. In general, the problem can be tested on available datasets, and hence data is not
a big issue for this problem.

We believe that both tasks could be achieved within the next 3-5 years by formalizing
and leveraging the connection between model theft and active learning. There is already a
large body of existing work on active learning, and upper bounds and algorithms for active
learning would provide ideas that can be leveraged to provide model theft attacks; similarly,
active learning lower bounds (eg, in the presence of noise close to the decision boundary)
could be used to provide defenses that provide noisy responses to strategically chosen queries.
By leveraging this connection, we should be able to resolve this problem.
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