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Abstract

Constraint satisfaction problems are a central pillar of modern com-
putational complexity theory. This survey provides an introduction to
the rapidly growing field of Quantum Hamiltonian Complexity, which
includes the study of quantum constraint satisfaction problems. Over
the past decade and a half, this field has witnessed fundamental break-
throughs, ranging from the establishment of a “Quantum Cook-Levin
Theorem” to deep insights into the structure of 1D low-temperature
quantum systems via so-called area laws. Our aim here is to provide a
computer science-oriented introduction to the subject in order to help
bridge the language barrier between computer scientists and physicists
in the field. As such, we include the following in this survey: (1) The
motivations and history of the field, (2) a glossary of condensed mat-
ter physics terms explained in computer-science friendly language, (3)
overviews of central ideas from condensed matter physics, such as in-
distinguishable particles, mean field theory, tensor networks, and area
laws, and (4) brief expositions of selected computer science-based re-
sults in the area. For example, as part of the latter, we provide a novel
information theoretic presentation of Bravyi’s polynomial time algo-
rithm for Quantum 2-SAT.
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no. 3, pp. 159-282, 2014.
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Introduction

“Computers are physical objects, and computations are
physical processes. What computers can or cannot compute
1s determined by the laws of physics alone...”

— David Deutsch [125]

The Cook-Levin Theorem [53, I11], which states that the SATIS-
FIABILITY problem is NP-complete, is one of the cornerstones of
modern computational complexity theory [22]. One of its implications
is the following simple, yet powerful, statement: Computation is,
in a well-defined sense, local. Yet, as David Deutsch’s quote above
perhaps foreshadows, this is not the end of the story, but rather
its beginning. Indeed, just as a sequence of computational steps on
a Turing machine can be encoded into local classical constraints
(as in the Cook-Levin theorem), the quantum world around us
also evolves “locally”, and this quantum evolution can be encoded
into an analogous notion of local quantum constraints. The study
of such quantum constraint systems underpins an emerging field
at the intersection of condensed matter physics, computer science,
and mathematics, known as Quantum Hamiltonian Complexity (QHC).



At the heart of QHC lies a central object of study: The notion of a
local Hamiltonian H, which can intuitively be thought of as a quantum
constraint system (in this introduction, we will keep our discussion in-
formal in order to convey high-level ideas; all formal definitions, includ-
ing an introduction to quantum information, are given in Chapter |2)).
To introduce local Hamiltonians, we begin with the fact that the state
of a quantum system S on n qudits is described by some d"-dimensional
complex unit vector [¢) € (C)®". How can we describe the evolution
of the state [1)) of S as time elapses? This is given by the Schrodinger
equation, which says that after time ¢, the new state of our system is
e~y where H is a d® x d™-dimensional complex (more precisely,
Hermitian) operator called a Hamiltonian. Here, the precise definition
of the matrix exponential ' is irrelevant; what is important is the
dependence of the Schrédinger equation on H. In other words, Hamilto-
nians are intricately tied to the evolution of quantum systems. We thus
arrive at a natural question: Which classes of Hamiltonians correspond
to actual quantum evolutions for systems occurring in nature? It turns
out that typically, only a special class of Hamiltonians is physically
relevant: These are known as local Hamiltonians.

Roughly, a k-local Hamiltonian is a Hermitian matrix which has a

succinct representation of the form
H=> H,
i

where each H; acts “non-trivially” only on some subset of k£ qudits.
Here, each H; should be thought of as a “quantum constraint” or
“clause”, analogous to the notion of a k-local clause in classical con-
straint satisfaction problems. For example, just as a classical clause
such as (x; V x; V ay) for z;,x,x, € {0,1} forces its bits to lie in
set z;z 2, € {001,010, 011, 100,101,110,111} (where V denotes logical
OR), a quantum clause H; restricts the state of the k qudits it acts on
to lie in a certain subspace of ((Cd)®”. Moreover, each clause H; requires
O(k) bits express (assuming all matrix entries are specified to constant
precision). This is because each H; is given as a d* x d* complex matrix
(this is made formal in Section [2.2)). As a result, although H itself is a

matrix of dimension d"™ x d", i.e. H has dimension exponential in n the
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number of qudits, the description of H in terms of local clauses {H;}
has size polynomial in n.

Since local Hamiltonians are intricately tied to the time evolution of
quantum systems in nature, the goal of QHC is to study properties of
local Hamiltonians H. Common computational tasks include estimat-
ing the ground state energy (smallest eigenvalue) of H, or computing
features of H’s ground state (eigenvector corresponding to the small-
est eigenvalue). Intuitively, the ground state can be thought of as the
vector |¢) which “maximally satisfies” the constraints {H;} (i.e. the
“optimal solution” to the quantum constraint system), and is of par-
ticular interest as it encodes the state of the corresponding quantum
system when cooled to low temperature. In fact, any classical Con-
straint Satisfaction Problem (CSP) of arity k can be embedded into
a k-local Hamiltonian, such that determining the ground state of the
Hamiltonian yields the optimal solution to the CSP. (This connection
is made explicit in §2.2|) Thus, ground states are interesting from a
complexity theoretic perspective.

Let us also motivate ground states from a physics perspective. Con-
sider the case of helium-4: When cooled to near absolute zero, helium-4
relaxes to a state |¢)) which is the ground state of some local Hamilto-
nian H (the precise form of H is beyond the scope of this introduction).
This ground state exhibits an exotic phase of matter known as super-
fluidity — it acts like a fluid with zero viscosity. (See [I] for a video
demonstrating this remarkable phenomenon.) Ideally, we would like to
understand the properties of the superfluid phase demonstrated by [v),
so that, for example, we can in turn use this knowledge to design new,
advanced materials. In this direction, QHC might ask questions such
as: Which quantum systems in nature have a ground state with a suc-
cinct classical representation? Can we run efficient classical simulations
to predict when a quantum system will exhibit interesting phenomena,
such as a phase transition? Can we quantify the hardness of determin-
ing certain properties of local Hamiltonians by establishing connections
to computational complexity theory? In the context of helium-4, for
example, the first of these questions is particularly relevant — to the
best of our knowledge, a closed form for the ground state energy or



the ground state of helium-4 remain elusive. (Heuristic approximations
based on variational methods, however, have long been known; see,
e.g. [139].)

This state of affairs illustrates the formidable challenge facing QHC:
Namely, we are interested in computing properties of k-local Hamil-
tonians H, which are matrices of dimension d"™ x d", whereas an ef-
ficient algorithm must run in time polynomial in n, the number of
qudits H acts on. Despite this challenge, QHC has proven a very fruit-
ful area of research. For example, in 1999 Kitaev established [106] a
quantum version of the celebrated Cook-Levin theorem [53, [I11] for
local Hamiltonian systems. In 2006, Bravyi gave a polynomial time
algorithm for solving the quantum analogue of 2-SATISFIABILITY,
known as Quantum 2-SAT [38]. And though the heuristic approach of
White [168], [169] (known as “Density Matrix Renormalization Group”)
was known to solve 1-dimensional (gapped) Hamiltonians in practice
efficiently, Hastings’ 1D area law in 2007 [88] helped explain the efficacy
of this heuristic by strongly characterizing the entanglement structure
of such 1-dimensional systems. This survey aims to review a select sub-
set of such fundamental results in QHC.

To help make this survey accessible to computer scientists with
little or no background in quantum information, we begin in §2.1] with
a review of basic quantum information. We next establish some of the
fundamental definitions of QHC in including an explicit sketch
of how an instance of 3-CSP can be encoded into a local Hamiltonian.
With this basic background in place, we finally proceed in Chapter [3]
to give a roadmap for the remainder of this survey.
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Preliminaries

We now review the basics of quantum information (§2.1]) and introduce
fundamental concepts in QHC ( For readers interested in further
details on quantum information in general, please see the text of Nielsen
and Chuang [125] (see also [106, 101] for alternate textbooks) or the
thesis of Gharibian [71] for a self-contained brief introduction. (We re-
mark that here is essentially a condensed version of Chapter 1.4
of the thesis of Gharibian [71].) For a review of quantum complexity
theory, see the survey of Watrous [165]. For a physics-oriented intro-
duction to Hamiltonian complexity, we refer the reader to the survey
of Osborne [129].

2.1 Basics of quantum information
Let us first set notation and state a number of useful linear algebraic
definitions; intuitively, the latter are necessary, as the mathematical

language behind quantum mechanics is linear algebra.

Notation. The symbols C, R, and Z denote the sets of complex, real,
and integer numbers, respectively. For m a positive integer, the nota-

6



2.1. Basics of quantum information 7

tion [m] indicates the set {1,...,m}. The terms L (X), U (X), H (X),
and Pos (X) denote the sets of linear, unitary, Hermitian, and positive
semidefinite operators acting on complex Euclidean space X', respec-
tively. For the purposes of this survey, our choice of X will always be
C? for some positive integer d. Recall that an operator A is unitary if
AAT = ATA = I, Ais Hermitian if A = AT (where AT denotes the con-
jugate transpose of A), and A is positive semidefinite if ' Az > 0 for
all complex vectors «. The orthogonal projector onto vector space X is
denoted IIy; by definition, 113, = ITy. The notation A > B means op-
erator A — B is positive semidefinite. The smallest (largest) eigenvalue
of A € H(X) is given by Amin(A) (Amax(A)). The trace, Frobenius, and
spectral (or operator) norms of A € £(X) are defined as

| All, = Tx(Var4),

[Allg = /Tr(ATA),

A = max Alz
1Al = max A,

respectively, where := denotes a definition, and where Tr(A) :=
> A(i,4) for the (m,n)th entry of A given by A(m,n). Unless oth-
erwise noted, all logarithms are taken to base two.

2.1.1 The four postulates of quantum mechanics

With our notation in place, we can now provide a brief introduction
to quantum information. For this, we introduce the four postulates of
quantum mechanics, which intuitively prescribe the following concepts:
How a quantum state is described, how one “reads” or measures a
quantum state, what operations can be performed on a quantum state,
and finally, how one describes multiple quantum systems jointly.

1. Describing quantum states. Let X = C? for d > 2. In a nutshell,
a linear operator p € L(X) describes a d-dimensional quantum state if
and only if p is positive semi-definite and has trace 1, i.e. p € Pos (X)
and Tr(p) = 1. Let us now provide some intuition as to how this state-
ment comes about.
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In classical computing, the basic unit of information is a bit, which
takes on values in the set {0,1}. One can equivalently encode a bit
using the set {|0),[1)}, where {|0),|1)} C C? is the standard basis for
C?, ie. |0) = (1,0)” and |1) = (0,1)”. Here, the notation [1)) (called
a “ket”) denotes a column vector labeled by 1. The key difference be-
tween classical bits and quantum bits (or qubits) is that in the quantum
world, one can “interpolate” between the two discrete values |0) and
|1) by taking a superposition, i.e. the vector

[¥) = al0) + B[1) (2.1)

describes a valid quantum state if |a|? + |3]? = 1. In other words, any
unit vector in C? describes a quantum bit, or qubit.

More generally, any unit vector [1)) € C? describes a d-dimensional
quantum state, sometimes dubbed a qudit. Such vectors are called pure
states, as they describe the state of a quantum system which is not
subject to external “noise”, or more generally is evolving in isolation
from its environment. Sometimes, however, interaction between our
system and its environment may be inevitable (such as when we wish
to measure our system); this will inherently inject some “noise” into
our system, and we thus need a mathematical approach to model this.
To do so, we simply permit probabilistic mixtures of pure states, more
generally referred to as mized states. Such probabilistic mixtures are
described in the following straightforward manner, known as the density
matriz formalism.

Associated with any probabilistic mixture is an ensemble E,

E = {p}iy, iy } (2.2)

where {pi}le forms a probability distribution and {|¢;)} C X is a
set of unit vectors. Here, the notation (| (called a “bra”) denotes the
row vector corresponding to the conjugate transpose of [¢). Thus, if
[9) € C4, then |h)1)| is a rank-1 d x d complex matrix. Returning
to our discussion, the mixed quantum state pg corresponding to the
ensemble FE is given by:

k
pE =) pilifvil. (2.3)

i=1
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Here, pg is called the density matriz describing the underlying quantum
system. We denote the set of density operators acting on X as D(X).

Let us now tie the density operator formalism back into the state-
ment made at the beginning of this section: That p represents a quan-
tum state if and only if p = 0 and Tr(p) = 1. Note that since in
Equation [2.3] p is a non-negative sum of positive semidefinite opera-
tors, we have p = 0. Moreover, by applying the cyclic property of the
trace (i.e. that Tr(ABC) = Tr(CAB) for all A, B,C), we have

k k k
Tr(p) = > piTe(|ea)hil) = > pilthilvs) = > pi =1,

i=1 i=1 i=1
where (v|w) denotes the inner product between vectors |v) and |w).
Conversely, we can now intuitively see why any p € X with p > 0 and
Tr(p) = 1 describes a valid quantum state — recall that any positive
semi-definite operator A can be diagonalized via its spectral decomposi-
tion A =3, Ni(A)|Ni(A))XAi(A)], where A\;(A) > 0 are the eigenvalues
of A, and |\;(A)) are the corresponding eigenvectors. Then, given p
satisfying p = 0 and Tr(p) = 1, taking its spectral decomposition al-
lows us to immediately recover an ensemble {{p;}, {|¢i)(¢:|}}. In this
case, the p;, which correspond to the eigenvalues of p, sum to 1 due to
the trace constraint on p.

Finally, note that although we have attempted to present a simple
exposition of how quantum states are classically described via density
operators, in reality the precise interpretation of what a density opera-
tor means is highly non-trivial and remains a subject of intense debate.

2. Measuring quantum states. Now that we have an approach for
describing quantum states, we require a formalism for modeling how a
quantum state is “observed” or measured. For this, let p € D(X) be a
density matrix. Then, a quantum measurement is formalized by a set
of operators {M;} C L(X) satisfying

S MM =1, (2.4)

i

where the latter is called the completeness relation. The act of mea-
suring p with {M;} is in general an inherently probabilistic process,
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even if p corresponds to a pure state (unlike in the classical case of
bits). Specifically, when measuring p with respect to {M;}, we obtain
outcome 7 with probability given by

Pr(outcome i | p) = Tr(MZ'pM;). (2.5)

Once a particular outcome 4 is observed, the state p “collapses” to a
new state p’ consistent with this outcome, i.e.

) M;pM]
p =

. 2.6
Pr(outcome i | p) (26)

Note that the denominator above serves the role of normalizing p’ so
that Tr(p’) = 1. Such a measurement {M;} is the most general possible.
Often, however, we are interested in a special type of measurement
in which each M; is an orthogonal projection operator additionally
satisfying M; M; = 0;;M;. Such measurements are called projective or
von Neumann measurements. An example of such a measurement used
frequently is a measurement in the computational or standard basis.
For X = C% and standard basis vectors |i) (which have a 1 in position
i and zero elsewhere), such a measurement is specified via {M;} for
M; = |i)(i|]. More generally, given any orthonormal basis B = {|i;)},
measuring in basis B is formalized by setting M; = |1; {1;].

There is a useful alternate representation of von Neumann mea-
surements via observables M € H(X'). Specifically, given an observable
M, to recover the underlying von Neumann measurement, we take the
spectral decomposition of M to obtain M = >, \;II;, where A\; # A;
for ¢ # j and each II; is a projection operator (of rank possibly greater
than one). Then, the measurement operators are defined as M; = II;,
and each distinct eigenvalue \; corresponds to a distinct label for the
corresponding measurement outcome II;. The reason this representa-
tion via observables proves useful is because the expected value of a
measurement, denoted E,;, takes a very simple form in terms of the
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observable M:

Exm(p) = ZAi Pr(outcome i | p)

7

= 3 ATr(ILpl)

= ZAiTr(Hip)
= Tr(Mp),

where the third equality follows from the cyclic property of the trace
and since II is Hermitian and is a projector, and the last equality since
the trace is a linear map.

3. Evolution of quantum states. We now know how to describe a
quantum state p € D(X), as well how to model a measurement of p.
The next question we ask is: What kind of operations (i.e. gates) can
we perform on p? For example, to a classical bit, we can apply a NOT
gate to flip its value. What can we do to a qubit?

Just as in the case of describing quantum states, there are two sce-
narios to consider here: When a quantum system evolves in a manner
isolated from its environment (i.e. a closed system), and when a system
interacts with an environment during its evolution (i.e. an open sys-
tem). Beginning with the former, the set of valid operations on a closed
quantum system with state p € D(X) is the set of unitary operators
U € U(X). Specifically, U maps p to

p=UpUT. (2.7)

For example, for p € D(C?), i.e. a single qubit, a frequently used
set of unitary operators are the Pauli operators (where i := /—1 € C)

=(Ve) =(07) (0 h)

Note, for example, that the Pauli X plays the role of a quantum NOT
gate, i.e. X|0) = |1) and X|1) = |0). The Pauli operators are also
referred to as 0, = X, 0y =Y, and o, = Z. In this survey, we will use
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the fact that the operators above can be generalized to act on C3, i.e.
on qutrits, as

010
L1001 (2.8)
Oy = —= , .
V2 010
0 - 0
: 0 —i (2.9)
oy = —(— | i —i |, .
V2 0 2 O
1 0 0
o. = |00 0 (2.10)
0 0 -1
Moreover, it is common in the physics literature to define vector o) =
(0F,0!,07) (sometimes also denoted S;), and dot-product
ol T = oioj +olol +aj03, (2.11)

where there is an implicit tensor product between (e.g.) of and of
above. (The tensor product is defined under “Composite quantum
systems” below.)

Let us next discuss the time evolution of an open quantum sys-
tem (i.e. one which interacts with its environment). In this case, the
set of allowed operations strictly contains U(X), and is in fact the set
of trace-preserving completely-positive (TPCP) maps, which we hence-
forth refer to as admissible maps or operations. Here, a linear map
O : L(X) — L(Y) is trace-preserving if Tr(®(A)) = Tr(A) for all
A € L(X). To define “completely positive”, let us first define “positive”
— & is positive if ®(A) = 0 whenever A > 0. Then, ® is completely
positive if @ is positive even when acting only some subsystem of some
larger joint system, i.e. if I ® ® is positive, where I € £(X'). Although
the notion of TPCP maps plays an important role in quantum informa-
tion, we remark that there is no loss of generality in restricting oneself
to the set of unitary maps. This is because any valid TPCP operation
on an open quantum system A can be simulated by moving to a larger
closed joint system AB, evolving AB via a unitary operator, and sub-
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sequently tracing out part of AB. (More on joint systems and tracing
parts of them out will be said shortly.)

To further distinguish the cases of open versus closed systems, let
us give a concrete example. Suppose one wishes to perform a measure-
ment on A. In order to do so in a lab, one introduces a measurement
apparatus, which we think of as system B. To complete the actual
measurement, B must interact with A, implying A is an open system.
Thus, if we look at A alone, the action of the measurement on A is
not described by a unitary operator, but by a TPCP map. However, if
we instead look at AB as a whole, this joint system is now closed, and
hence its evolution is described by a unitary operator.

Aside: Hamiltonians, and the connection to unitary operations. We
are now in a position to understand where the notion of a Hamiltonian
comes from, which will be fundamental for this survey.

Recall that any closed quantum system evolves in time according to
some unitary operation U € U(X). Now, any unitary U can be written
as U = exp(iH) for some Hermitian H € H(X'). To see this, let us first
define the notion of an operator function. Specifically, for any operator
A € L(X) admitting a spectral decompositiorE], and any function f :
C — C, we define f(A) := Y, f(N)|Ai)\i], where Y7, Ai|[Ai )\ is the
spectral decomposition of A. Then, to verify our claim about unitary
operators, take the spectral decomposition U =}, €3 |9 )ab;| (where
recall a unitary operator has its eigenvalues on the unit circle), and
observe that defining

H = 3703100 (2.12)
J

yields U = e, The operator H is called a Hamiltonian.

We conclude that corresponding to each U € U(X), there exists a
Hamiltonian H € H(X). Where does H come from? It turns out that
the time evolution of a closed quantum system |¢) according to H is

'Such operators A are called normal, and satisfy AAT = ATA.
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given by the celebrated Schrédinger equationﬂ ,

L dly)
ih=2t = Hv), (2.13)

where A denotes Planck’s constant. For a quantum system evolving

from time t; to to, the solution to this equation is given by

0(t) = exp (i ) [0(t), (2.14)

i.e. [1h(t1)) evolves to |(t2)) via the unitary exp (—i’232 H)! In other
words, the notion of evolution under unitary operations arises precisely

because Schrodinger’s equation maps any “input” Hamiltonian H to a
unitary of the form e %4,

4. Composite quantum systems. We have stated that a quantum
state on X is described by a density matrix p € D(X'). Suppose now
we have two quantum systems A and B — how do we describe their
joint state AB? It turns out that if A and B correspond to complex
Euclidean spaces X = C% and ) = C%, then the joint system AB
corresponds to the space X @ Y = C%+t9_ Here, ® denotes the tensor
product, and is discussed further shortly.

Before we do so, however, let us make an important observation.
Consider a set of n single-qubit systems {X;}" ;. Then, the joint state of
all n qubits is described by a density operator acting on ;- X; = c?".
In other words, in stark contrast to a classical system of n bits, in order
to describe the joint state of n qubits, one requires an exponential-size
density matrix, i.e. p € D(C?")! This was essentially the reason why
Richard Feynman originally proposed [66, [67] the concept of quantum
computing (see also Benioff [29, [30, B1]) — he believed quantum com-
puters might enable an efficient study of quantum systems (which is
otherwise generally intractable on a classical computer).

We now further discuss the tensor product ®, as it is used through-
out this survey. First, for vectors u € X and y € ), we have that

2Here, we state the time-independent version of Schrédinger’s equation, and con-
sider only the corresponding class of time-independent Hamiltonians. More generally,
one can consider evolution via Hamiltonians which themselves change with time, i.e.
are time-dependent.
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u®v e X ®)Y, such that for all i € [d,]| and j € [d,]

(u®v)(i, §) = u(i)v(j). (2.15)

For linear operators A € L(X), B € L(Y), we similarly have that
A®B € L(X ®)), such that A® B is a complex matrix whose index
sets are given by ([d,] x [dy], [ds] % [d,]) satisfying

(A®@ B)((i1,41), (i2, j2)) := A(ir, i2) B(j1, j2) (2.16)

for all i1, 42 € [d,] and j1, j2 € [dy]. The tensor product has the following
properties for any A,C € X, B,D € Y, ce C:

(A+C)9B = A®B+C®B (2.17)
A®(B+D) = A®B+A®D (2.18)
(A®B) = (cA)®B=A® (cB) (2.19)

(A9 B)(C®D) = AC® BD (2.20)
Tr(A®B) = Tr(A)Tr(B) (2.21)

(A B)f = ATe B (2.22)

These properties hold analogously in the vector setting.

Finally, given a description p of the state of a joint system AB, we
now require a method for describing the marginal state on A (or B)
alone. Specifically, given a composite system p € D(X®Y), the reduced
state py on A (analogously, pp on B) is prescribed via the linear map
known as the partial trace, i.e.

pa = Tra(p). (2.23)

The partial trace is defined as follows: For any A® B € L(X ® )), we
have that Try(A ® B) € Y such that

Try(A® B) :=Tr(A)B. (2.24)
A second equivalent definition is as follows: For any orthonormal basis

{vi}le for X, we have that for any C' € L(X ® V)

d
Tra(C) = (vl @T) Cwie ). (2.25)
=1
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For example, Trp(pa ® pp) is simply pa, and Trp(|¢t)et) = 1/2,
where

)+ ) € C? ®C?

o1 1
[¢7) = ﬂIOO ﬂlll
is a special two-qubit state known as a Bell state.

Having introduced the concept of partial trace, we arrive at an-
other fundamental point about joint quantum systems: The possibility
of exotic correlations between a pair of quantum systems A and B.
On one end of the spectrum lies the notion of a tensor product state,
i.e. a state of the form p4 ® pp. Such states are uncorrelated, and as
such, tracing out system B simply yields p4. At the other extreme
lie states exhibiting a uniquely quantum form of correlations known
as quantum entanglement. A canonical example of such a state is the
Bell state |¢T) from above — in contrast to a tensor product state,
it is impossible to express |¢pT) € X ® ) as the tensor product of
a pair of states 1) € X and [¢2) € V! The consequence of this is
that even though the joint state |¢T) of both qubits is fully known
(i.e. is pure), tracing out B yields a state which is noisy or mixed. (In
fact, in this case Trp(|¢pt)X¢T|) = I/2 is mazimally mized, in that it
yields no information about the state of A.) Entanglement is one of the
key characteristics distinguishing the quantum world from the classical
one [I43], and is in fact a necessary resource for (pure state) quantum
computation to exponentially outperform classical computation [98].

Delving into entanglement further, it is useful to note that any
bipartite pure state [45) € C% @ C% can be written in terms of its
Schmidt decomposition, such that

min(dg,dy)
Wag) = Y. ailti) ® ). (2.26)
i=1
Here, the real a; > 0 are called Schmidt coefficients, and the sets {|¢;) }
and {|#;)} are orthonormal bases for C% and C%, respectively, known
as the Schmidt bases. The connection to entanglement is simple in the
pure state case: The state |¢) is entangled if and only if it has at least
two non-zero Schmidt coefficients «;. For this reason, the number of
non-zero «; has a special name — it is called the Schmidt rank of ).

Thus, we say that |¢) is entangled if and only if it has Schmidt rank at



2.2. Basics of Quantum Hamiltonian Complexity 17

least 2. But we can do more than simply state whether [¢) is entangled
or not; in the pure state case, we can also quantify the amount of
entanglement, achieved via the entropy of entanglement:

S(Tr([9)¢l)) = H({ai}), (2.27)

where S : D(X) — R is the von Neumann entropy function defined
as S(p) = —Tr(plog(p)) (recall that here we treat log as an operator
function, i.e. it is applied to the eigenvalues of p, and we define O -
log 0 = 0), and H denotes the classical Shannon entropy of a probability
distribution defined by H({p;}) = — Y, pilog p;. Notions such as the
Schmidt rank and entropy of entanglement will play important roles in
our discussions on matrix product states (§6.4.1) and area laws (§7.5).

We close this discussion with two final remarks. First, the partial
trace is employed here as it is the unique function which correctly
produces the measurement statistics for arbitrary observables M mea-
sured on A alone. Second, one can also define a notion of entanglement
for mixed quantum states (which will not be relevant to this survey).
Unlike the case of pure states, however, determining whether a mixed
state p € D(X ® Y) is entangled is highly non-trivial; in fact, it is
strongly NP-hard [82, [70].

2.2 Basics of Quantum Hamiltonian Complexity

With our background on quantum information in place, we can now
introduce some fundamental concepts in Quantum Hamiltonian Com-
plexity (QHC). We begin with a complexity class which has played a
central role in the development of the field.

Specifically, the class NP can be generalized to a bounded-error
quantum variant known as Quantum-Merlin Arthur (QMA). The in-
tuition behind QMA is analogous to NP, except we now replace the
classical prover and verifier by a quantum prover and verifier, respec-
tively, and stipulate that given a quantum proof |¢)) from the prover,
the verifier is allowed to err with bounded probability at most (say)
1/3 as to whether the input instance is a YES or NO instance. More
formally, we have the following definition, where a quantum circuit is
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simply the quantum analogue of a classical circuit in which classical
gates are replaced with quantum ones such as the Pauli X, Y, and Z
gates.

Definition 2.1 (QMA). A promise problem A = (Ayes, Ano) is in QMA
if and only if there exist polynomials p, ¢ and a polynomial-time uni-
form family of quantum circuits {@Q,, }, where @Q,, takes as input a string
& € ¥* with |z| = n, a quantum proof |y) € (C2)®P(™) and ¢(n) ancilla
qubits in state |0)®9(") such that:

e (Completeness) If x € Ayes, then there exists a proof |y) €
(C2)®P(") such that Q, accepts (z,|y)) with probability at least
2/3.

e (Soundness) If z € Ay, then for all proofs |y) € (C2)®P(), Q,
accepts (z, |y)) with probability at most 1/3.

Here, the quantum proof is given by |y), and the verification cir-
cuit by the circuit family {Q,}. We remark that the completeness and
soundness parameters of (2/3,1/3) can be made exponentially close to
1 and 0 in the input size, respectively, via two approaches. The first ap-
proach is to apply the verifier’s circuit many times in parallel to many
copies of the proof |y). The disadvantage of this technique is that it
increases the proof size. (Note that it is not entirely trivial that this
approach should work; namely, the prover could try to cheat as fol-
lows. Instead of sending many copies of |y) in tensor product, it could
send some arbitrary entangled state across all proof registers. A simple
analysis [18] shows, however, that this type of parallel repetition indeed
correctly reduces the error.) The second approach for error reduction
is due to Marriot and Watrous [I17], who give a non-trivial procedure
for exponentially reducing the error without increasing the proof size
(albeit at the expense of increasing the verification circuit’s size).

With QMA defined, we now discuss a canonical QMA-complete
problem which plays a role analogous to SATISFIABILITY for NP [53],
IT1]: The Local Hamiltonian Problem. To define the latter, recall that
a k-local Hamiltonian acting on n qudits is a Hermitian operator
H = Y, H;, where each H; acts non-trivially on k qudits (i.e. to be
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more accurate, if H; acts on a set S of qudits, then the ith constraint
H; should actually be written as (H;)s ® Ij,)\g). The motivation for
this problem stems partly from the fact that, as discussed in
Hamiltonians are intricately tied to the time evolution of quantum sys-
tems. Moreover, in nature, such evolution is typically governed by a
local Hamiltonian.

Problem 2.1 (k-Local Hamiltonian Problem (k-LH) [106]). Given as in-
put a k-local Hamiltonian H acting on n qudits, specified as a collection

Rk
of constraints {H;},_, C H (Cd> where k,d € (1), and threshold
parameters a,b € R, such that 0 < a < b and (b — a) > 1, decide, with
respect to the complexity measure (H) + (a) + (b):

1. If Apin(H) < a, output YES.
2. If Apin(H) > b, output NO.

Here, (A) denotes the encoding length of object A in bits, and Apin(A)
denotes the smallest eigenvalue of A. The value Ayin(A) is the ground
state energy of H, and its corresponding eigenvector (or eigenspace)
is known as the ground state (or ground space). Note that often k-LH
is phrased with (b — a) > 1/p(n) for some polynomial p; such an in-
verse polynomial gap can straightforwardly be boosted to the constant
1 above by defining H to have p(n) many copies of each local term
H; [165).

To highlight the connection between k-LH and classical satisfia-
bility problems, let us demonstrate how an instance of k-CSP can be
embedded into k-LH. Specifically, let ¢ denote an instance of 3-CSP
with clauses ¢; which are arbitrary Boolean functions on 3 bits. Then,
corresponding to each clause ¢;, we add to our Hamiltonian H a diag-
onal local constraint H; € H ((C2)®3 which penalizes all non-satisfying
assignments, i.e.

xe{0,1}3
s.t. ¢i(x)=0
In other words, suppose our assignment is |z) for z € {0,1}", such that
¢i(x) = 0. Then, we have Tr(H;|z)z|) = 1. Conversely, if ¢;(z) = 1,
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then Tr(H;|z)z|) = 0. We conclude that a product state |z) € (C?)®"
representing a satisfying binary assignment to ¢ will achieve energy 0
on H=)>,H,, ie.
Tr(H|z)z|) = 0.

On the other hand, if ¢ is unsatisfiable, then for all |x) with x € {0,1}",
we have Tr(H|z)z|) > 1. In fact, we can conclude the same property
holds for any [1) € (C?)®" (i.e. not just for binary string assignments);
this is because all H; simultaneously diagonalize in the standard basis,
and thus without loss of generality, one can choose the ground state
as a binary string. We conclude that k-LH is a generalization of k-
CSP, and is thus at least NP-hard. Of course, we know that k-LH is
expected to be much harder; in and we discuss the proofs of
QMA-completeness of 5-LH and 2-LH, respectively.

The Simulation Problem. Much of this survey focuses on the Local
Hamiltonian Problem, and as such, it is important to place k-LH into
the context of QHC as a whole. It turns out that k-LH is a special case
of a more general problem capturing the essence of QHC, known as
the Simulation Problem [129]. Intuitively, the latter asks how difficult
it is to simulate a physical system. More formally, in the Simulation
Problem one is given as input a description of a Hamiltonian H, an
initial state p, an observable M, and a time ¢ € C, and the task is to
output an estimate of the expectation

Y (eth)Tpeth 1 (2.28)

T . y
I Tr ((eiHt)T peifit)

Note here that the denominator, Tr ((eth)Tpeth), is not redundant,

since for t € C\ R, ¢!/t is not necessarily unitary. Indeed, this fact is

crucial to recovering the local Hamiltonian problem, which is obtained

by choosing H as a local Hamiltonian, setting M = H, p = I/Tr(I),

and considering ¢ = i3 for § € R. Then, Equation [2.2§ reduces to
o—26H

Tr (e—28H )] ’

Taking the limit 3 — oo, the expression (e~2/H)/Tr(e=2/H) ap-
proaches the projector onto the ground space of H (where here, the

Tr |H
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normalization given by the denominator is crucial to obtain a norm 1
operator), as desired.

Finally let us make an aside: In order to recover the local Hamil-
tonian problem above, we chose a compler time t. There is another
sense in which complex times ¢ are physically important: For complex
t which is neither purely real or imaginary, the simulation problem
addresses the scenario in which a system dynamically evolves at finite
temperature [129]. The latter is particularly natural, as in a lab it is
often impossible to cool a quantum system all the way down to its
actual ground state.
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Roadmap and Organization

With our primer on quantum information ( and QHC ( cov-
ered, we are ready to lay out the roadmap for the remainder of this
survey. QHC has evolved into a field with numerous areas of study,
some of the most fundamental of which we shall attempt to cover here.
Our first step in this journey is to present the reader with a brief his-
tory of the field from both computer science ( and physics (§4.2)
perspectives.

The remainder of this survey can then be thought of as consisting of
two parts: The first half (§5and explains concepts from condensed
matter physics in a computer science-friendly language, and the second
half (Chapter @ discusses selected computer science-inspired results in
the field, beginning with Kitaev’s celebrated proof that the LH problem
is QMA-complete. Let us elaborate on these two parts briefly here.

We begin in the first part by asking one of the most important ques-
tions in any field of study: Why? Why is the topic of study interesting
or useful? What are the connections between the formal model being
studied and the underlying reality it is intended to represent? This is
precisely the purpose of Chapter 5| In particular, here we introduce
the motivations for QHC from a physics perspective, explaining key
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questions of interest such as the study of time evolution versus thermal
equilibrium, the origin of local Hamiltonians, and fundamental concepts
such as indistinguishable particles (i.e. bosons and fermions).

Chapter [6] then elaborates further on these physics ideas. It begins
with a glossary in of common terms in the physics literature (such
as frequently studied local Hamiltonian models including the Ising and
Heisenberg models). We then discuss selected significant physics-based
contributions to QHC (some of which predate QHC by decades), such
as mean field theory (§6.2), tensor networks (§6.3), Density Matrix
Renormalization Group (, and Multi-Scale Entanglement Renor-
malization Ansatz ( These are techniques used to classically rep-
resent, simulate, and compute properties of quantum systems occurring
in nature. We close this section with an overview of Area Laws (§6.6)),
which are a set of conjectures and theorems about the structure of
entanglement present in ground states of physically relevant quantum
systems.

Moving to the second part of the survey, in Chapter [7], we review
selected computer science-inspired results in QHC, beginning with Ki-
taev’s proof that 5-LH is QMA-complete ( This is arguably the
founding work of QHC. We then discuss Kempe, Kitaev, and Regev’s
use of perturbation theory gadgets to show that even 2-LH is QMA-
complete (; their techniques are powerful, and have since found
numerous uses showing hardness results for physically motivated lo-
cal Hamiltonian models. We next consider Hamiltonian models which
a priori seem “more classical”, namely those with commuting local
constraints. In this direction, we discuss Bravyi and Vyalyi’s results
that the commuting variant of 2-LH is in NP, and thus unlikely to be
QMA-complete ( This is interesting given that commuting Hamil-
tonians can nevertheless have ground states demonstrating exotic forms
of entanglement. Moving on, we give a new information-theoretic pre-
sentation of Bravyi’s polynomial time algorithm for Quantum 2-SAT,
which we hope makes the algorithm more accessible to a computer sci-
ence audience. Finally, we review Arad, Kitaev, Landau and Vazirani’s
combinatorial proof of a 1D area law for gapped systems (§7.5)), which
compliments and strengthens Hastings’ original physics-inspired proof.
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A Brief History

The history of quantum Hamiltonian complexity has its roots in both
physics and computer science. In this section, we give a brief survey of
both perspectives, beginning with the latter in and following with
the former in In we briefly list selected recent developments
to both perspectives since this survey first appeared.

4.1 The computer science perspective

The general LH problem. In 1999, Alexei Kitaev presented [104],
106] what is regarded as the quantum analogue of the Cook-Levin the-
orem, proving that k-LH is in QMA for £ > 1 and QMA-hard for
k > 5. His proof is based on a clever combination of the ideas be-
hind the Cook-Levin theorem and early ideas for a quantum computer
of Feynman [67], and is surveyed in The fact that 3-LH is also
QMA-complete was shown subsequently by Kempe and Regev [103]
(an alternate proof was later given by Nagaj and Mozes [124]). Kempe,
Kitaev, and Regev then showed [102] that 2-LH is QMA-complete; see
for an exposition of the proof. Note that 1-LH is in P, since one
can simply optimize for each 1-local term independently.
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From a physicist’s perspective, however, the Hamiltonians involved
in the QMA-hardness reductions above are arguably not “physical”,
i.e. occurring in nature. To address this, Oliveira and Terhal next
showed [127] that LH with the Hamiltonians restricted to nearest-
neighbor interactions on a 2D grid is still QMA-complete. Biamonte
and Love proved [33] that the XY model with certain linear terms is
QMA-complete, and Schuch and Verstraete [147] showed a similar re-
sult for the Heisenberg model (see Chapter [6] for definitions of these
models). Next, in stark contrast to the classical case of MAX-2-CSP
on the line (which is in P), Aharonov, Gottesman, Irani and Kempe [16]
showed that 2-LH with nearest-neighbor interactions on the line is also
QMA-complete if the local systems have dimension at least 12. (Note:
Reference [85] later pointed out a small error in [16], and argued that
the error can be fixed using ideas from [16], but at the cost of increasing
the local dimension from 12 to 13.) The latter was improved to 11 [123]
and subsequently to 8 [85]. Gottesman and Irani [79] obtained related
results for translationally invariant 1D systems; see also Kay [100] for
results regarding the latter setting.

Finally, very recently, Cubitt and Montanaro established [54]
a quantum variant of Schaefer’s Dichotomy Theorem [I38] for the
setting of 2-LH on qubits, classifying the complexity of a very general
version of LH based on which set of 2-qubit quantum constraints one
incorporates in the constraint system. Their classification contains the
following levels: Problems are either in P, NP-complete, TIM-complete,
or QMA-complete, where TIM is defined [54] as the set of problems
which are polynomial-time equivalent to solving the general Ising
model with transverse magnetic fields. Note, however, that due to
the perturbation theory techniques employed in [54], the use of large
and possibly negative weights on local constraints is required; for this
reason, the results of [54] do not capture the complexity of certain
physical models such as the Heisenberg anti-ferromagnet.

Quantum SAT. To be precise, the LH problem does not generalize
k-CSP, but rather (the decision version of) its optimization variant
MAX-k-CSP. One can ask how the complexity of LH changes if we
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instead focus on a restricted version intended to generalize k-CSP. In
this direction, in 2006 Bravyi [38] defined Quantum k-SAT (k-QSAT),
in which all local constraints are positive semidefinite, and the
question is whether the ground state energy is zero (in this case, H is
called frustration-free, in that the optimal assignment lies in the null
space of every interaction term), or bounded away from zero (i.e. the
Hamiltonian is frustrated). He showed that 2-QSAT is in P (see
for an exposition), and that k-QSAT is QMA,-complete for k& > 4,
where QMA; is QMA with perfect completeness. Recently, Gosset and
Nagaj showed [77] that 3-QSAT is also QMA-complete.

Stoquastic LH. A natural special case of LH is that of stoquastic
local Hamiltonians, in which the local constraints have only non-
positive off-diagonal matrix elements in the computational basis.
This class of LH does not suffer from the so-called “sign problem”
in quantum Monte Carlo simulations (quantum Monte Carlo is not
a quantum algorithm; it is just a classical Monte Carlo algorithm
applied to quantum systems) and is thus heuristically expected to be
easier than the general LH problem. Indeed, the Stoquastic k-SAT
problem, defined as the stoquastic variant of Quantum k-SAT, was
shown to be in Merlin-Arthur (MA) for £ > 1 and MA-complete for
k > 6 by Bravyi, Bessen, and Terhal [40] and Bravyi and Terhal [44].
(Incidentally, this was the first non-trivial example of an MA-complete
promise problem.) The problem Stoquastic LH-MIN, defined as k-LH
with stoquastic Hamiltonians, was shown to be contained in AM [42]
and complete for the class StogMA [40] for k¥ > 2. Here, StogMA
is a variant of QMA in which the verifier is restricted to preparing
qubits in the states |0) and |+), performing classical reversible gates,
and measuring in the Hadamard (i.e. |+),|—)) basis. Finally, Jordan,
Gosset, and Love showed that computing the largest eigenvalue of a
stoquastic local Hamiltonian is QMA-complete [96].

Commuting LH. Unlike classical constraint satisfaction problems,
quantum constraints do not necessarily pairwise commute. It is thus
natural to ask how crucial this non-commuting property is to the QMA-
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completeness of LH. In this direction, Bravyi and Vyalyi showed [45]
that commuting 2-LH on qudits is in NP. Aharonov and Eldar subse-
quently showed [I3] that 3-LH Hamiltonian on qubits is in NP, as well
as for qutrits on “nearly Euclidean” interaction graphs. Schuch showed
that 4-LH on qubits arranged in a square lattice is in NP [144]. Hast-
ings proved that special cases of 4-LH on d-dimensional qudits on a
square lattice is in NP [89]. Aharonov and Eldar proved that approx-
imating the ground state energy of commuting local Hamiltonians on
good locally-expanding graphs within an additive error of O(e) is in
NP [14], 15]. Finally, Gharibian, Landau, Shin, and Wang showed [74]
that the commuting variant of the Stoquastic k-SAT problem is in NP
for logarithmic k£ and any constant d.

In terms of efficiently solvable variants of commuting LH, Yan
and Bacon [I78] showed that the special case in which all commuting
terms are products of Pauli operators is in P. Aharonov, Arad, and
Irani [9] and Schuch and Cirac [146] showed that commuting LH in
1D can be solved efficiently by dynamic programming.

Bosons and Fermions. Approximating the ground state energy of
Hamiltonians acting on indistinguishable particles is also QMA-hard,
as shown by Liu, Christandl and Verstraete for fermions [I15] and Wei,
Mosca, and Nayak for bosons [166]. Schuch and Verstraete [147] showed
QMA-hardness for the Hubbard model, whereas very recently, Childs,
Gosset, and Webb showed QMA-hardness for the Bose-Hubbard
model [49]. See Chapter [5| for more on indistinguishable particles.

Approximation algorithms for LH. Given the prevalence of
heuristic algorithms for solving k-LH, a natural question is whether
rigorous (classical) approximation algorithms for k-LH can be derived.
Here, Bansal, Bravyi and Terhal showed [27] that k-LH on bounded
degree planar graphs, as well as on the unbounded degree star graph,
can be approximated within e relative error for any ¢ € O(1) in
polynomial time, i.e. they gave a Polynomial Time Approximation
Scheme (PTAS). Gharibian and Kempe next gave [72] a PTAS for
approximating the best product-state solution for k-LH on dense
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interaction graphs, and showed that product state solutions yield
a (d'~%)-approximation to the optimal solution for arbitrary (i.e.
even non-dense) interaction graphs on d-dimensional systems. Based
on numerical evidence, they conjecturedE] that for dense graphs, a
quantum de Finetti theorem without symmetry holds, which can in
turn be exploited to yield a PTAS for dense k-LH (as suggested by
mean-field theory folklore). Indeed, Brandao and Harrow proved [37]
this conjecture, along with other results: A PTAS for planar graphs
(improving on [27]), and an efficient approximation algorithm for
graphs of low threshold rank. Finally, Bravyi has recently given [39]
a Fully Polynomial Randomized Approximation Scheme (FPRAS)
for approximating the partition function of the transverse field Ising
model (which in turn implies an efficient approximation algorithm for
determining the ground state energy of the model).

Hardness of approximation for LH. The PCP Theorem [24], 23]
is one of the crowning achievements of modern complexity theory. As
such, a major open question in quantum Hamiltonian complexity is
whether a quantum version of this theorem holds [18] [2]. Rigorously
formulated in the work of Aharonov, Arad, Landau and Vazirani [10],
the question has attracted much attention in the last decade. For ex-
ample, Reference [10] proved that a quantum analogue of Dinur’s gap
amplification step in her proof of the PCP theorem [58] can be shown
in the quantum setting. For further details on the quantum PCP con-
jecture, we refer the reader to the recent survey dedicated to the topic
by Aharonov, Arad, and Vidick [12].

More generally, in terms of hardness of approximation for quan-
tum complexity classes, Gharibian and Kempe [73] defined a quantum
version of X (the second level of the Polynomial Time Hierarchy),
and showed hardness of approximation for various local Hamiltonian-
related problems such as Quantum Succinct Set Cover. Reference [73]
also showed a hardness of approximation and completeness result for
QCMA, which is defined as QMA with a classical prover [18]. (QCMA
is also known by the name Merlin-Quantum-Arthur (MQA) [165].)

!Private communication with F. Brandao.
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4.2 The physics perspective

We now briefly describe the history of quantum Hamiltonian com-
plexity from a physics perspective. This section is by no means
comprehensive; the reader is referred to the surveys of Verstraete,
Murg, and Cirac [I54] and Osborne [129], for example, or to their
friendly neighborhood physicist for further details.

Classical Hamiltonians. Beginning with the case of classical Hamil-
tonians, an early and canonical example of computational hardness is
Baharona’s work [26], which showed that finding a ground state and
computing the magnetic partition function of an Ising spin glass in
a nonuniform magnetic field are NP-hard tasks. Jerrum and Sinclair,
on the other hand, showed [95] #P-completeness of computing the
partition function of the ferromagnetic Ising model, and gave a Fully
Polynomial Randomized Approximation Scheme (FPRAS) in the same
paper. As implied by the title of this paragraph, note that the Ising
model is classical in that all variables are assigned values in the set
{+1, —1}; thus, the ground state has an efficient classical description.

Quantum Hamiltonians. In contrast, for quantum Hamiltonians,
the last two decades have seen much effort towards classifying when
a ground state can be described efficiently classically [154]. One of
the main instigators of this push was White’s celebrated Density
Matrix Renormalization Groulﬂ (DMRG) method [168, [169], which
is a heuristic algorithm performing remarkably well in practice for
finding ground states of 1D quantum systems. It was later real-
ized [130} 136} 155, 154, 167] that DMRG can be viewed as a variational
algorithm over the class of tensor network states known as Matrix Prod-
uct States (MPS).

More generally, tensor network states have a long history in physics,
appearing in works as early as 1941 [108] (see [126] for a survey). As
1D tensor networks, MPS [I31] are arguably the most basic form of

2Note: The word Group does not actually refer to a group in the usual mathe-
matical sense here.
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such states. They have been used in the last decade, for example, by
Vidal [I57, 158] to efficiently classically simulate “slightly entangled”
quantum computation (or quantum evolution). Generalizations of MPS
(e.g., to higher dimensions) have also been proposed, such as the Pro-
jected Entangled Pair States (PEPS) of Verstraete and Cirac [152 [156],
and the Multiscale Entanglement Renormalization Ansatz (MERA) of
Vidal [I59, 160]. Note that while MPS and MERA networks can be
efficiently contracted, Schuch, Wolf, Verstraete and Cirac have shown
that contracting a PEPS network is in general #P-complete [148]. More
recently, Gharibian, Landau, Shin, and Wang showed [74] that even the
basic task of determining whether an arbitrary tensor network repre-
sents a non-zero vector is not in the Polynomial-Time Hierarchy [119]
unless the hierarchy collapses.

Continuing with applications of tensor networks in the study of
ground spaces, Hastings showed [88] in 2007 that the ground state of
gapped 1D Hamiltonians can be well approximated by an MPS with
polynomial bond dimension; this helped explain the effectiveness of
DMRG. However, DMRG is a heuristic, and a rigorous proof that
such a MPS can be found in polynomial time required further work.
In this direction, Aharonov, Arad, and Irani [9] and Schuch and
Cirac [146] showed that given a fixed bond dimension as input, the
optimal MPS of that bond dimension can be found efficiently via
dynamic programming. Note that their algorithm does not require
the 1D Hamiltonian to have a spectral gap. For gapped systems,
Arad, Kitaev, Landau and Vazirani subsequently showed [19] that
an MPS with sublinear bond dimension suffices to approximate
the ground state; combined with the algorithms of [9, [146], this
yielded a subexponential time algorithm for gapped systems. Finally,
Landau, Vazirani, and Vidick showed [I10] that the problem of finding
an approximation to the ground state of a 1D gapped system is in BPP.

Area laws. A key problem in quantum many-body physics is under-
standing the entanglement structure of a ground state. Here, a specific
question which has attracted much attention is the possible existence of
area laws. Roughly, an area law says that for any subset S of particles
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chosen from an n-particle ground state, the amount of entanglement
crossing the cut between S and its complement scales not with the size
of S, but rather with the size of the boundary of S. In this direction, a
breakthrough result was Hastings’ proof [88] of an area law for gapped
1D systems. A combinatorial proof improving on Hastings’ result for
the frustration-free case was later given by Aharonov, Arad, Landau
and Vazirani [11], 20], followed by a proof of Arad, Kitaev, Landau, and
Vazirani’s [19] which applies in frustrated settings as well. Whether a
2D area law holds remains a challenging open question. This subject

will be treated in more detail in and

4.3 Selected recent developments

The field of Quantum Hamiltonian Complexity is rapidly evolving, with
a number of developments having taken place since this survey first ap-
peared. We briefly list a selected number of these developments below.

Beginning with computer science-oriented results, Cubitt, Perez-
Garcia and Wolf showed [55] that determining whether a
translationally-invariant, nearest-neighbor Hamiltonian on a 2D square
lattice (with constant local dimension) is gapped is undecidable. Bravyi
and Hastings showed [43] that estimating the ground state energy of the
Transverse field Ising Model on degree-3 graphs is StogMA-complete,
thus completing the complexity classification of Cubitt and Monta-
naro [54]. Gosset, Terhal, and Vershynina showed [78] how to perform
universal adiabatic quantum computation using the space-time circuit-
to-Hamiltonian construction. Fitzsimons and Vidick gave [68] a mul-
tiprover interactive proof system for the Local Hamiltonian problem
involving a constant number of entangled provers. Chubb and Flam-
mia [50] extended the works of Landau, Vazirani and Vidick [I10]
and Huang [91] to give a polynomial-time algorithm for approximating
ground space projectors of gapped 1D Hamiltonians with degenerate
ground spaces. Gharibian and Sikora showed [75] that the following
problem, motivated by quantum memories, is QCMA-complete: Given
a local Hamiltonian H and two ground states [¢1) and |i¢3) of H, is
there a sequence of local unitaries mapping |¢1) to [¢2) “through” the
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ground space of H? Arad, Santha, Sundaram and Zhang [2I] and de
Beaudrap and Gharibian [56] independently gave linear time classical
algorithms for quantum 2-SAT, improving on Bravyi’s quartic time
algorithm [38].

In the physics direction, Ge and Eisert showed [69] that in two and
higher dimensions, it is not in general true that an area law for the
Renyi entanglement entropy implies the ability to faithfully describe a
quantum many-body state by an efficient tensor network. Aharonov et
al. showed [17] that a generalized version of the area law fails to hold.
Movassagh and Shor showed [122] that a generalization of Bravyi et
al.’s [41] spin-1 model to integer spin-s chains (s > 1) yields a power law
violation of the area law (the energy gap in these models is an inverse
polynomial in the system size). Branddo and Cramer showed [36] that
exponential decay in the specific heat capacity at low temperatures
yields an area law (up to a logarithmic correction) for low-energy states
(i.e., not just the ground state). Marién et al. proved [116] the stability
of the area law for entanglement entropy in quantum spin systems in
the setting of adiabatic and quasi-adiabatic evolutions.



5

Motivations From Physics

We have thus far defined k-local Hamiltonians and discussed a brief
history of their study from computer science and physics perspectives.
However, we have not yet asked perhaps the most fundamental ques-
tion: Why? Namely, where do Hamiltonians come from, and why do
we care about their study? Where does the picture sketched thus far
fit into a condensed matter physicist’s views of what is important and
what is not? In this section, we attempt to answer these questions.

We begin in and by discussing the high-level questions
condensed matter physics is typically interested in. In we briefly
pause to consider where Hamiltonians come from, and discuss chal-
lenges faced by physicists regarding their use. Finally, gives a brief
introduction to classical and quantum techniques for overcoming the
challenges mentioned above.

5.1 Setting the stage

To set the stage, we first clarify the high-level settings in which the
study of local Hamiltonians is relevant to condensed matter physicists:

33
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1. The question. Typically, we are interested in this question:
Given a quantum state p, compute some local property of p (see,
e.g., Equation . In other words, determining an accurate
description of the entire wave function is not always necessary.
(There are exceptions to this statement, such as when studying
topological properties, which are intrinsically non-local.) For ex-
ample, given a state p (either in the lab or via some succinct
classical representation), we might wish to estimate the 2-point
correlation function

(omon) = Trp(og, @ op)],

where o, denotes the Pauli Z operator applied to qubit m. Such
local properties are dubbed intensive, in that they do not scale
with the system’s size. In contrast, the ground state energy of a
Hamiltonian may scale with the system size, and is thus extensive.

2. The setting. When it comes to interaction (i.e. constraint)
graphs, it is natural for theoretical computer scientists to study
constraint satisfaction problems on a variety of graphs: Sparse
graphs, dense graphs, expanders, and so forth. Condensed mat-
ter physicists, on the other hand, often simplify their models ap-
proximating the physical world by assuming that the collection
of quantum particles to be studied lives on a d-dimensional lat-
tice of N sites, and that all interactions are nearest-neighbor.
Indeed, typically in real materials particles are arranged in a reg-
ular lattice and the interaction range is short. Moreover, we are
interested in the behavior of local properties in the thermody-
namic limit N — 400, since N is very large in a macroscopic
piece of material.

We thus henceforth focus mainly on local properties of systems ar-
ranged on a lattice in the remainder of this section.

5.2 Time evolution versus thermal equilibrium

Given that we wish to study local properties of systems arranged on a
lattice, we now ask: In which contexts can we study such local proper-
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ties? Two such contexts are: (a) With respect to the time evolution of
the quantum system, and (b) at thermal equilibrium. We now discuss
these in further depth.

Time evolution. In this setting, we are interested in how local prop-
erties of the system behave as the system evolves in time. Here, recall
that the time evolution of a quantum state at time ¢, denoted p(t), is
given by the Schrédinger equation, which is a postulate of quantum
mechanics:

plt) = e Hp(0)eit,

where H is a Hermitian operator known as the Hamiltonian of the
system. In particular, in this setting, we imagine that the system S
being studied is isolated from the outside world.

Thermal Equilibrium. In contrast to the setting of time evolution
above, when studying local properties of our system S at thermal equi-
librium, we imagine that S is allowed to interact with its environment
for a “long time”. Eventually, the system will reach a stationary state
known as the thermal state, peq, which no longer depends on time. Here,
by “stationary state”, we mean that the local properties of the system
have ceased to fluctuate. The density matrix of our thermal state is
known as the Gibbs state, which can be derived from the equal a priori
probability postulate of statistical mechanics:

—BH
Peq = ¢ 7 for Z:="Tr (675H> . (5.1)

Here, Z is called the partition function, and the parameter § scales
inversely with temperature T'. Two remarks are in order. First, as stated
earlier, peq does not depend on time, t. Second, peq is not provably a
description of S at equilibrium; rather, it is an educated guess from
statistical mechanics which works well for many systems in practice,
assuming one is interested in local properties of S. For further reading
on notions of equilibration, the reader is referred to (e.g.) [114].
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5.3 Where do Hamiltonians come from?

We have now stated that we are interested in studying local properties
of Hamiltonians on the lattice, and that we can conduct such studies
either with respect to time evolution or at thermal equilibrium. But we
still have not answered a key question: Where does our Hamiltonian
come from to begin with? There are two answers to this question: The
easy answer is that Hamiltonians naturally arise from the Schrodinger
equation. However, this is somewhat unsatisfying — it gives no intu-
ition as to which classes of Hamiltonians describe physically relevant
systems. Thus, the more interesting (and difficult) question is: How do
we identify physically motivated classes of Hamiltonians?

To answer this, suppose for a moment that you are a physicist,
and you are sitting in your lab observing your experimental apparatus
induce some quantum evolution. How would you determine the Hamil-
tonian H governing this evolution? Does the Schrodinger equation give
you an efficient approach for deducing H? No! In practice, one has no
idea what H actually is. Thus, we must resort to the grade-school Sci-
entific Method — make an educated guess H' (a Hamiltonian which
might reproduce the local properties of our system), and then corrobo-
rate this guess via experiments. In particular, note that our aim is not
to guess H itself, as this is often intractable due to the large number of
degrees of freedom involved. Instead, we desire a simplified model H’
which ignores certain degrees of freedom, but nevertheless captures lo-
cal properties of interest. For example, one might choose to model only
the spin of an electron accurately, and ignore the electron’s other prop-
erties. For this reason, Hamiltonian models appearing in the condensed
matter literature should not be thought of as “accurately characterizing
a system”, but rather as phenomenological objects which, up to minor
corrections, appear to model certain local properties of the system well.

Summarizing, to determine the Hamiltonian H modeling our sys-
tem, we (1) guess a candidate simplified Hamiltonian H', (2) check what
a theoretical (i.e. pen-and-paper) calculation on H' predicts about the
behavior of the system, and (3) confirm this prediction via experimen-
tal tests. What kind of theoretical calculations might we consider in
step (2) above? This is where key issues faced by physicists arise. For
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example, in step (2) we might wish to estimate a two-point correlation
function of H”’s ground state. However, we immediately hit a brick wall,
as the ability to estimate such functions in general implies the ability
to estimate a Hamiltonian’s ground state energy (which is QMA-hard)!
So it seems we are in a bind; to better understand physical systems, we
model them using Hamiltonians, but studying Hamiltonians themselves
is not necessarily easy.

Indeed, this is precisely the focus of much of condensed matter
physics. Here are two key questions faced by the community:

e Given a phenomenological Hamiltonian H’, how well does it ac-
tually model the desired properties of the underlying system S?

e How well does H' allow us to make predictions about future prop-
erties of S which we might be interested in?

In the next section, we discuss various approaches for answering ques-
tions related to these.

5.4 The study of Hamiltonians: Techniques and tools

In the previous section, we identified key questions faced by the physics
community regarding the study of local Hamiltonians. In this section,
we give a flavor of both classical and quantum techniques for circum-
venting the challenges arising in these scenarios. In particular, the basic
goal here is: Given a phenomenological Hamiltonian H, calculate cer-
tain properties of H. We begin with classical simulations in and
move to quantum simulations in §5.4.2]

5.4.1 Classical simulations

Given a Hamiltonian H, in this section, we use classical computers to
study the following:

e Are there efficient algorithms for approximating local properties
of H?



38 Motivations From Physics

e Can objects of interest, such as the ground state of H, be rep-
resented by a space-efficient data structure? Do these structures
allow us to perform useful computations?

e Finally, given such a space-efficient data structure, can it be used
to make predictions about the system for future properties we
might be interested in?

Two remarks are in order here. First, an efficient algorithm to a the-
oretical computer scientist typically means a rigorous algorithm which
runs in polynomial time on a worst case instance. In contrast, to a
physicist, an efficient algorithm often means a fast heuristic algorithm
which works well in practice. Second, the third question on the ability
to make predictions about a system is vital — it allows us to mathe-
matically predict how the properties of a material will change or behave
under certain conditions, which in turn allows us to design advanced
materials with desirable properties.

The variational principle. To answer the questions above, a primary
line of attack is via the heuristic of the wariational principle. Specif-
ically, suppose one is interested in optimizing a function f(S) over a
set S. Then, the variational principle simply means carrying out the
optimization over some restricted set S’ C S, which we hope will allow
an easier computation.

For example, suppose we wish to compute the ground state energy
of Hamiltonian H acting on n qubits, i.e.

min  Tr(Hp). 5.2

p0,Tr(p)=1 (Hp) (5:2)

Since p can be highly entangled, it may require exponentially many
bits to describe classically; this makes designing a heuristic algorithm
for solving Equation difficult. Via the variational principle,
however, one can instead optimize over a simpler set S’ of quantum

states in order to approximate the ground state energy. Which set of
states S’ should we choose? Below, we discuss three popular candidates.
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Product states. The most basic set S’ one can choose is the set of all
tensor product states p = p1 ® p2 ® -+ ® py. Do not be fooled by
the simplicity of this ansatz, however; it has proven quite effective
in many scenarios, and there is an entire area of study devoted to
it known as mean field theory. (See for more on mean field
theory.) In addition, working with product states is by no means
easy — optimizing Equation [5.2] over product states, for example,
is NP-hard. (To see this, note that if H encodes a 3-SAT instance,
then the ground state of H is without loss of generality a product state.)

Gaussian states. Another common choice of S’ is the set of Gaussian
states, i.e.

Tt
p= e*Q(al,agwn,al,azp-J’

where @) is some quadratic function, and the operators {aj-} and
{a;} are known as creation and annihilation operators, respectively.
(See for more on creation and annihilation operators.) Local
predictions on Gaussian states can be made efficiently, i.e. in time
scaling polynomially with the system size. For further reading on
Gaussian states, the reader might consider (e.g.) [163), 5].

Tensor network states. The final choice of S’ we discuss is the set of
tensor network states. (See for a definition of tensor networks.)
Unlike product states, tensor network states can represent a variety
of quantum states with exotic quantum correlations, such as (chiral
[59,[162]) topological states. However, as mentioned in this expres-
sive power has a downside: Contracting tensor networks is #P-hard in
general. To circumvent this, the strategy is to choose a clever subset of
tensor network states S” which not only allows us to model the system
we are interested in, but which also allows efficient calculation of lo-
cal properties. Arguably the most successful application of this idea in
conjunction with the variational principle has been White’s DMRG al-
gorithm [I68| [169] on MPS, which is discussed in further depth in
Note, however, that DMRG is a heuristic; in contrast, rigorously find-
ing a good MPS approximation to the ground state of a 1D (gapless)
Hamiltonian is NP-hard [145].
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Let us delve further into tensor networks, as they have proven a
particularly useful ansatz over the last two decades. In particular, a
key question regarding them is:

Which quantum systems have ground states which can be
well-approximated by a tensor network of small bond di-
mension D ¥

Here, the bond dimension is an important parameter characterizing
“how much” entanglement the network can faithfully represent; the
larger D is, the more quantum states we can represent, at the cost
of requiring more storage space. (See for further details.) Since
we are restricted to polynomial-sized descriptions of states in practice,
it is thus imperative to keep the bond dimension as small as possible
(representing an arbitrary quantum state requires exponential D).

We now briefly overview recent progress regarding the question
above. In 1D gapped systems, MPS with subpolynomial D approximate
the ground state well [88, [19], and moreover, there is a polynomial-
time algorithm for finding a good MPS approximation to the ground
state [110]. In 1D gapless (critical) systems, MPS with polynomial D
approximate the ground state well if certain Rényi entropies diverge at
most logarithmically [I53] (see also [149]). On the other hand, at finite
temperature 7' > 0 in any spatial dimension d, Hastings has shown [87]
that a tensor network with bond dimension D = exp(O(3log(N/¢)?))
approximates the Gibbs state of the system within trace distance e,
where N is the size of the lattice, and § := 1/kgT for temperature T'
and Boltzmann constant k. If H is gapped and the density of low en-
ergy states grows polynomially in N for a fixed energy, then this result
also implies a tensor network approximation of the ground state with
D = exp(O(log?t1(N/€))). Molnar et al. improved [120] these results
to D = (N/e)°®) and D = exp(O(log?(N/¢))) in the finite temper-
ature and ground state cases, respectively. Intuitively, the “density of
states” assumption here says that the low energy spectrum is “sparsely
populated” by eigenvectors; this is, in fact, typical of quantum systems
in nature.

For more information on the use of the variational principle in con-
junction with tensor networks, the reader is referred to [I54]. An in-
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troductory discussion on the variational principle aimed at physicists
is given in Chapter 7 of Griffiths [80].

5.4.2 Quantum simulations

In we discussed the use of classical simulations to study
phenomenological Hamiltonians H. One particularly difficult setting
which, however, does not seem amenable to these techniques is that
of strongly correlated materials. For example, high-temperature super-
conductors, despite having seen over two decades of research, remain
arguably poorly understood. Recent research in quantum simulations
has, however, led to exciting advances in this direction [134]. Key to
this progress are two ingredients: One old, and one new. The “old” in-
gredient is the famous Hubbard model, formulated by John Hubbard
in the 1960’s. The “new” ingredient is Feynman’s remarkable idea [66]
of building quantum devices to efficiently simulate quantum systems.
In particular, the idea explored in this section is the use of quantum
simulations to uncover properties of the Hubbard model. Further de-
tails on this topic can be found, for example, in the brief survey of
Quintanilla and Hooley [134].

Before we begin, let us stress that to study (say) the Hubbard
model, one need not necessarily construct a general-purpose quantum
computer; rather, a device tailored to simulating this one model would
suffice. Thus, the goal of quantum simulations may be easier to achieve
than a large scale quantum computer [52]. Indeed, this is the approach
taken in this section.

In order to define the Hubbard model, we must first make a brief
detour to introduce the notions of fermions and bosons, which are the
types of particles on which the model acts.

Detour: Indistinguishable particles. Before defining fermions and
bosons formally, let us set the stage with a high-level overview of indis-
tinguishable particles. The Standard Model of particle physics, devel-
oped in the latter half of the 20" century, characterizes various types of
interactions which occur in nature, such as the electromagnetic inter-
action. These interactions, in turn, govern the dynamics of subatomic
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particles such as photons, electrons, and protons. In particular, the
model treats these particles as indistinguishable. In other words, if for
example we are given a pair of photons at positions X and Y, then the
physical state of the photons (described by the wave function, up to
global phase) remains invariant if we swap the positions of the pho-
tons, i.e. the physical state only cares about the number of particles at
each site. However, there is a twist: The wave function of some parti-
cles, such as electrons, obtains a global phase of —1 upon performing
a swap. This may a priori appear irrelevant, as global phases cannot
be physically observed. However, it is a remarkable conclusion of the
Standard Model that this seemingly innocuous global phase turns out
to dictate the very structure of matter around us.

To understand this phenomenon, the Standard Model differentiates
between two types of particles: Bosons and fermions. Mathematically,
these types are characterized by the Spin-Statistics theorem, which
states that given a system of identical particles, one of the two cases
must hold:

e If the particles have integer spin (i.e. s = 0,1,2,...), then ex-
changing any pair of them leaves the wave function invariant.
Such particles are called bosons.

o If the particles have half-integer spin (i.e. s = 1/2,3/2,5/2,...),
then exchanging any pair of them induces a global phase of —1
on the wave function. Such particles are called fermions.

Note that the latter statement above captures the curious phase of —1
discussed earlier, and is essentially the Pauli exclusion principle.
What does the Spin-Statistics theorem actually mean in terms
of how large numbers of bosons or fermions behave? The distinction
between bosons and fermions manifests itself at thermal equilibrium
by leading to two possible statistical distributions governing how a
system of indistinguishable and non-interacting particles populate
a set of discrete energy states: Bose-Einstein statistics for bosons,
and Fermi-Dirac statistics for fermions. (This also explains the name
Spin-Statistics Theorem above.) We begin by discussing the former.
Note that both statistics hold for sufficiently concentrated systems
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of particles at low temperature. At high temperature, the same
statistics hold; however, these are now well-approximated by classical
Maxwell-Boltzmann statistics.

Bose-Finstein statistics. Developed by Satyendra Nath Bose and
Albert FEinstein in the mid-1920’s, Bose-Einstein statistics predicts
that at low temperature, particles tend to aggregate in the same
quantum state, namely the ground state. As a result, bosons typically
play the role of “force carrier” particles in nature, i.e. they transmit
interactions. A good example of this is a laser, which consists of many
bosons in the same state. In addition, the tendency for a system of
bosons to occupy the ground state at very low temperatures can lead to
a special state of matter known as a Bose-Finstein condensate, which
can exhibit quantum effects at the macroscopic scale. For example,
when Helium-4, which is a gas of bosons, is cooled to temperatures
near absolute zero, it becomes a superfluid, i.e. it behaves like a fluid
with zero viscosity. *Thus, the ability for many bosons to aggregate in
the same mode is crucial to the role they play in nature. Examples of
bosons include elementary particles, such as photons, gluons, and the
Higgs boson, as well as composite particles, such as the Helium-4.

Fermi-Dirac statistics. Named after Enrico Fermi and Paul Dirac,
Fermi-Dirac statistics applies to fermions, and in stark contrast to
bosons, follows the principle that two fermions cannot occupy the same
quantum state. For example, if two electrons (electrons are fermions
with spin 1/2) are at the same site, then they must differ in at least one
property, such as having anti-aligned spins. It is precisely for this rea-
son that electrons arrange themselves in orbits with higher and higher
energy about the nucleus of an atom, giving matter a “rigid” struc-
ture and non-trivial volume. In this sense one may intuitively think of
fermions as the “building blocks of matter”. Examples of fermions in-
clude elementary particles such as electrons, quarks, and leptons, and
composite particles such as protons and neutrons. In fact, any compos-
ite particle composed of an odd number of fermions is also a fermion;
for example, protons and neutrons consist of three quarks. Any com-
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posite particle composed of an even number of fermions, however, is a
boson.

Back to quantum simulation: The Hubbard model. We now intro-
duce the Hubbard model, which since its inception in 1963 [92], has be-
come a “standard model” in condensed matter physics. Hubbard’s aim
was to propose “the simplest possible model” which would explain the
behavior of strongly correlated materials [I34]. In particular, his model
aims to describe the behavior of electrons in solids, and can capture the
transition of a system between being a conductor and an insulator. It is
thus of particular interest in the study of high-temperature supercon-
ductivity. Although the original model was proposed using fermions,
a bosonic version is also known and referred to as the Bose-Hubbard
model, which we also introduce here.

To help understand the technical definitions we give below, the in-
tuition behind the Hubbard model is as follows. Previous to Hubbard’s
proposal, the tight-binding approximation from solid-state physics ex-
plained conduction by viewing electrons as “hopping” from the electron
orbitals of one atom to another. However, when certain materials are
heated, thus increasing the spacing between atoms, they can transition
from being a conductor to an insulator; the tight-binding approxima-
tion fails to account for this. To resolve this, Hubbard introduced a
second term to the tight-binding approximation’s Hamiltonian which
is meant to model the “on-site repulsion” resulting from the Coulomb
repulsion between electrons.

For simplicity, we begin with the Bose-Hubbard model (i.e. bosons).

The Bose-Hubbard model. The Bose-Hubbard model involves interact-
ing bosons, and its Hamiltonian on a 2D lattice is given by

H=-t)
n.m

(n,m)

Here, (n,m) denotes that the summation is taken over nearest neigh-
bors, t is the hopping amplitude, u is the interaction strength, and
{al} and {a,} are the bosonic creation and annihilation operators,
respectively. Let us define the latter.

al am +u Z al al anany,. (5.3)
n
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Let {|k),}{25 be a complete set of local orthogonal basis vectors,
where |k),, means that there are k (identical) bosons in location or
mode n (the subscript is omitted if the location is unspecified). Then,
the state |0) has a special name: It is the vacuum state. The bosonic
creation and annihilation operators are given by

a'lk)y = VE+1lk+1)  and  alk) = Vklk—1),
and they satisfy the canonical commutation relations

[, an) = [al,,al] =0 and [, al] = S,

where [z, y] = xy—yz, and d,,, is the Kronecker delta function (§,,, = 1
if m = n and §,,, = 0 otherwise). Thus, for example, the state of k
(identical) bosons can be expressed as

b (D
) = 10).

The Hubbard model. In the Bose-Hubbard model, one could have ar-
bitrarily many bosons in a single mode. Recall, however, that by the

Pauli Exclusion Principle, any pair of fermions occupying the same site
must differ in some property, e.g. their spin. The (fermionic) spin-1,/2
Hubbard Hamiltonian is

H=—t Z aiwam’a + UZ GIL,Tan7TaL,¢an,¢' (5.4)
(n,m) n
oe{t,l}

In this case, the fermionic creation and annihilation operators are de-
fined on basis {|0),|1)} as

all0) = 1), af[1) =0, al0)=0, al1)=10),
with the canonical anti-commutation relations
{am,a, Cbnﬁl} = {ain,cr’ CLL’U,} =0 and {am,a, CL;I-Z’U,} = 6mn5(m/7

where {z,y} = zy + yx. For clarity, in matrix form, we have

(00 (01
“\1 0 ) “\o o0/
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Note that, as expected for fermions, a' is nilpotent, meaning (a")? =0
— this implies precisely that a second fermion cannot be created in an
occupied mode.

As an aside, for the computer science reader interested in the
Bose-Hubbard and Hubbard models, suggested reading might include
Schuch and Verstraete’s [147] QMA-hardness result for the Hubbard
model, and Childs, Gosset, and Webb’s QMA-hardness result for the
Bose-Hubbard model [49].

Studying the Hubbard model. Shortly after the Hubbard model was pro-
posed, Lieb and Wu solved it exactly in 1D in 1968 [I13], obtaining its
“phase diagram”. A phase diagram is a diagram depicting the quantum
phases (e.g. metal, insulator, etc...) of a system as a function of tun-
ing parameters. In the Hubbard model, the tuning parameters are the
electron density and the repulsion strength. In particular, Lieb and Wu
found that the system is a Mott insulator when there is one electron
per site (i.e. at “half filling”), and that it becomes metallic when we
add or remove a small number of electrons (i.e. slightly away from half
filling). Such transitions between different phases of matter are called
(quantum) phase transitions.

Beyond 1D, unfortunately, the Hubbard model has proven remark-
ably difficult to solve analytically. One approach to cracking the higher
dimensional case over the last decade or so has involved quantum sim-
ulation via ultracold atoms [134]. The idea here is as follows: When
ultracold atoms are trapped in crossed laser beams (i.e. in an optical
lattice), then under certain circumstances, the behavior of the atoms
themselves is described by the Hubbard model. Thus, to uncover prop-
erties of the Hubbard model, we can instead probe such atomic systems.

Of course, this approach also faces difficulties. For example, when
we say “ultracold” atoms, we do mean ultracold: Such systems behave
quantumly only when cooled to near absolute zero (for example, a few
billionths of a degree above absolute zero). Nevertheless, recent exper-
iments have managed to resolve some of these issues [57), 97, 140], ob-
taining a good simulation of the 3D Hubbard model. Such experiments
have offered evidence of a similar metal-insulator phase transition, just
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as was discovered analytically for the 1D Hubbard model by Lieb and
Wu [I13]. This offers hope for a huge step forward, as obtaining the
phase diagrams of the 2D and 3D Hubbard models has been an open
question for decades, whose resolution may hopefully lead to further
breakthroughs in our understanding of strongly correlated materials.
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Physics Concepts in Greater Depth

In Chapter b, we gave a high-level overview of certain central ques-
tions in condensed matter physics. We now discuss various concepts
introduced therein in greater depth. We begin in by providing
a glossary of selected common terms which appear in the many-body
physics literature. discusses mean field theory. In
and we review tensor networks and their special cases (e.g., MPS
and MERA). sketches the implementation of the DMRG as a
variational algorithm over MPS. Lastly, provides a brief survey on
the subject of the area laws.

6.1 A glossary of physics terms

The following is a glossary of common terms in the physics literature.

Basic terminology.

e Singlet: A singlet is a quantum state with zero total spin. In a
system of two qubits, it is given by the Bell state:

1 1

(101) = [10)) = —=(| 14) — [ 11))-

48
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Note that for two-qubit systems, the singlet projects onto the an-
tisymmetric space, and I — 1)~ )1~ | projects onto the symmetric
space.

e Spin: Spin is an “intrinsic” type of angular momentum carried
by quantum particles. It can be measured along certain direc-
tions in real space. Let us fix a set of three orthogonal axes (our
world has three spatial dimensions) with respect to which we
wish to perform a measurement. This induces a set of observ-
ables {S;,Sy,S:}. The measurement outcomes (eigenvalues) of
each observable S;, S, or S, for a spin-(k/2) particle (k a posi-
tive integer) can be —k/2, —k/2+1, ..., k/2. For example, a spin-
(3/2) particle can yield +£1/2 and +3/2 upon measurement. As
such, a spin-(k/2) particle corresponds to a qudit with dimension
d=k+1.

o Many-body system: A many-body system consists of a large num-
ber of particles (usually arranged in a regular lattice). It is gov-
erned by a many-body Hamiltonian. The specification of a par-
ticular such Hamiltonian is analogous to choosing a family of
constraints in a classical CSP. Indeed, one might view 3-SAT as
a many-body system in which all constraints are 3-local Boolean
formulae in Conjunctive Normal Form (CNF). Note that many-
body systems can be either classical or quantum, such as the
classical and quantum Ising models.

e Interaction (hyper)graph: The interaction (hyper)graph illus-
trates which sets of particles are constrained by a common local
constraint in the Hamiltonian. For 2-local Hamiltonians, this is
just an undirected graph in which (7, j) is an edge if and only
if there exists a term H;; in the Hamiltonian acting jointly on
particles ¢ and j.

e Solving a model: The meaning of this phrase depends largely on
context. Typically, we are given a classical description of a local
Hamiltonian H, and we wish to find some property of the system
governed by H. For example, we may wish to solve for the ground
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state energy of H, or to determine whether H is gapped. Solving
the model means calculating the value of whatever property of H
we are interested in.

o Two-point correlation function: Two-point correlation functions
are defined as

(OmOy,) == Tr [p(Om @ Oy,)]
for some local operators O,,, O!, acting on sites m, n, respectively.

Commonly studied models in condensed matter physics. All
models listed below are 2-local.

o (lassical Ising model: We are given a lattice, and at each lat-
tice site ¢ there is a binary variable z; € {+1,—1}. Let ¢ :=
(x1,2,...,2,) with n the total number of sites. An assignment
x € {+1,—1}"is called a configuration, and the energy of a con-
figuration @ is given by the Hamiltonian

H(x) = Z Jijrir), (6.1)
(4,3)
where J;;’s are interaction strengths (real numbers), and (i, 7)
denotes summation over nearest-neighbor pairs (i, j) (according
to whatever underlying lattice we are given, such as a 1D chain
or a 2D square lattice). It is common to write H instead of H(x)
for notational simplicity.

To illustrate the connection to computer science, note that setting
all J;; = 1 and searching for the ground state configuration of the
Hamiltonian H(x)—|E| is equivalent to the MAX CUT problem,
where |E| is the number of edges in the interaction graph.

One may also consider adding a linear term to the Ising Hamil-

tonian, i.e.,

H(m) = Z Jijl‘il‘j +u Zmi$ia
(i,5) i

where m; models the effect of an external magnetic field on site
1, and u is the magnetic moment. We usually set u = 1 without
loss of generality.



6.1. A glossary of physics terms 51

o Quantum Ising model: The quantum Ising model is also known
as the transverse field Ising model [I132, [I37]. Its Hamiltonian is

H=—1Y oo;~gY 0t
(3,5) i

where J is the coupling constant, and g is the magnitude of the
transverse magnetic field. Recall that o* and o® are the Pauli Z
and X matrices, respectively. This model was recently found to
characterize a new complexity class called TIM [54].

o Quantum Heisenberg model: The quantum Heisenberg model’s
Hamiltonian is given by

H=— Z(Jxafaf + Jyaiyajy + J0707) + hZJf,
(i,9) i
where J;, Jy, J, are coupling constants, and h is the external mag-

netic field. Various special cases of this model are of particular in-
terest, such as the XX model [112] (also known as the XY model)

ZO‘O’ —|—0'

and the XXZ model [179, 180}, 137]

X T vy A4
—Zal-aj +o0;0; + Acjoj.
(i,9)

o Anti-ferromagnetic Heisenberg model: This is another special case
of the Heisenberg model. In physics notation the Hamiltonian can
b?e written compactly as (see Equation for the definition of

)
H = Z? ? ZO’ O'~+JU + o703,
(i,3) (i,9)
where we have assumed nearest neighbor interactions (of course,
in principle the underlying interaction graph can be any simple
graph). To intuitively understand what this 2-local constraint
enforces for the spin-1/2 particle case, note that

I—(0"0" + 00" +0%0%) o [~ XY,
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where [17) is the singlet. Hence, the ground state of this 2-local
constraint is the 1-dimensional anti-symmetric subspace, in which
spins are aligned in a conflicting fashion, i.e. up-down or down-up.

We now discuss the properties of the 1D spin-S anti-
ferromagnetic Heisenberg chain. For S = 1/2, the model is ex-
actly solvable by the Bethe ansatz [32]. The energy spectrum is
gapless, and the spin correlation functions (e.g., (¢707)) decay
as a power law in |i — j|. For S = 1 (see Equation for the
spin-1 definition of S'), the model is difficult to solve, and was
historically expected to be gapless and exhibit power-law decay.
Surprisingly, in 1983, Haldane [83] [84] argued that whether S is
a half-odd-integer or an integer is essential: For half-odd-integer
S the model was predicted to be gapless and exhibit power-law
decay, while for integer S, it was predicted to be gapped and ex-
hibit exponential decay. The former, i.e., the absence of an energy
gap for half-odd-integer S, was proven rigorously [§] by using an
extension of the Lieb-Shultz-Mattis theorem [I12]. As for the lat-
ter, evidence for the existence of the “Haldane gap” for S = 1 has
been found both numerically and experimentally [46] 121, [135].

AKLT model: As the 1D spin-1 Heisenberg model has proven
difficult to solve, Affleck, Kennedy, Lieb, and Tasaki proposed
and studied the similar AKLT model in 1987 [6] [7]. The AKLT
model is artificial and not believed to be experimentally real-
izable. However, it has the following desirable properties: (i) It
looks superficially similar to the spin-1 anti-ferromagnetic Heisen-
berg chain; (ii) it can be solved exactly; (iii) Haldane’s argument
(see anti-ferromagnetic Heisenberg model) can be rigorously ver-
ified for this model. The AKLT model is also useful for under-
standing MPS [I131] [142], symmetry protected topological (SPT)
order [81], 133, etc.

The 1D spin-1 AKLT Hamiltonian is defined as (see Equation
for definitions of o, 0y, and o, in the spin-1 case)

H:Z?i'?i+l+é(gi'?i+l)2-
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This model is best understood via the correspondence between a
qutrit (spin-1) and the symmetric subspace of two qubits (spin-
1/2):

[+ 1) < [11),  [0) = (J01) +[10))/v2, | =1) < |00).

The ground state of the AKLT model can be constructed in three
steps: (1) For each site i, assign two qubits labeled iz, and ig; (2)
ig and (i + 1)z form a singlet; (3) project iz and i onto the
symmetric subspace. The ground state is called a “valence-bond
state” as it is a tensor product of singlets in the qubit represen-
tation. We emphasize that the second term in the AKLT Hamil-
tonian is intentionally added to ensure exact solvability, i.e., that
step (2) is the optimal strategy to minimize energy. (Omitting
this second term yields the anti-ferromagnetic Heisenberg chain.)
Heuristically, ignoring step (3) does not prevent us from capturing
the physics of the model. As such, it is straightforward to under-
stand the following properties of the AKLT model intuitively (see
[6, [7] for rigorous proofs):

1. The model is gapped.

2. The ground state degeneracy depends on boundary condi-
tions: The dimension of the ground state space is 1 for pe-
riodic boundary conditions, and 4 for open boundary con-
ditions. This is because in the latter case we have two free
qubits 17, and ng (n is the number of sites), while in the
former case these two qubits form a singlet.

3. Correlation functions decay exponentially as the ground
state is short ranged.

4. The ground state can be written exactly as an MPS of bond
dimension 2 [I31), [142], as its Schmidt rank across any bi-
partite cut is 2.

Physical phenomena.

e Ferromagnetic and anti-ferromagnetic order: In a (spin) system
with ferromagnetic order, all spins are aligned in the same direc-
tion, e.g., all spins up. In contrast, an anti-ferromagnetic system



54

Physics Concepts in Greater Depth

has alternating up and down spins (i.e., neighboring spins point
in opposite directions). Note that for this to make sense, the un-
derlying lattice must be bipartite. (We remark that not all 2D
lattices are bipartite, such as the triangular or Kagome lattices.)
For example, at zero temperature H = — ), 0707, has ferro-
magnetic order (its ground states are the all-spin-up and the all-
spin-down states), whereas —H has anti-ferromagnetic order. To
give an intuitive example, a permanent magnet in ordinary life
exhibits ferromagnetic order with macroscopic magnetization.

Thermal equilibrium, Boltzmann distribution & Gibbs state:
When a classical system is in thermal equilibrium, the proba-
bility of observing each configuration x of the system is propor-
tional to exp (—fH (x)), where H is the Hamiltonian (energy),
and f = 1/T is the inverse temperaturﬂ This distribution of
configurations is called the Boltzmann distribution or the canon-
ical ensemble. The partition function Z is just the normalizing
constant of the distribution:

Z(B) ==Y _exp(—BH(z)). (6.2)
The free energy is defined as

F(B) == —log Z(9). (6.3)

Let O(x) be a physical quantity as a function of x. Its expectation
is given by

(0) = Z(lm X O(e)exp(~0H()) (6.4)

'In real physical systems (e.g., gases made of atoms and /or molecules), we usually

work with the International System of Units (SI). The inverse temperature is given
by 8 =1/(kgT) in SI, where the unit for temperature T" is Kelvin and kp &~ 1.38 x
1072 J/K is the Boltzmann constant. In the main text, we follow the convention
of theoretical physicists and have rescaled the units such that all quantities are
dimensionless (numbers) and in particular kg = 1. Thus, note that it does not make
sense to define “room temperature” as having any particular value (such as, say,
T = 20).
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When a quantum system is in thermal equilibrium, the system is
in a mixed quantum state described by the density matrix

p x exp(—BH) = exp(—H/T) (6.5)

for H the Hamiltonian and § the inverse temperature. This state
is known as the Gibbs or thermal state. The quantum partition
function and free energy can be defined analogously to the clas-
sical setting:

Z(B) :==trexp(—BLH). (6.6)
Similarly, the expectation of an operator O is given by
(O) = tr (Oexp(—BH)) /Z(B). (6.7)

Note that “zero temperature” should be understood as taking the
limit 8 — +o0.

Quantum phase transitions and criticality: Given a family of
Hamiltonians H(A) as a smooth (i.e. infinitely differentiable)
function of some tuning parameter A, let [¢)()\)) be the ground
state of H(\). Note that [¢(\)) may not be smooth (or continu-
ous) in A (even if H(\) is finite dimensional); at such singularities,
a quantum phase transition occurs. More specifically, at a first-
order quantum phase transition [¢(\)) is not continuous in A,
whereas at a continuous (second-order) phase transition, [¢)()))
is continuous but not smooth in A, e.g., d|¢(A))/dA may not be
continuous at A = A\.. We call A = A\ a critical point and H(\.)
a critical system; moreover, the physics in the neighborhood of a
critical point is called critical phenomena. Heuristically, a criti-
cal system may be scale-invariant so that its low-energy effective
theory is a conformal field theory.

A prototypical example of continuous quantum phase transitions
is in the context of the transverse field Ising chain

H ==Y o705, + Mot
)

where we take the thermodynamic limit in the sense that the
number of spins goes to infinity (i.e., the index i ranges over
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all integers). For A — 400, the ground state is | -—— --)
(unique), where | —) is the ground state of —o®. For A = 0, the
ground states are the all-spin-up and the all-spin-down states (2-
fold degenerate). Indeed, the dimension of the ground state space
is one for A > 1 and two for A < 1, and a second-order phase
transition occurs at A\, = 1.

6.2 Mean-field theory

In we alluded to mean-field theory as a (heuristic) variational
method over the set of product states to qualitatively extract properties
of a many-body system. In this section, we develop mean-field theory
from a “mean-field” perspective via a textbook example, and briefly
comment on its reformulation as a variational method.

A many-body Hamiltonian H is in general difficult to solve due
to coupling between particles. To circumvent this, mean-field theory
constructs a decoupled and exactly solvable Hamiltonian H,,s. This
process requires good physical intuition and insight into our system of
interest, and there is a priori no guarantee as to how well H,,; approx-
imates H. Nevertheless, mean-field theory has proven very successful
in some physically important contexts, and thus is among the most
widely used approximation methods in condensed matter physics.

The example we study here is the classical Ising model

H(x)=-J Z T
(i.3)

on a D-dimensional hypercubic lattice (see Equation at thermal
equilibrium, i.e. we study the system’s Boltzmann distribution (see the
glossary entry for thermal equilibrium in ), and the tuning param-
eter for us is the temperature T'. Let us now describe the property of H
we wish to calculate in terms of T'. Note that mapping x; — —x; for all ¢
leaves the Hamiltonian invariant, i.e. the mapping is a symmetry of the
Hamiltonian. However, the ground states (i.e. the all-spin-up and the
all-spin-down states) do not respect this symmetry, as they are not left
invariant under the action of this mapping (i.e. all-spin-up is mapped
to all-spin-down and vice versa). This is called spontaneous symmetry
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breaking, a phenomenon in which the physical states are less symmetric
than the Hamiltonian itself. Note that spontaneous symmetry breaking
implies a degenerate ground space.

We can try to break this degeneracy by introducing a symmetry
breaking perturbation, e.g., an infinitesimal strength magnetic field in
the positive direction. (We use infinitesimal strength here as we do
not wish to change our system.) This is modeled via a linear term as
follows:

H($) =—J Z TiTj — hZIL‘z (6.8)
() i

with & — 0. Then, we claim that (x;) = 1 for all ¢ at zero temperature
T =0 and (z;) = 0 at T' = +00. To see this, first recall that at thermal
equilibrium, the probability of observing each configuration x of the
system is proportional to exp (—H (x)/T'). Then, for T'— 0, our system
is in the all-spin-up state, since the magnetic field we added gives this
configuration slightly less energy than the all-spin-down state; thus,
(x;) = 1. For T — 400, on the other hand, all configurations x are
equally likely; thus, (x;) = 0. In physics terminology, when (z;) is non-
vanishing, we say we have spontaneous magnetization. Thus, in our case
we have spontaneous magnetization at T' = 0, and there must exist a
critical temperature T, between T' = 0 and T = +oo at which point
the spontaneous magnetization vanishes. Indeed, the system undergoes
a phase transition at 7, in the sense that other physical quantities
also become singular, e.g., the specific heat and the correlation length
diverge. Hence, in “solving this model”, our goal is to estimate the
critical temperature Tt.

Before doing so, let us briefly review known exact results regard-
ing this model. For D = 1, the model is easily solved by dynamic
programming (known as the transfer-matriz method in physics), and
T. = 0. For D = 2, the model was first solved by Onsager [128], and
T. =2J/In(1 4+ /2) ~ 2.27J. Onsager’s method is notorious for being
mathematically involved; however, it can be reformulated and simpli-
fied by fermionization [I50]. For D > 3, no exact solution is known.

Returning to mean-field theory, we now define our decoupled mean
field Hamiltonian H,,s. For this, consider an unknown parameter (to be
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determined later) m = (x;) for all 4, which is physically motivated since
the magnetization is expected to be uniform. Then, by substituting the
straightforward identity

wiwy = mi(z;) + (wi)ay — () (25) + (0 — () (25 — (25)),
into Equation [6.8] we can write
Hpp(m,x) = —J<ZZ> (wifzj) + (e — (i) () +
(i j(ﬂfi))(ﬂ?j = (@) = h Y
—J Y wi)wy + wixs) — <$z’>z($j>

(i.5)
= DJm®—2DJm Y x;, (6.9)

Q

where in the second step, we drop the linear magnetization term since
h — 0" and we use the approximation z; ~ (x;) for all i. Hy,f(m) is
now decoupled (non-interacting) and can be easily solved. Let (;),f
denote the expectation of x; evaluated using the Boltzmann distribu-
tion of the mean-field Hamiltonian H,,; at temperature 7' (we omit
parameters m and 7" in the notation (x;), s for simplicity), i.e. (z;)nf
is the mean-field magnetization. Then:

o~ anexp(—5H(@)
Hmi > exp(—BHpg(x))
> pi=t1 Ti exp(26DJmx;)
> zi=+1€xp(28DJmax;)
= tanh(28DJm),

where the second equality follows by Equation and where H,,¢(x)
also implicitly takes parameter m). The mean-field free energy is:

me = —In me

= —In (Z exp(—ﬁHmf(m))>

= nBDJm? — nin(2cosh(28D.Jm)),
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where Z,,,¢ is the mean-field partition function, and n is the total num-

ber of spins. The self-consistency m = (2;)ms of mean-field theory
implies the mean-field equation
m = tanh(25DJm). (6.10)

This equation has only one solution m = 0 when 26DJ < 1 and has
three solutions m = 0,+mg when 28D.J > 1. In the latter case, one
easily verifies Fi,r(£mg) < Fp,7(0). Since in classical statistical me-
chanics the physical solution is the one with the lowest free energy,
mean-field theory predicts spontaneous magnetization when 26DJ > 1,
i.e., T, = 2DJ. In comparison, recall Onsager’s result [12§8] for D = 2
of T, ~ 2.27J. The mean-field result thus yields a reasonably good
approximation for D = 2.

As an aside, note that instead of a mean-field approach, one can
carry out a renormalization group (RG) analysis [I71} 172 [175] [173],
which is much more sophisticated. For D < 3, RG outperforms mean-
field theory. For D > 4, however, both methods agree with each other
(on critical exponents).

We now briefly comment on how to reformulate the technique used
here as a variational method. Instead of imposing the self-consistency
condition by hand, we can view Hp,¢(m) as a family of variational
Hamiltonians and do not interpret m as (x;). To obtain the most “phys-
ical” variational Hamiltonian, we minimize the mean field free energy
Fop(m) with respect to m and find that dF,,¢(m)/dm = 0 is equiv-
alent to the mean-field equation (6.10). This is not a surprise, but
rather a general feature of mean-field theory as a consequence of the
Hellmann-Feynman theorem [65].

Finally, a remark about classical versus quantum phase transitions.
In this section, we studied a classical phase transition at finite tem-
perature. Mean-field theory also applies to quantum phase transitions
at zero temperature. Briefly speaking, we construct a family of varia-
tional (mean-field) Hamiltonians and minimize the mean-field ground
state energy. Note that unlike in the finite temperature case discussed
above, here we are at zero temperature; thus, our physical state is the
ground state and we minimize the ground state energy as opposed to
the free energy. (Roughly, free energy takes into account both energy
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and thermal (entropic) effects at finite temperature.) The ground states
of the mean-field Hamiltonians are product states since the mean-field
Hamiltonians are decoupled. This roughly explains folklore intuition as
to why the variational method over product states is called mean-field
theory. We point motivated readers to standard physics textbooks (e.g.,
[137]) for more examples of mean-field theory.

6.3 Tensor networks

Tensor networks were first discussed in Due to their success
and popularity in the field, we now give an introduction geared to-
wards computer scientists. Specifically, since arbitrary quantum states
|9} € (C?)®" may require exponentially many bits to represent classi-
cally, physicists have derived clever ways of encoding certain classes of
entangled quantum states in succinct forms. One such approach is via
tensor networks. Such networks include as special cases Matrix Prod-
uct States (MPS) [64, 157, 131] and Projected Entangled Pair States
(PEPS)[152, 156].

Informally, to a computer programmer, a tensor M (i1,i2, ..., i) is
simply a k-dimensional array; one plugs in k£ indices, and out pops a
complex number. Hence, in terms of linear algebra, a 1-dimensional ten-
sor is a vector, and a 2-dimensional tensor is a matrix. Physicists often
like to make this more confusing than it is by simplifying the notation
and placing indices as super- or sub-scripts — for example, they might
denote a 3D array M (i1,i2,13) by MZ;” (There is, of course, a phys-
ically motivated reason to write the indices as super- or sub-scripts;
however, for those seeing tensor networks for the first time, it is likely
simpler to avoid this notation for now.) To make it easier to work with
tensors, there is a simple but extremely useful graphical representation.
Figure (a) shows M, for example. Here, the vertex corresponds to
the tensor M. Each edge corresponds to one of the input parameters
to M.

Continuing our informal discussion, in Figure (b), an edge with
two vertices as endpoints corresponds to the operation of contracting
tensors on edges. Specifically, Figure b) takes two 3D tensors M
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il Z.1 jl

M M N

i3 75 ]d
(a) (b)

Figure 6.1: (a) A single tensor M (i1,72,i3). (b) Two tensors M (i1,42,i3) and
N (j1,j2,73) contracted on the edge (M, N).

and N, and contracts them on their 79 and js inputs, respectively. The
resulting mathematical object is a 4-dimensional tensor P defined as
P(i1,is, j1,J3) = »_ M (i1, k,i3)N(j1, k, js).
k
Note the resulting tensor in Figure (b) has four “legs” (i.e. edges
with only one endpoint); this is because P takes in four inputs.

More formally, a k-dimensional tensor M (as defined above) is a
map M : [di] x .-+ x [dg] — C, where each d; is a natural number.
(We remark that sometimes the dimension k of a tensor is referred
to as its rank. Note that this notion of “rank” is not the same as the
usual linear algebraic notion of rank for matrices.) For this reason,
we can observe the following straightforward way to connect n-qubit
states |¢b) and n-tensors. Let [¢0) = 22" ay]d) for {[i)}2-, € (C?)®" the
computational basis. Then, for any i € [2"], letting i1 - - - i, denote the
binary expansion of i, we can define an n-tensor M (i1, ..., 1,) for it €
{0, 1} which simply stores all 2" amplitudes of [¢), i.e. M (i1,...,i,) ==
Q,..i,- In other words, we can write

o
) = M(iy,...,in)li). (6.11)
=1

More generally, one can generalize this correspondence to represent n-
qudit systems with local dimension d. Then, each index to M would
take a value in [d], and d is called the bond dimension.

Question 1. In Figure [6.2] we depict five different tensor networks.
For simplicity, we assume here that all input parameters to a tensor
are from the set [d].
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1. For (a), what type of linear algebraic object does the figure cor-
respond to?

2. Which operations on objects of the type in (a) do images (b) and
(c) depict? What is the output of the tensors in (b) and (c)?

3. How many tensors is the network in (d) composed of? How many
input parameters does each of these constituent tensor networks
have (before contraction)? How many input parameters does the
final, contracted tensor network have?

4. Image (d) corresponds to an m-dimensional tensor, which us-
ing the tensor-vector correspondence in Equation [6.11], can be
thought of as representing an m-qubit vector |¢) (whose ampli-
tudes are computed using the specific contractions between ten-
sors indicated by the network). With this picture in mind, what
does (e) correspond to?

5. Image (e) combines 2m tensors into a network which takes no
inputs and outputs a complex number «. Assuming the bond
dimension d is a constant, given these 2m tensors, how can we
compute « in time polynomial in m? Hint: Consider an iterative
algorithm which in step i € [m] considers all tensors up to N; and
M;.

There is another view of tensors which also proves useful, in which
a tensor is seen as a linear map. Let .S denote the set of legs of a tensor
M, and partition S into subsets S7 and Ss. Then, by fixing inputs to
all legs in S1, we “collapse” M into a new tensor M’ corresponding to
some vector in (C%)®I%2l, For example, consider again our tensor M in
Figure[6.1]a), and let Sy = {i1} and Sy = {i,43}. Then, denote by Mj
the tensor obtained by hardcoding i1 = k, i.e. My (ia,i3) := M (k,i2,13).
By Equation M;, corresponds to some vector |i;,) € (C4)®IS2l. In
other words, we have just demonstrated a mapping which, given any
computational basis state |k) € C?, outputs a vector 1) € (C%)®?
i.e. we have a linear map ® : C%  (C%)®2. Returning to our more
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N N1 Ny Nj Np,
: Q
M M
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Nl N2 N3 Nm
My, M, M M,

(e)

Figure 6.2: Five tensor networks, studied in Question

general example with M, S, S7 and Ss, this approach allows us to view
a tensor M with legs in S as a linear map M : (C%)®I51l s (C4)®I%2I,
To demonstrate the effectiveness of this linear map view of ten-
sors, we revisit Question (5) This time, we break up this tensor into
tensors T;, as depicted in Figure [6.3] Then, we can think of 7 as rep-
resenting the conjugate transpose of a vector |¢) € (C%)®2. Next, T;
for i € {2,...,m — 1} can be thought of as linear maps from (C%)®?
to (CH®2, where the two left legs are the inputs, and the two right
legs are outputs. It follows that after contracting 77 through T,,_1, the
result is the conjugate transpose of some vector |¢) € (C%)®2. Since
the last tensor T}, represents some |¢) € (C?)®2, performing the final
contraction computes the inner product (|¢) outputting a scalar, as
claimed in Question [I|(5). Note that since the bond dimension d is con-
sidered a constant, this linear map view implies that the contraction of
the entire network can clearly be performed in time polynomial in m.

6.4 Density Matrix Renormalization Group

In §5.4.7] we discussed the variational principle, and in §6.3] we intro-
duced tensor networks. We now combine the two to discuss the Density



64 Physics Concepts in Greater Depth

Figure 6.3: Demonstrating the linear map view of tensor networks.

Matrix Renormalization Group (DMRG) algorithm, which is nowadays
generally considered the most powerful numerical method for studying
one-dimensional quantum many-body systems. In many applications
of DMRG, we are able to obtain the low-energy physics (i.e. physi-
cal properties at low energy, such as the ground state energy, ground
state correlation functions, etc. .. ) of a 1D quantum lattice model with
extraordinary precision and moderate computational resources. His-
torically, White’s invention of DMRG [168] [169] in the early 1990’s
was stimulated by the failure of Wilson’s numerical renormalization
group [I74] for homogeneous systems. A subsequent milestone was
achieved when it was realized [130} 136], 155, 154} 167] that DMRG
is in fact a variational algorithm over a specific class of tensor net-
works known as Matrix Product States (MPS) (see below for a
definition of MPS).

The purpose of this section is to outline at a high level how DMRG
works from the MPS point of view. For further details, we refer the
reader to the following review papers on the topic. Schollwock [142] is
a very detailed account of coding with MPS. The earlier paper of Scholl-
wock [I41] discusses DMRG mostly in its original formulation without
explicit mention of MPS. Finally, Verstraete, Murg and Cirac [154] and
Cirac and Verstraete [51] focus on the role MPS plays in DMRG, as well
as other variational classes of states, such as Tree Tensor States, Mul-
tiscale Entanglement Renormalization Ansatz (MERA) and Projected
Entangled Pair States (PEPS).
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6.4.1 Matrix Product States

Matrix Product States (MPS) are the simplest class of tensor network
states, and as such, have received much attention. Consider a 1D quan-
tum spin system of local dimension d. We associate each site ¢ with d
matrices A{ =124 of dimension D x D, except at the boundaries, where
A{ZLZ"“’d is of dimension 1 x D and AJ=12-4 is of dimension D x 1

(where n is the total number of sites). Then an MPS is given by

d
)y = > AAR . Al ).
j17-~-7jn:1
How can one interpret this expression for [¢)? First, note that for
any ¢ € {2,...,n— 1}, we have A7 : [d] — L ((CD>. In other words,

fixing an index j; € [d] pops out a D x D complex matrix A%. Sim-
ilarly, AJn (A{l) outputs a complex vector (conjugate transpose of a
complex vector). It follows that for any string ji---j, € [d]", the
expression AJ' A% ... Al yields a complex number (since it is of the
form (v1|Va---Vy_1|vp)), i.e. it yields the amplitude corresponding to
7. Thus, the amplitudes are encoded as products of matrices, justifying
the name Matriz Product State. Some additional terminology: The in-
dices j; are referred to as physical indices, as their dimension d is fixed
by the physical system. The value D is called the bond dimension,
which we discuss in more depth shortly. Graphically, an MPS is given
by Figure d), where the vertical lines denote physical indices, and
the horizontal lines represent tensor contractions or matrix products.
With a bit of thought, one can see that any state [¢)) € (C4)®n
can be written as an MPS exactly if the bond dimension D is chosen
large enough. Indeed, this can be achieved by setting D to be at least
the maximum Schmidt rank of [¢)) across any bipartite cut. In general,
however, such a value of D unfortunately grows exponentially with
n, and thus large values of D are not computationally feasible. The
strength of MPS is hence as follows: Any n-particle quantum states
whose entanglement across bipartite cuts is “small” (i.e. of polynomial
Schmidt rank in n) can be represented succinctly by an MPS.
Moreover, this niche filled by MPS turns out to be quite interesting,
as condensed matter physicists are mainly interested in ground states
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which are highly non-generic. For example, recall that in 1D gapped
systems, we have an area law [88|, [61), 35 [19, 9], implying that in
the 1D setting the entanglement entropy across any bipartite cut is
bounded by a constant independent of n. In particular, Reference [19]
shows that ground states of 1D gapped systems with energy gap € can
be well approximated by an MPS with sublinear bond dimension D =

exp (O (loff;:”». In conformally invariant critical (gapless) systems,
the area law is slightly violated with a logarithmic factor ~ logn [47),
48], suggesting that MPS is still a fairly efficient parametrization.
Finally, a key property of MPS is that, given an MPS description
of a quantum state, we can efficiently compute its physical proper-
ties, such as energy, expectation of order parameters, correlation func-
tions, and entanglement entropy [142]. This is in sharp contrast to more
complicated tensor networks such as Projected Entangled Pair States
(PEPS), which are known to be #P-complete to contract [14§].

6.4.2 Implementation of DMRG

Having introduced MPS, we now briefly review the idea behind DMRG
from an MPS perspective. Specifically, given an input Hamiltonian H,
we compute the MPS of some bond dimension D that best approx-
imates the ground state by minimizing the energy (¢|H|¢) with re-
spect to all such MPS [¢), i.e., with respect to O(ndD?) parameters.
Note that in general the bond dimension D must to grow with the
system size n (especially in critical/gapless systems). Unfortunately, if
D = poly(n) the aforementioned minimization problem can be NP-
hard even for frustration-free Hamiltonians [I45]. To cope with this,
DMRG is thus a heuristic algorithm for finding local minima: There
is no guarantee that the local minima we find are global minima, nor
that the algorithm converges rapidly. However, perhaps surprisingly, in
practice DMRG works fairly well even in critical/gapless systems.

At a high level, the DMRG algorithm proceeds as follows. We start
with an MPS denoted by {Ag:i’i’.'.'."’g}, and subsequently perform a
sequence of local optimizations. A local optimization at site ig means
minimizing (| H|vy) with respect to Agozl’Q"”’d, while keeping all other

=1,2

matrices Ag Zig @ fived. Such local optimizations are performed in
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j=1,2,....d
i=1,2,...n

a sweep consists of applying local optimizations in sequence starting
at site 1 up to site n, and then backwards back to site 1. In other
words, we apply the optimization locally in the following order of sites:
,2,....n—1,nn—1,...,2 1.

a number of “sweeps” until our solution {A: } converges. Here,

6.5 Multi-Scale Entanglement Renormalization Ansatz

We now discuss a specific type of tensor network known as the Multi-
Scale Entanglement Renormalization Ansatz (MERA) [159, 160] (see
for a definition of tensor networks), which falls somewhere between
MPS and PEPS. Like MPS and unlike PEPS, the expectation value of
local observables for MERA states can be computed exactly efficiently.
Like PEPS and unlike MPS, MERA can be used to well-approximate
(certain) states in D-dimensional lattices for D > 1. It should be noted
that, as with MPS and PEPS, there is not necessarily any guarantee
as to how well MERA can approximate a particular state; rather, as
with many ideas in physics, MERA is an intuitive idea which appears
to work well for certain Hamiltonian models, such as the 1D quantum
Ising model with transverse magnetic field on an infinite lattice [I59].

There are two equivalent ways to think about MERA. The first is
to give an efficient (log-depth) quantum circuit which, given a MERA
description of a state |¢)), prepares [¢) from the state |0)®". The disad-
vantage of this view, however, is that it does not yield much intuition
as to why MERA is structured the way it is. The second way to think
about MERA is through a physics-motivated view in terms of DMRG;
as this view provides the beautifully simple rationale behind MERA,
we present it first.

The DMRG-motivated view. This viewpoint is presented in [159],
and proceeds as follows. To begin, the general idea behind Wilson’s real-
space renormalization group (RG) methods (see [I70]) is to partition
the sites of a given quantum system into blocks. One then simplifies
the description of this space by truncating part of the Hilbert space
corresponding to each block; this process is known as coarse-graining.
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The entire coarse-graining procedure is repeated iteratively on the new
lower dimensional systems produced, until one obtains a polynomial-
size (approximate) description (in the number of sites, n) of the desired
system.

The key insight of White [168, [169] was to realize that for 1D sys-
tems, the “correct” choice of truncation procedure on a block B of sites
is to simply discard the Hilbert space corresponding to the “small”
eigenvalues of pp, where pp is the reduced state on B of the initial
n-site state [¢). Here, the value of “small” depends on the approxima-
tion precision desired in the resulting tensor network representation.
Intuitively, such an approximation works well if B in [¢) is not highly
entangled with the remaining sites. When this condition does not hold,
however, DMRG seems to be in a bind. The idea of MERA is hence to
precede each truncation step by a disentangling step, i.e. by a local uni-
tary which attempts to reduce the amount of entanglement along the
boundary of B between B and the remaining sites before the truncation
is carried out.

More formally, MERA is defined on a D-dimensional lattice L as
follows [159]. For simplicity, we restrict our attention to the case of
D =1 on spin-(1/2) systems with periodic boundary conditions, but
the ideas here extend to D > 1 on higher dimensional systems. Let L
correspond to Hilbert space Vi = @<, Vs, where s € L denote the
lattice sites with respective finite-dimensional Hilbert spaces V. Con-
sider now a block B C L of neighboring sites, whose Hilbert space we
denote as Vg = @, cp Vs. For simplicity, let us assume B consists of
two sites s; and so, with neighboring sites sp and s3 immediately to
the left and right, respectively. The disentangling step is performed by
carefully choosing unitaries Upy,Uzs € U (C*) (the specific choice of
Uo1, Uaz depends on the input state |¢)), and applying Uj; to consecu-
tive sites ¢ and j. The truncation step follows next by applying isometry
Via : L (C*) — £ (C?) tosites 1 and 2, where C? is the truncated space
we wish to keep and where V12V1T2 = I. By applying this procedure to
neighboring disjoint pairs of spins, we obtain a new spin chain with
n/2 sites (assuming n is even in this example). The entire procedure
is now repeated on these n/2 coarse-grained sites. After O(logn) itera-
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}

()

Figure 6.4: A MERA network on 8 sites. The circle vertices represent “disentan-
gling” unitaries. The square vertices represent isometries. (a) The tensor network
view. (b) The quantum circuit view. (c¢) The causal cone of the site labeled s.

tions, we end up with a single site. The tensor network is then obtained
by writing down tensors corresponding to the linear maps of each U;;
and V;;, and connecting these tensors according to the geometry un-
derlying the process outlined above. The resulting tensor network has
a tree-like structure, with a single vertex at the top, and n legs at the
bottom corresponding to each of the n original sites. It is depicted in
Figure [6.4(a).

Note that if we assume the bond dimension for each isometric tensor
Vij is d, then the MERA representation requires O(nd*) bits of storage;
this is because there are 2n — 1 tensors in the network, and each tensor
stores at most O(d*) complex numbers.

The quantum circuit view. In a sense, we have cheated the reader,
because the DMRG view already prescribes the method for the quan-
tum circuit view of MERA. Specifically, imagine we reverse the coarse-
graining procedure described above, i.e. instead of working our way
from the n sites of |¢) up to a single site, we go in the opposite di-



70 Physics Concepts in Greater Depth

rection. Then, intuitively, the DMRG view yields a quantum circuit
which, starting from the state |0)®™, prepares (an approximation to)
the desired state |1) via a sequence of the same isometries and unitaries
prescribed by the tensor network. This view is depicted in Figure b).

Computing with MERA. A succinct representation of a quantum sys-
tem would not necessarily be useful without the ability to compute
properties of the system from this succinct format. A strength of MERA
is that, indeed, expectation values of local observables against [i) can
be efficiently computed. This follows simply because given a MERA
network M representing [1), the reduced state of [¢)) on ©(1) sites can
be computed in time O(logn) (assuming the dimension D of our lattice
is considered a constant). To see this, we partition the tensors in our
MERA network in terms of horizontal layers or time slices from top to
bottom. Specifically, in Figure (b), time slice 0 is before the top uni-
tary is run, slice 1 immediately after the top unitary is run and before
the following pair of isometries are run, and so forth until slice 5, which
is immediately after the four bottom-most unitaries are run. Then, in
each layer, the causal cone C; for any site s can be shown to have at
most constant width (more generally, at most 4 - 3P~1 width [I60]).
Here, the causal cone of Cy is the set of vertices and edges in the net-
work which influence the leg of the network corresponding to site s; see
Figure [6.4|c). The width of Cs in a time slice is the number of edges in
Cs in that slice. Thus, by viewing the MERA network in terms of the
quantum circuit view, we see that the reduced state on site s is given
by a quantum circuit with O(logn) gates. Moreover, at any point in the
computation, this circuit needs to keep track of the state of only ©(1)
qubits. Such a circuit can be straightforwardly simulated classically in
O(logn) time via brute force (i.e. multiply the unitaries in the circuit
and trace out qubits which are no longer needed), yielding the claim.

6.6 Area laws

We now discuss area laws in further depth, which were first mentioned
briefly at the end of Recall that, roughly, an area law states
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BRSPS SRR SN S S S S S

Figure 6.5: A quantum lattice system partitioned into two parts L and L. If the
represented quantum state obeys an area law, the amount of entanglement between
L and L is bounded above by a quantity that is proportional to the surface area
|OL|, rather than the volume |L]|.

that for certain interesting classes of quantum many-body systems,
the amount of entanglement between a subsystem and its complement
grows as the surface area or the boundary rather than the volume of
the subsystem. In literature, the amount of entanglement is typically
formulated as entanglement entropy, i.e. the von Neumann entropy of
the reduced density matrix on the subsystem of interest.

For example, suppose that a region L of a quantum lattice system
is carved out as in Figure An arbitrary quantum state on such a
lattice follows a volume law instead of an area law; to see this, sim-
ply consider the case in which every particle in L forms an EPR pair
with some other particle in L. In this case, the amount of entangle-
ment between L and L is proportional to the number of particles in
L, i.e. the volume of L, rather than the size of the boundary |OL|.
However, it is widely believed in the physics community that many
interesting classes of quantum states do satisfy an area law, most no-
tably the ground states of gapped local Hamiltonians. Note, however,
that for critical/gapless systems, there are known constructions which
violate the area law [16], 93] [79].

Motivations. The idea that the information content of a region de-
pends on its surface area rather than its volume is not foreign to physics.
This intuition, often dubbed the holographic principle, is inspired by
black hole thermodynamics, where the entropy of a black hole is be-
lieved to scale as the surface area of the event horizon rather than the



72 Physics Concepts in Greater Depth

volume of the black hole. In fact, the original interest in area laws in
quantum systems also sprang from this intriguing analogy, in connec-
tion with the conjecture that the origin of the black hole entropy is
the quantum entanglement between the inside and outside of the black
hole [28, 34} [I51].

Aside from black holes, however, there are other fundamental rea-
sons to study area laws. For instance, area laws are a means for char-
acterizing the structure of entanglement occurring in naturally arising
systems. For example, it is well known that a generic state in Hilbert
space obeys a volume law rather than an area law [90]. Therefore, the
existence of an area law for most physically relevant systems would im-
ply that much of nature’s “interesting physics” takes place in a small
corner of Hilbert space.

Last but not least, a significant motivation lies in the classical rep-
resentability of quantum many-body systems. In contrast to general
quantum states that require exponentially many parameters to de-
scribe, states that satisfy an area law may be expected to admit an
efficient classical description via (e.g.) tensor networks of small bond
dimension. In fact, area laws are closely related to tensor networks. For
instance, any tensor network with constant bond dimension automati-
cally satisfies an area law in the following sense; if we pick any subset
L of vertices, the Schmidt rank between L and L is upper-bounded
by DI?Ll where D represents the bond dimension. This immediately
implies that the entanglement entropy is bounded by |0L|log D, giving
rise to an area law. This bound also shows that tensor networks such as
MPS or PEPS, even with polynomially large bond dimension, cannot
describe entanglement that scales via a volume law.

Why should area laws hold? Area laws are a way of formulating (al-
beit not exactly) the physics intuition that entanglement in “natural”
quantum systems should roughly live on the boundary. For example, a
seminal work of Hastings [86] shows that the ground state of a gapped
local Hamiltonian on a lattice of any dimension exhibits an exponential
decay of correlations, i.e. two-point correlation functions decay expo-
nentially with respect to spatial separation between the two points. At
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first glance, this result already seems to suggest that the entanglement
between a region and its complement should live mostly on or close to
the boundary; unfortunately, it is far from trivial to lift this statement
about correlations to one about entanglement.

Known results. In general, establishing area laws is a challenging
task. While a number of specific Hamiltonian models had been shown
to obey an area law [61], 161}, 94) [63], it was not until 2007 that Hastings
proved [88] that the ground states of all 1D gapped local Hamiltoni-
ans obey an area law. (Hastings [88] also showed that the ground state
of such a system can be well approximated by an MPS of polynomial
bond dimension.) Subsequently, Aharonov, Arad, Landau and Vazirani
gave an alternative combinatorial proof (whereas Hastings’ proof relies
on Lieb-Robinson bounds) of Hastings’ 1D area law in the frustration-
free case [11], 20]. Yet another combinatorial proof was given by Arad,
Kitaev, Landau, and Vazirani [19], which also applies in frustrated set-
tings and improves significantly on the area law parameters obtained.
The approach of [19] was later adapted to the setting of a constant-fold
degenerate ground space by Huang [91]. Here, any state in the ground
space obeys an area law. As an aside, we remark that this study of
combinatorial proofs of the area law (and in particular, the concept of
an approximate ground state projection, or AGSP) played an instru-
mental role in the development of the first rigorous polynomial time
algorithm for finding the ground state of a gapped 1D system [I10].
In 2012, Branddo and Horodecki [35] showed that 1D local Hamiltoni-
ans that have an exponential decay of correlations satisfy an area law.
Together with Hastings’ result [86] that gapped local Hamiltonians ex-
hibit exponential decay of correlations, this yields still another proof
of Hastings’ 1D area law [88]. Finally, Wolf [I76] showed that trans-
lationally invariant critical fermionic systems of any spatial dimension
satisfy an area law up to a logarithmic correction.

Interestingly, in contrast to the ground state case just discussed,
thermal states of local Hamiltonians always satisfy an area law
regardless of the energy gap or the spatial dimension [120, [177].
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For further details on combinatorial area law proofs, the reader is
referred to where the result of [19] is sketched. For a physics-
oriented survey of area laws, see Eisert, Cramer, and Plenio [61].

Open problems. Arguably the most important open question in this
area is whether an area law holds in dimensions larger than 1D. Unfor-
tunately, the known approaches do not seem generalize easily to this
setting. As for alternate approaches, we list two possible routes. First,
Masanes [118] has shown that the following two criteria are sufficient
to establish an area law: (1) There is sufficiently fast decay of correla-
tions, and (2) the number of “low-energy” states is not exponentially
large. Second, Van Acoleyen, Marién, and Verstraete [4] have recently
shown that if two gapped systems H; and Hs are adiabatically con-
nected, i.e. there is a smooth path between H; and Hs such that the
system remains gapped at every point on the path, then the ground
state of Hy satisfies an area law if and only if the ground state of Hs
also satisfies an area law.
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Reviews of Selected Results

Having discussed a number of Hamiltonian complexity concepts origi-
nating from the physics literature in §5| and [0, we now expound on a
selected number of central computer science-based results in the area.
Specifically, reviews Kitaev’s original proof that 5-local Hamil-
tonian is QMA-complete. discusses the ensuing proof by Kitaev,
Kempe and Regev using perturbation theory-based gadgets that 2-local
Hamiltonian is QMA-complete. In we review Bravyi and Vyalyi’s
Structure Lemma and its use in proving that the 2-local commuting
Hamiltonian problem is in NP, and thus unlikely to be QMA-hard.
§7.4] gives a quantum information theoretic presentation of Bravyi’s
polynomial time algorithm for Quantum 2-SAT. Finally, provides
an intuitive review of the combinatorial proof of an area law for 1D
gapped systems due to Arad, Kitaev, Landau and Vazirani.

7.1 5-local Hamiltonian is QMA-complete
One of the cornerstones of classical computational complexity the-
ory is the Cook-Levin theorem, which states that classical constraint

satisfaction is NP-complete. The quantum version of this theorem is

75
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due to Kitaev, who showed that the 5-local Hamiltonian problem is
QMA-complete [106]. In this section, we review Kitaev’s proof. For a
more in-depth treatment, we refer the reader to the detailed surveys of
Aharonov and Naveh [I8] and Gharibian [71].

We begin by showing that k-local Hamiltonian for any k € ©(1) is
in QMA.

Local Hamiltonian is in QMA
Theorem 7.1. (Kitaev [106]) For any constant k > 1, k-LH € QMA.

Proof sketch. The basic idea is that whenever we have a YES instance
of k-LH, the quantum proof sent to the verifier is essentially the ground
state of the local Hamiltonian H in question. The verifier then runs a
simple “local” version of phase estimation to roughly determine the
energy penalty incurred by the given proof.

To begin, suppose we have an instance (H, a,b) of k-LH with k-local
Hamiltonian H = 7% H; € L((C?)®™). We construct an efficient
quantum verification circuit V' as follows. First, the quantum proof is
[v) € C" ® (C*H®" ® C?, s.t.

) = (}g |j>) & n) ®0), (7.1)

for {|j)};—; an orthonormal basis for C", and [n) an eigenvector corre-
sponding to some eigenvalue A of H. We call the first register of |¢)) the
index register, the second the proof register, and the last the answer
register. The circuit V' is defined as V' := 3774 [j)(j| ® W;, where W} is
defined as follows. For our Hamiltonian H = Z;Zl H;, suppose H; has
spectral decomposition Hj = >, As|As)(As|. Then, define W; acting on
the proof and answer registers with action

W; (1A @10) = M) @ (VAJ0) + VI=X[D) . (72)

Question 2. Show that if we apply V' to the proof |¢) and measure the
answer register in the computational basis, the probability of obtaining
outcome 1 is 1 — 1(n|H|n). Conclude that since the thresholds a and b
are inverse polynomially separated, k-LH € QMA.



7.1. 5-local Hamiltonian is QMA-complete 77

Hint 1. Observe that since we may assume the index register is implic-
itly measured at the end of the verification, V' above can be thought
of as using the index register to choose an index j € [r] uniformly at
random, followed by applying W; to the proof register. As a result, the
probability of outputting 1 can be expressed as

"1
Pr(output 1) = E — Pr(output 1 | Wj is applied). (7.3)
—
Jj=1

Hint 2. When considering the action of any W; on |n), rewrite |n) in
the eigenbasis of H; as [n) = >, as|As) (the values of the coefficients
as will not matter).

5-Local Hamiltonian is QMA-hard

To show that 5-local Hamiltonian is QMA-hard, Kitaev gives a quan-
tum adaptation of the Cook-Levin theorem [106]. Specifically, he shows
a polynomial-time many-one or Karp reduction from an arbitrary prob-
lem in QMA to 5-LH, which we now discuss.

Let P be a promise problem in QMA, and let V = ViV _1... V)
be a verification circuit for P composed of unitaries V. Without loss
of generality, we may assume each V} acts on pairs of qubits, and that
V € U((C?)®™ © (C?)®N=™) where the m-qubit register contains the
proof V verifies, and the remaining qubits are ancilla qubits. Using V,
our goal is to define a 5-local Hamiltonian H that has a small eigenvalue
if and only if there exists a proof [1)) € (C?)®™ causing V to accept
with high probability.

We let H act on (C?)®™ @ (C2)®N-" @ CL+L) which is simply the
initial space V acts on, tensored with an (L + 1)-dimensional counter
or clock register. We label the three registers H acts on as p for proof,
a for ancilla, and c¢ for clock, respectively. We now define H itself:

H := Hi, + Hprop + Hout, (7~4)
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with the terms Hi,, Hprop, and Hoyy defined as follows. Let

Hy = I,®(I,—10...00...0],)® |0X0], (7.5)
How = (|0X0]® Ligzyom—1) ® Lo @ LKL, (7.6)
Hyop = ZHj, where
1 . 1 1 . .
Hj = —5Vi®li)i-t.—5V;eli-1l.+ (7.7
1 Ny ) .
L @ UG+ 17 =165 = 1)e. (7.8)

Question 3. Suppose that for any YES-instance of promise problem
P, V accepts a valid proof [¢)) with certainty. Verify that the following
state |n), known as the history state, lies in the null space of H. Why
do you think |n) is called the history state?

L
)= 3 (Vi Vil ® 02V ) @ e (79)

J=0

In order to ease the analysis of H’s smallest eigenvalue, it turns out
to be extremely helpful to apply the following change-of-basis operator
to H:

L
=> V.. Vi)l (7.10)
Jj=0

Question 4. Show that:

L. \ﬁ>1 = Vglm = [¢), ® [0)$V "™ & |7)c, where we define |y) =
ij:O |]>

A

2. Hy, = WIH,.W = Hy,,
3. Hyy := WIH W = (VI @ L)How(V @ 1),

A Hj = WHH;W = L, ® 3(17 — 1) — 1| — |5 — 1| — i} — 1| +
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‘]><]‘)Ca and hence ﬁprop equals

1 1
1 2 01 0 0
-1 1 -1 0 o
0o -3 1 -3 o0
Ip®Ia® 0 0 —% 1 —% =: Ip®Ia®EC7
o 0 o0 -1
(7.11)

where we have let E denote a tridiagonal matrix acting on the
clock register.

Henceforth, when we refer to H, Hin, Hout, Hprop, Hj, and |n), we
implicitly mean H, Hin, Hou, Hprop, Hj, and |7}), respectively.

The YES case: H has a small eigenvalue

Question 5. Suppose that given proof |¢), V accepts with probability
at least 1 — e for € > 0. Show that

(nlH|n) <

. 12
=T+1° (7.12)

Conclude that if there exists a proof |¢) accepted with “high” proba-
bility by V, then H has a “small” eigenvalue.

The NO case: H has no small eigenvalues

If there is no proof |¢) accepted by V with high probability, then we
wish to show that H has no small eigenvalues. To do so, write H =
Ay + Ay for Ay := Hiy + Hoy and Ag 1= Hpypop. If Ap and Ay were
to commute, then analyzing the smallest eigenvalues of A; and Ao
independently would yield a lower bound on the smallest eigenvalue of
H. Unfortunately, A; and As do not commute; hence, if we wish to
use information about the spectra of A; and Ay to lower bounds H’s
eigenvalues, we will need a stronger technical tool, given below.
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Lemma 7.2 (Kitaev [I06], Geometric Lemma, Lemma 14.4). Let
Aq, As = 0, such that the minimum non-zero eigenvalue of both oper-
ators is lower bounded by v. Assume that the null spaces £ and L9 of
A; and Ag, respectively, have trivial intersection, i.e. £, N Lo = {0}.

Then
a(Ly, Ls)

Ay + Ay = 2usin® I, (7.13)

where the angle a(X,)) between X’ and ) is defined over vectors |x)
and |y) as

cos |[Z(X,Y)] = max zll .
[£(X,)] G |(z|y)]
) [I=Ily) [|I=1
Question 6. For complex Euclidean spaces X and ), is the statement

X NY = {0} equivalent to X and Y being orthogonal spaces?

We use Kitaev’s Geometric Lemma with Ay = Hi, + Hoyt and
Az = Hppop to lower bound the smallest eigenvalue of H in the NO
case.

Question 7. For A; = Hi,+ Hoy and Ay = Hprop, what non-zero value
of v can we use for the Geometric Lemma?

Hint 3. For A, recall that commuting operators simultaneously diag-
onalize.

Hint 4. For A, the eigenvalues are given by Ay = 1 — cos[nk/(L + 1)]
for 0 < k < L. Use this to show that the smallest positive eigenvalue
of As is at least 1 — cos(m/(L + 1)) > ¢/L%.

Question 8. In order to compute (L, L£2), convince yourself first that

L= (@) 07" " @ 0)] ©

[(€)®V)pa @ span(|1), ... |L = 1))e] @

Vi) & (@)Y pa®|L)] (7.14)
Ly = (C)*)pa® e (7.15)

To compute sin? M for the Geometric Lemma, we now upper

bound
11—/

2
L1, L) <1— .
cos” oLy, L) < L+1
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Question 9. Show that cos? (L1, L) = max were (Yllz,ly)-
Il ) [I=1
Observe from Equation that £; is a direct sum of three spaces,
and hence the projector onto £1 can be written as the sum of three
respective projectors Iy + Il + II3.

Question 10. Observe by Equation that for any |y) € Lo, |y) =
[COp.a @ [7)e for some [C) € (C*)™ @ (C2)&N—,

1. Show that (y|II;|y) = f—ﬁ

2. One can show that
(y[Ty + Isly) < cos® p(Ky1, Ka),

where IC; = (C?)®" ®[0)®N =™ and Ky = VT|1) ® (C?)®N -1, Use
the fact that in the NO case, any proof is accepted by V with
probability at most € to conclude that

1
I, + 11 < —(1 .
(Wilz + Isly) < 7251+ Ve)
Combining the results of the question above, we have that
cos? a(L1,L2) < 1— ((1 —+/€)/(L+ 1)). Using the identities sin?z +

cos? x = 1 and sin(2x) = 2sin x cos z, this yields

oLy, Lo) 1y 1— e
D22 S 2 > V-
sin 5 2 7 8in a(Ll,Eg)_4(L+1)

We conclude that in the NO case, the minimum eigenvalue of H scales

as (1 — Vo) /L?).

Question 11. Recall that in the YES case, the smallest eigenvalue of
H is upper bounded by ¢/(L + 1). Why do the eigenvalue bounds we
have obtained in the YES and NO cases thus suffice to show that 5-LH
is QMA-hard?

Making H 5-local

We are almost done! The only remaining issue is that we would like H
to be 5-local, but a binary representation of the (L + 1)-dimensional
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clock register is unfortunately log(n)-local. To alleviate this [106], we
switch to a wnary representation of time. In other words, we now let
H act on (C%)®™ @ (C?)®N-" g (C?%)®F, where the counter register is
now given in unary, i.e. |j) € CL*! is represented as
11,...,1,0,...,0). (7.16)
H./—/
J
The operator basis |i)(j| for £L(CF+1) translates easily to this new rep-
resentation (omitted here; see Reference [106]). To enforce the clock
register to indeed always be a valid representation of some time j in
unary, we add a new fourth penalty term to H which acts only on the
clock register, namely

L—1
o = Ipa ® 3 10)0], @ [1)11 4. (7.17)

j=1
Hence, the new H is given by H = Hiy, + Hprop + Hout + Hstap- By using
the fact that both Hi, + Hpyrop + Hour and Hgtay, act invariantly on the
original space the old H used to act on, it is a fairly straightforward
exercise to verify that the analysis obtained above goes through for this
new definition of H as well [106]. We conclude that 5-LH is QMA-hard.

7.2 2-local Hamiltonian is QMA-complete

In [106], Kitaev showed that the 5-local Hamiltonian problem is QMA-
complete. In this section, we review Kitaev, Kempe, and Regev’s
perturbation theory proof that even 2-local Hamiltonian is QMA-
hard [102]. Note that Reference [102] also provides an alternative “sim-
pler” proof based on elementary linear algebra and the so-called Projec-
tion Lemma in the same paper; however, as the Projection Lemma can
be derived via perturbation theory, and since Reference [I02]’s idea of
using perturbation theory gadgets has since proven useful elsewhere in
Hamiltonian complexity (e.g. [127]), we focus on the latter proof tech-
nique. Besides, perturbation theory is a standard tool in a physicist’s
toolbox, and our goal in this survey is to better understand what goes
on in physicists’ minds!
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The proof that 2-local Hamiltonian is QMA-complete is quite com-
plicated. To aid in its assimilation, we therefore begin with a high-
level overview of how the pieces of the proof fit together. The start-
ing point shall be Kempe and Regev’s result [103] that 3-LH is also
QMA-complete. Roughly, the latter result is obtained via a circuit-to-
Hamiltonian construction similar to Kitaev’s from except that one
first uses only a single qubit to refer to the clock in the propagation
Hamiltonian H,op — this reduces the Hamiltonian’s locality from 5 to
3. To compensate for this, one next imposes a large energy penalty on
the invalid clock space by multiplying Hgap, by a polynomial factor.

Overview of the proof. To prove that 2-LH is QMA-hard, the ap-
proach is to show a Karp or mapping reduction from an arbitrary in-
stance of 3-LH to 2-LLH. To achieve this, given a 3-local Hamiltonian
H acting on n qubits, we map it to a 2-local Hamiltonian H as follows.

e (Step 1: Rewrite H by isolating 3-local terms) Rewrite H in a
form which resembles Y — 6. B1 By B3, where By By Bg is shorthand
for B1 ® By ® Bs, the B; are one-local and positive semidefinite,
and Y is a 2-local Hamiltonian.

e (Step 2: Construct H) Define H = Q + P(Y, By, By, Bs), where
P is an operator with small norm and which depends on
Y, By, By, B3, and where () has large spectral gap and depends
only on the spectral gap of H. We refer to P as the perturbation
and H as the perturbed Hamiltonian.

This outlines the reduction itself. It now remains to outline the proof of
correctness, i.e. to show that the 2-local Hamiltonian H reproduces the
low energy spectrum of the input 3-local Hamiltonian H. In order to
facilitate understanding, we present the analysis in a backwards fashion
compared to the presentation in [102].

e (Step 3: Define an effective Hamiltonian H.g) We first define
an effective 3-local Hamiltonian H.g whose low-energy spectrum
is (by inspection) identical to that of H. We will see next that
H has been cleverly chosen to simulate H.g with only 2-local
interactions.
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e (Step 4: Define the self-energy, ¥_(z)) A standard tool in per-
turbation theory is an operator-valued function known as the
self-energy, denoted ¥_(z), for z € C. In this step, we show that
for an appropriate choice of z, we have || Heg — X_(2) ||, < €
for some small € > 0. Intuitively, this relationship will hold be-
cause Heg is simply a truncated version of the series expansion

of ¥_(2).

e (Step 5: Relate the low energy spectrum of ¥_(z) to that of
H ) This step is where the actual perturbation theory analy-
sis comes in. The outcome of this step will be that, assuming
[ Hep =X (2) lloo

close to the jth smallest eigenvalue of H.

< ¢, the jth smallest eigenvalue of H.g is e-

To recap, once we define the 2-local Hamiltonian H , the spectral
analysis we perform follows the chain of relationships:

H~Hg~Y_(2)~H,

where here = roughly indicates that the two operators in question share
a similar ground space. We now discuss each of these steps in further
detail.

7.2.1 Step 1: Rewrite H by isolating 3-local terms

Question 12. Convince yourself that H can be rewritten, up to rescal-
ing by a constant, in the form

M
HxY —6Y Bj®Bj® B, (7.18)
i=1
where each B;; is a one-local positive semidefinite operator and Y is
a 2-local Hamiltonian whose operator norm is upper bounded by an
inverse polynomial in n.

Hint 5. Rewrite each local term of H in the local Pauli operator ba-
sis, i.e. as a linear combination of terms of the form o ® 09 ® o3 for
o; € {I,0%,0Y,0%}. Then, for each such term involving Pauli operators,
try to add 1-local multiples of the identity in order to obtain positive
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semidefinite terms B;; ® B;s ® B;z. You will then have to subtract off
certain terms to make up for this addition; these subtracted terms will
form Y. Think about why Y must indeed be 2-local.

7.2.2 Step 2: Construct H

Using the decomposition of H in Equation [7.18] we can now construct
our desired 2-local Hamiltonian, H. As done in [102], for simplicity, we
assume that M = 1 in Equation[7.18] i.e. that H =Y — 6B, B2Bs. The
extension to arbitrary M follows similarly [102].

To construct H, suppose H € L((C?)®"). Then, we introduce three
auxiliary qubits and define H € L((C?)®" @ (C2)®3) as follows [102].

H = Q+P, (7.19)
1
Q = _IS?’I(@ (0505 + oj03 + 0505 — 31), (7.20)
1
P = (Y+5(B%+B§+B§))®I—
1
57(31@)0'%4-32@0'%4-33@0%), (7.21)

where § > 0 is some small constant, and a§ denotes the ith Pauli op-
erator applied to qubit j. Notice that the “unperturbed” Hamiltonian
() contains no information about H itself, whereas the term that does
contain the information about H, P, is thought of as the “perturba-
tion”. The reason for this is that @ is thought of as a penalty term
with a large spectral gap (compared to || P ||, ), so that intuitively, the
ground space of H will be forced to be a subspace of the ground space
of @ (since @ will enforce a large penalty on any vector not in this
space).

Question 13. Show that @ has eigenvalues 0 and 1/6%. Conclude that
for “small” constant d, ) has a “large” constant-sized spectral gap.

Question 14. Show that associated with the null space of @ is the
space
L_ = (C*®" @ Span (|000), [111)) .

For simplicity, we henceforth define C' := Span (]000), [111)). Conclude
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that we can think of C' as a logical qubit, and that we can define logical
Pauli operators aic acting on C.

7.2.3 Step 3: Define an effective Hamiltonian H.g
Question 15. Show that the effective Hamiltonian
Hyg =Y ®Io—6B1ByBs ® O'g« (722)

has the same ground state energy as H = Y —6B1 By B3. Conclude that
it suffices to show that the ground state energy of H.g approximates
that of H.

7.2.4 Step 4: Define the self-energy ¥_(z)

Let 6 > 0 be a small constant. In this section, we define an operator-
valued function ¥_(z), known as the self-energy, and show that for
certain values of z, we have || Heg — X_(2) ||, € O(J). At a high-level,
the claim follows by using the series expansion of ¥_(z) to observe that
for appropriate z, one has ¥_(2) = Heg + O(9).

Definition of ¥_(z). To begin, suppose H = Q + P acts on Hilbert
space H, for () the unperturbed Hamiltonian and P the perturbation.
Let A\« € R be some cutoff value. Then, let £_ (£4) denote the span
of Q’s eigenvectors with eigenvalue strictly less than A\, (at least \.),
and let II_ (II;) denote the projector onto £_ (L ). For notational
convenience, for any operator A, we define

Ay = I AILL
Ao = T4 AIL
Ay = TI_AIL}

A = TI_AIL.

To define the self-energy operator ¥_(z), we now require the notion of
the resolvent of an operator A, defined R(z, A) := (21 — A)~!. Intu-
itively, the resolvent will be the vital link allowing us to connect the
low-energy eigenvalues of our constructed 2-local Hamiltonian H to
those of Heg (and hence to those of our original 3-local Hamiltonian
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H). Roughly, the range of z we will be interested in for the resolvent
is z € [c — €,d + €], where ¢ and d are defined such that the eigen-
values of Heg lie in the range [c,d] for some ¢ < d. Further details
can be found in §7.2.5] where explicit use of the resolvent comes into
play. Returning to our discussion here, the self-energy is now defined
as ¥_(z) := zI_ — R~Y(z, H). In this section, we use the fact [T02] that
Y _(2) has a simple and useful series expansion, given by

X (z) = Q-+P-+P R P_+P R\PL L RP_+
P R.P,R.P,RPs_+-- (7.23)

¥ _(z) is close to Heg. For our specific definition of H, to show that
Y _(2) is close to Heg, we simply show that Heg is the series expan-
sion of ¥_(z) up to the third order. Define A := 1/6%, and consider

Equation [7.23]

Question 16. We now compute the expression for X_(z) for H. Recall
that our goal is to show that the low order terms of ¥_(z) are precisely
our desired effective Hamiltonian, Heg.

1. Show that the zeroth order term of ¥_(z) is zero, i.e. @— = 0.
2. Show that Ry = (z — A)7 ., .

3. Use parts 1 and 2 above to conclude that in our case,

Y (2) = P_+ ﬁP_ﬂﬁ_ + @_1A>2P_+P++P+_ +
EE _1A>3P*P*P+P* o
4. Show that
P, = —%(Bl ® [000)(100| + Bs ® [000%010| +

B3 ®]000)001| 4+ B; ® [111)011] +
By @ |111)101] 4+ By ® [111)110]).

Derive similar expressions for P._, P_, and P,.
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5. For ease of notation, define X := (Y + (B} + B} + B3)), and
let I denote the projector onto space C' from Question Show
that

P. = X®Ig,
PP, = %4(3% + B3 +B}) ®I¢,
P P, P, = %(BlXBl + B3X By + B3 XB3)® Io —
%BlBng ® oé.
6. By setting z < A a constant, show that (z—A)~! = —§3+0(89).
7. Finally, using all parts above, show that, as desired,
Y (2) =Y ®Ic—6B1B2Bs @0+ O(5) = Hegr + O(9).

Conclude that || Heg — X-(2) ||, € O(9).

7.2.5 Step 5: Relate the low energy spectrum of ¥_(z) to that of
H

In this section, we plug in Theorem 3 of [102], which allows us to
conclude that the small eigenvalues of ¥_(z) are close to the small
eigenvalues of H.

Theorem 7.3. (Kitaev, Kempe, Regev [102], Theorem 3) Let A, be
the cutoff on the spectrum of @), as before. Assume the eigenvalues of
@ lie in the range (—oo, A« + /2] U [A\s + /2, 00) for some a € R,
and that || P, < «/2. Fix arbitrary € > 0. Then, if there exists
operator Heg whose eigenvalues lie in the range [c, d] for some ¢ < d <
A« — €, and such that [|X_(2) — Heg ||, < € for all z € [c —€,d + €],
then the jth eigenvalue of II_HII_ is e-close to the jth eigenvalue of
Hg. Here, we assume eigenvalues are ordered for each operator in non-
decreasing order, and we define II_ as the projector onto the span of
the eigenvectors of H of eigenvalue strictly less than ..

To sketch at a high-level the idea behind the proof of Theorem
recall that our goal in this section is to approximate the low-energy
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spectrum of an input 3-local Hamiltonian H with a 2-local Hamilto-
nian H. To this end, we first observed that the low-energy spectrum
of H is identical to that of H.g. Next, we showed that H.g is well-
simulated in this low-energy space by the self-energy, ¥_(z), since the
former is a truncation of the series expansion of the latter. Finally,
it remains to link the spectrum of ¥_(z) to that of H_ (where recall
H_is H projected onto its low-energy space), which is precisely the
task of Theorem Here, we are interested in the eigenvalues of H _,
and it is here that the resolvent plays a crucial role. Specifically, to
show Theorem one first shows that the eigenvalues of H_ are en-
coded in the poles of R(z, H). Moreover, projecting R(z, H) onto the
low energy space of H preserves these poles, i.e. the poles of R(z, H )—
also encode the eigenvalues of H. But now we are in good shape, since
the self-energy Y_(z) is defined directly in terms of R(z, H)_; it can
thus be shown that the poles of R(z, H)_ are related to the eigenval-
ues of ¥_(z). Finally, since ¥_(z) is “close” to Heg by assumption in
Theorem the claim follows by applying a (special case of) Wey!’s in-
equalities relating the distance between two operators in spectral norm
to distances between their respective eigenvalues. This completes the
proof sketch.

Question 17. Apply Theorem [7.3| with ¢ = — || Hegt ||, d = || Hett || o0
A« = A/2 to complete the proof of correctness for the reduction.

7.3 Commuting k-local Hamiltonians and the Structure
Lemma

A natural case of the k-local Hamiltonian problem whose complexity
remains open (for arbitrary k£ and local dimension d) is that of com-
muting local Hamiltonians, i.e. where the local constraints pairwise
commute. This class of Hamiltonians is particularly interesting, in that
it intuitively seems “closer” to the classical world of constraint satisfac-
tion (in which all constraints are diagonal in the computational basis
and hence commute), and yet such Hamiltonians are nevertheless rich
enough to give rise to highly entangled ground states, such as the toric
code Hamiltonian [105]. The main complexity theoretic question in this
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area is to characterize the complexity of the problem for various values
of k and d: Is it in NP? QCMA (i.e. QMA with a classical prover)? Or
could it be QMA-complete?

To date, it is known that the commuting cases of 2-local Hamilto-
nian for d > 2 [45], 3-local Hamiltonian with d = 2 (as well as d = 3
with a “nearly Euclidean” interaction graph) [I3], and 4-local Hamil-
tonian with d = 2 on a square lattice are in NP [144]. At the heart
of these results is Bravyi and Vyalyi’s Structure Lemma [45], which is
a powerful tool for dissecting the structure of commuting local Hamil-
tonians. The primary focus of this section is to prove and discuss this
lemma.

We remark that often the commuting k-LH problem is phrased with
each local term being an orthogonal projection; this is without loss of
generality, as since all terms simultaneously diagonalize, the ground
state lies completely in some eigenspace of each constraint.

7.3.1 Statement of the Structure Lemma

Intuitively, the Structure Lemma says the following. Suppose we have
two Hermitian operators A € H (X ® V) and B € H (Y ® Z) for com-
plex Euclidean spaces X, ), Z, such that A and B commute. Then, the
space ) can be sliced up in such a way, that if we focus on just one
slice ); of the space (which is claimed by the NP prover to contain the
ground state), then in this subspace A and B are completed decoupled.
Specifically, the lemma says we can write V = @, ), such that if we
restrict A and B to any one space );, the resulting operators can be
seen to act on disjoint parts of the space );, hence eliminating their
overlap. We now state the lemma more formally.

Lemma 7.4 (Structure Lemma [45]). Suppose A € H (X ®Y) and
B € H(Y ® Z) for complex Euclidean spaces X, Y, Z, and such that
[A, B] = 0. Then, one can write Y = @, );, such that for any 4, the
following two properties hold:

1. A and B act invariantly on );, and

2. Vi = Vi1 ® Vo for some Hilbert spaces );1 and Yo, such that
Aly, € H(X ® Y1) and Bly, € H (Vie® Z). In other words,
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within the subspace );, A and B act non-trivially only on Vi
and Yo, respectively.

The strength of the Structure Lemma in proofs placing variants of
commuting Hamiltonian in NP is as follows. First, note that by prop-
erty 1 above, when looking for the joint ground state |¢)) of A and B, we
can safely restrict our attention to one appropriately chosen slice 7. But
which slice 7 does [¢) live in? This is not obvious a priori; hence, we ask
the NP prover to send us the correct choice of i. Then, by restricting
A and B to space );, by property 2 above the resulting Hamiltonians
are decoupled. We can hence now easily diagonalize this system and
determine the ground state energy, thus confirming whether it is indeed
zero or bounded away from zero. Applying this idea repeatedly allows
one to place the commuting 2-local Hamiltonian problem in NP.

7.3.2 Proof of the Structure Lemma

In this section, we prove the Structure Lemma. The proof cleverly uses
basic C* algebraic techniques. We remark that readers unfamiliar with
C* algebras should not be put off; the Structure Lemma is a powerful
tool worth understanding, and to be clear, once the terminology
barrier of the C* formalism is overcome, the underlying proof is rather
intuitive and simple. For this reason, we begin by defining the basic
terminology required for the proof.

Algebra: Let A be a vector space over C. Then A is an algebra if it is
endowed with a bilinear operation - : A x A — A. In our setting, A will
be some subset of linear operators taking C* to itself, and - is simply
matrix multiplication. A Banach algebra is an associative algebra over
the real or complex numbers which is also normed and complete, i.e.
is a Banach space.

C* Algebra: To get a C* algebra, we start with a Banach algebra A
over C, and add a x-operation which has the following properties:

1. Forallz € A, x = (2*)* = 2™,

2. For all z,y € A, (zy)* = y*2* and (x + y)* = =* + y*.
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3. Forallce Cand z € A, (cx)* =cx*.

4. Forall z € A, || zz* || = ||z |

In our setting, the x-operation is simply the conjugate transpose of a
matrix.

Commutant: Let S C L ((Ck) Then, the commutant of S is defined
as
S = {x € L'((Ck) cxs = sx for all s € S}.

A few facts about commutants come in handy: S’ is a C* algebra,
S C S (known as the closure of §), and S = §’. Further, the following
holds.

Lemma 7.5. Let A BC L (Ck), and suppose for alla € Aand b € B,
we have ab = ba. Then, for all a € A” and b € B”, we have ab = ba.

Proof. Observe that B C A'. Thus, the elements in A” pair-wise com-
mute with all elements of B, as well as those in A,\B. This implies
A" C B'. But the elements of B” pairwise commute with those of B,
which in turn implies they commute with the elements of A”. O

Center: The center of algebra A is the set of all elements in A which
commute with everyone else in A, i.e. C(A) :== AN A" (recall A" is
the commutant of A). A trivial center is one which satisfies C(A) =
{cI|ceC}.

A simple application of the definition of the center yields some very
useful well-known properties for all z € A, as stated in the following
lemma.

Lemma 7.6. Let A be a C* algebra such that A C £ (X') for com-
plex Euclidean space X'. Suppose there exists M € C(A) with diag-
onalization M = >, \;II;, where A € R and II; are (not necessarily
one-dimensional) orthogonal projections. Then, any N € A has a block
diagonal structure with respect to basis {II;}, i.e. can be written

N=N;
7

where N; is an operator acting on the space II; projects onto.
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Proof. We claim that it is true that for all 4, II; € C(A); assuming this
is true, the statement of the lemma holds simply because any N € A
must now commute with each II;. To thus see that II; € C(A), note
that if M € C(A), then for any polynomial p, p(M) € C(A). Then,
defining for all j a polynomial p; such that p;(A;) = d;; completes the
proof. O

Corollary 7.7. If C* algebra A C £ (X) has a non-trivial center, then
there exists a direct sum decomposition X = @, &; such that any
M € A acts invariantly on each subspace X;.

Proof of Structure Lemma. We can now proceed with the proof of
the Structure Lemma (Lemma . As in the statement of the claim,
let Ae H(X®)Y)and B € H (Y ® Z) such that [A, B] = 0. For an
appropriate choice of operators {A;;},{Br} C £ ()), one can write

A = Dliiles gy e Lz (7.24)

B = ZIX ® (Bki)y ® |/<7><Z|Z (7.25)
kl
Question 18. Use Equations and and the fact that [A, B] =0
to conclude that for all 4, j, k, I, we have [A;;, By = 0.

Consider now algebras ﬁ and B generated by {4;;} and {By},
respectively, i.e. A = {Aw} and B = {Bkl} whose elements pairwise
commute by Lemma [7.5| Focusing first on A, assume that A has non-
trivial center. We reduce this case to one with trivial center, which
can then be solved directly. Specifically, by Corollary we can first
decompose Y = @, V; such that A acts invariantly on each );. In order
to decouple A and B, recall that our goal is to split V; = V1 ® Vi2 such
that A and B act non—tr1v1ally only on Y;1 and Yo, respectively. To this
end, let A denote A restricted to space Y;, and assume without loss
of generality that the subalgebra A; has trivial center (otherwise, we
can decompose the space further). We now apply the following lemma,
which is a standard result in the representation theory of C* algebras.
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Lemma 7.8 ([107, [45]). Let A C L£(Y) be a C* algebra with trivial
center. Then one can decompose Y = ) ® Y, such that A = L (V) ®

Iy,.

We hence obtain a decomposition ); = V;1 ® V;o such that /T, acts non-
trivially only on );1. In sum, we have thus far shown the following.

Observation 7.9. The algebra A is precisely the set of all operators
W € L (Y) which can be written as W = @,(W;)y, = @,;(W;)y,, @Iy,,.

We now use Observation ll_ﬁ] to uncover the structure of B.

Question 19. For any V € B and ); in the decomposition of ) above,
show that V acts invariantly on );. Conclude that V' can also be writ-
ten as a direct sum over spaces ), i.e. that V = @,;(V;)y,. (Hint: Use
the fact that all operators in A and B pairwise commute, and Obser-

vation [7.9])

Having answered Question we can now let B; denote B restricted
to space ;. The answer to the following question completes the proof.

Question 20. Prove that any V € B; has the form V = Iy, @ (V)y.,.
(Hint: Use the fact that all operators in A and B pairwise commute,

and Observation [7.9])

7.4 Quantum 2-SAT isin P

In this section, we discuss Bravyi’s polynomial time algorithm [38]
for the Quantum 2-SAT problem. To begin, recall that in k-
SATISFIABILITY (k-SAT), one is given as input a set of k-local con-
straints {II;} acting on subsets of k£ binary variables out of a total of n
variables 1, ..., z,. Each clause has the form

i =zin V- Vaik,

where each x;; is a literal corresponding to either a variable or its
negation. The question is whether there exists an assignment to the
variables x1,...,x, such that all II; evaluate to 1.
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The study of k-SAT has a long and rich history, which we shall
not attempt to survey here. However, as is well-known, SAT is histor-
ically the first problem to be proven NP-complete [53, 111]. Further,
its restricted version k-SAT remains NP-complete for £ > 3 [99], but is
polynomial-time solvable for k = 2 [109} 62} 25]. This raises the natu-
ral question: Can one define an appropriate quantum generalization of
k-SAT, and could this generalization also lie in P when k = 27

In 2006, Bravyi answered both these questions in the affirma-
tive [38]. Here, we define Quantum k-SAT as follows.

Definition 7.1 (Quantum 2-SAT (2-QSAT) [38]). Given a set of 2-local
orthogonal projections {II;; | 1 <1i,j,<n} acting on n qubits, does
there exist a satisfying quantum assignment, i.e. does there exist a
state |¢) € (C?)®™ such that II;;|y) = 0 for all 1 < i, j, < n?

Note that unlike in SAT, which would correspond to rank 1 projec-
tions II;;, here the projections are allowed to be arbitrary rank. Thus,
Bravyi’s definition is more accurately a generalization of 2-CSP, where
arbitrary Boolean 2-local constraints are allowed.

7.4.1 The algorithm

We now discuss Bravyi’s algorithm for 2-QSAT. We remark that
Bravyi’s original exposition involved heavy use of tensors, which are
perhaps not a typical tool in the computer scientist’s toolkit. In con-
trast, we give a different description of the algorithm in terms of local
filters [76] from entanglement theory, which, in our opinion, is arguably
more accessible to the quantum computing community.

To begin, Bravyi’s algorithm consists of three subroutines (defined
subsequently), and can be described at a high level as follows.

1. While there exists a constraint II;; of rank at least 2, run rankRe-
duction(I1;;). If the call fails, reject.

2. Run generateConstraints. If the call succeeds, return to Step 1.

3. Accept and return the output of solveSaturatedSystem.
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Roughly, rankReduction outputs a 2-QSAT instance (on a possibly
smaller number of qubits) in which all constraints are rank 1. Once
all constraints are rank 1, generateConstraints attempts to add “new”
constraints which are already implicit in the present constraint system
in an attempt to “saturate” the system. If the call succeeds, we return
to Step 1 to try to once again simplify the system. If, on the other hand,
generate Constraints fails, then we have arrived at a “saturated” system
of constraints [38]. At this point, we conclude the system is satisfiable;
indeed, solveSaturatedSystem outputs a satisfying assignment. We shall
shortly discuss each of these three procedures in greater detail.

Before doing so, however, let us compare Bravyi’s algorithm
with known classical algorithms for 2-SAT. In particular, Bravyi’s
algorithm can be thought of as a quantum generalization of Krom’s
1967 algorithm [109], which we briefly sketch now. Specifically, one first
runs a classical version of generateConstraints repeatedly, which acts
as follows: Given a pair of clauses overlapping on a bit with conflicting
literals, say (z1Vx2) and (T2 V x3), it produces a new redundant clause
(x1Vx3). If we are able to generate a pair of conflicting clauses (z; V x;)
and (7; V T;) for some i (checking for this can be seen as a classical
version of rankReduction), we conclude the instance is unsatisfiable.
Otherwise, as in Step 3 of Bravyi’s algorithm, we conclude the instance
is “saturated” and hence satisfiable, and we run a classical version
of solveSaturatedSystem, which extracts the satisfying assignment.
We now discuss the components of Bravyi’s algorithm in further depth.

rankReduction(I1;;). Given a constraint II;; of rank at least 2, act as
follows:

o If rank(Il;;) = 4, return fail, as no assignment could satisfy this
clause. This is analogous to checking in Krom’s algorithm whether
conflicting clauses (z; V z;) and (Z; V T;) have been generated.

e If rank(Il;;) = 3, the assignment to qubits 7 and j is forced to be
I —1I;;. Set this as their assignment and remove them from the
system, updating any 2-local clauses acting on ¢ or j as necessary.

e If rank(Il;;) = 2, qubits ¢ and j are allowed to live in a 2-
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dimensional subspace. Hence, combine ¢ and j into a single
merged qubit via an appropriate isometry. Update clauses act-
ing on % or j as necessary.

generateConstraints. We now give Bravyi’s quantum generalization
of Krom’s iterative procedure for generating new redundant constraints
from existing ones. Specifically, this subroutine examines all triples of
qubits {a,b, c} on which there exist clauses I, = |p)¢|,, and Il =
|6 |, and attempts to generate a new clause Ig.

To motivate the idea [38], suppose |@)ap = [)pe = [ 7), for |¢p7) =
|01) — |10) the singlet (we omit normalization for simplicity). Then,
since for two qubits I — [0~ )¢~ | projects onto the symmetric space,
it follows that any assignment |¢)) must live in the symmetric space on
qubits {a, b} and {b,c}, and hence also on {a,c}. Thus, we can safely
add the new (implicit) constraint g = [)@],,..-

Now, what if (say) |@)qs is not the singlet? Here, we use the fact
that any pure state on two qubits can be produced from the singlet via
a local filter [76]. Specifically, there exist linear operators A, C' € L (C?)
such that

|¢>ab = Aa ® Ib|¢_>ab and |¢>bc = Ib & Cc|’¢_>bc- (7'26)

Note that while local filters were originally introduced to increase the
entanglement of a previously entangled state [76] (in which case the
filter must be invertible, as otherwise one can create entanglement via
a local operation from a product state), in this setting, we are reduc-
ing entanglement using a filter; thus, A and C' in general will not be
invertible. The following is our analogue of Lemma 1 in Reference [3§].

Lemma 7.10. For |¢). and |@)pe as in Equation suppose [1)) €
(C?)®" satisfies (Y|dap) = (¥|Ppe) = 0. Then, the constraint |¢)q. =
Ay ® Celtp™) on {a,c} satisfies (¢]|dqc) = 0.

Proof. Suppose for assignment |¢) € (C2)®" that

(Y|dab) = (¥]Aa @ Lyt~ )ap = 0.

This implies that Al ® I,|1) lives in the symmetric subspace on qubits
a and b. An analogous argument implies that I, ® CJ[t) lives in the
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symmetric subspace on b and c. It follows that Al ® Ci|¢)) lives in the
symmetric subspace of both {a,b} and {b, c}, and hence also of {a, c}.
Thus, (¢|¢ac) = (V|Aq ® Celtp™) = 0, as desired. O

Remark. For the reader interested in comparing Lemma above
directly with Lemma 1 of Reference [38], the correspondence is given by
A = pet and €' = 7. This is easily seen by using the vec mapping [164]
(where roughly, vec “reshuffles” matrices into vectors) and its property
that A ® Bvec(X) = vec(AX BT).

In sum, generateConstraints applies Lemma on triples of
qubits until it generates a new clause on some pair of qubits {a,c}
which is linearly independent from existing clauses on {a,c}. If no
such clause is found, the subroutine returns fail.

solveSaturatedSystem. A saturated system of constraints is one in
which (1) all constraints are rank 1, and (2) for any triple of qubits
{a,b,c}, Lemma fails to produce a new linearly independent con-
straint on {a,c}. We now give our analogue of Lemma 2 of Refer-
ence [38], which is in turn a quantum analogue of Krom’s classical
procedure for extracting a satisfying assignment from a “saturated”
classical 2-SAT system.

Lemma 7.11. For any saturated system of constraints {II;;}, there
exists an efficiently computable product state |¢)) = @i, |¢;) with
|1h;) € C? such that TI;;[¢) = 0 for all 4, ;.

In order to prove Lemma [7.11] we first require the following.

Lemma 7.12. Let F := Y for Pauli operator Y. Then, for any A €
L (C%),
ARIlY™)y =1 ETATE[p™).

Proof. Let |¢T) = (]00) + [11))/+/2. Then,

ARIN™) = (IQENYA®E)[Y™)
= (I®EHYI®A")|p")
I® ETATE|y™),
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where the first equality follows since ETE = I, the second since I ®
ElY~) =|¢T) and A® I|¢p") = I ® AT|¢), and the third again since
I®EW™) =|¢T). O

Proof of Lemma[7.11. We give a simple deterministic polynomial time
algorithm which outputs |¢). Pick an arbitrary qubit, ¢, and set its
assignment to |0), i.e. set |1);) = |0). Now consider the neighbor set of
q1, denoted N(q1). For any ¢; € N(q1), suppose the forbidden space
is spanned by |¢1;). Then, observing that |¢;) := (¥1]¢1,;) € C? and

that (v|E|v) = 0 for any |v) € C? and where |v) denotes the entry-wise

complex conjugate of |v), it follows that (¢1,|(|¢1) ® E|¢;)) = 0. Thus,
setting |1;) = E|;) satisfies all clauses between ¢; and its neighbors.
Moreover, by Lemma [7.10, we have that any clause between distinct
qubits ¢;,q; € N(q1) is also satisfied by this assignment.

Let S denote the set of qubits whose shortest path from ¢; is pre-
cisely 2 in the interaction graph, i.e. S = N(N(q1))\(N(q1) U {q1}).
If we can now show that for all ¢; € N(¢q1) and ¢; € S, the clause
|¢i,;) is satisfied by the current assignment regardless of the assignment
on ¢;, then note that the proof is complete, as we can simply iterate
the argument above by discarding all clauses which act on qubits in
{q1 UN(q1)} and choosing a new starting vertex g; € S.

Thus, we now prove that for all ¢; € N(q1) and g; € S, (¢; ;|¢5) = 0.
Let the clauses on (1,4) and (¢, j) be given by

1) = A1 @ LIy™)  and  [¢i;) =L@ CilYT).

Then, analogous to Reference [38], the key observation is that since
(1,7) is not an edge, then by Lemma we must have AQC|yp~) = 0.

This, along with Lemma [7.12] together imply:

(bigle) = (W7 |L® CH(r] ® Ei)lera))

WL @ (W] © E)(Ar @ Llv7)))
WL @ CH(([W1] © E:)(Ii ® Bl AL E;[y7)))
(WAl ® CH (] @ Ex)g™)

(
(
=
0
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7.5 Area laws for one-dimensional gapped quantum systems

In this section, we review Arad, Kitaev, Landau and Vazirani’s combi-
natorial proof [20}, [19] of Hastings’ [88] 1D area law for gapped systems.
Specifically, we consider a 1D chain of n quantum systems governed by
a gapped local Hamiltonian H. By gapped, we mean that the difference
between the smallest and second-smallest eigenvalues of H is lower
bounded by a constant € > 0, and that the ground state is unique.

Let us begin by clarifying the statement regarding H to be proven.
First, note that the statement of an area law is simple in the 1D case,
since by definition the surface area of any contiguous region in a 1D
system must be constant (i.e. either 1 or 2). It follows that proving an
area law for 1D systems is equivalent to proving that for any 1 <1 < n,
the entanglement entropy of the ground state between particles 1,...,14
and particles ¢ 4+ 1,...,n is bounded above by a constant. Here, the
entanglement entropy is defined as the von Neumann entropy of the
reduced density matrix on particles 1, ...,7. Without loss of generality,
it suffices to fix an arbitrary cut and prove the statement there; let C
denote this cut.

High-level overview. Conceptually, the proof consists of two steps.
First, it is shown that there exists a product state with respect to cut
C which has reasonably good, i.e. constant, overlap with the ground
state of H. Second, we show how one can “transform” such a product
state to a much better approximation of the ground state without
increasing the entanglement entropy across C' too much. (Recall that
our goal is to prove that in the ground state, the entanglement entropy
across cut C' is constant.) In the proof of [20, [19], both of these steps
depend crucially on a theoretical construct called an Approximate
Ground-Space Projection (AGSP), and the bulk of the work goes into
the construction of an AGSP with sufficiently good parameters. In
contrast, we remark that Hastings’ original proof [88] also follows
the broad outline of the above two steps, but realizes them using
different physics-inspired techniques such as the Lieb-Robinson bound
or “monogamy of entanglement”-type arguments.
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For simplicity, in this review we focus on the simpler case of
frustration-free Hamiltonians. Readers interested in the proof of the
frustrated case are referred to §6 of [19].

Organization. In we first define an AGSP. Then, we show that
if a good AGSP and product state with non-trivial overlap onto the
ground state of H exist, then an area law holds (Lemma [7.13)). In
§7.5.2], we show that the existence of a good AGSP already implies a

good product state (Lemma [7.14)). Finally, §7.5.3| constructs a good
AGSP.

7.5.1 Approximate Ground-Space Projection (AGSP)

We now motivate and define an AGSP. Specifically, returning to the
second step of the high-level proof overview discussed above, we ask:
Given a product state |1proq) With non-trivial overlap with the ground
state of H, how can we map |¢prod) to a good approximation of the
ground state? One obvious idea is to apply to |tprod) the projection onto
the ground space, thus obtaining a scaled-down version of the ground
state. Unfortunately, this approach does not give us a way to bound the
amount of entanglement generated across cut C when the projection
is applied. The main idea behind an AGSP is to only approximately
project onto the ground space; in return, we obtain a rigorous bound
on how the entanglement grows with each application of the AGSP.

Definition 7.2. An operator K is said to be a (D,A)-AGSP if the
following conditions hold:

1. Ground space invariance: For any ground state |I'), K|I') =
).

2. Shrinking: If |T') is any state orthogonal to the ground space,
then K|I't) is also orthogonal to the ground space, and moreover
IEK[TH)[]? < A

3. Entanglement: The Schmidt rank of K across the given cut
is at most D. Note that the Schmidt rank of an operator A is
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defined as the smallest integer m such that A can be written in

In other words, if there exists an AGSP with good parameters, i.e. small
D and A, we can repeatedly apply it to |¢preq) until we obtain a good
approximation to the ground state. Note that although the action of
an AGSP will converge to that of the exact ground state projection as
the number of iterations goes to infinity, a finite number of iterations
reveals a delicate tradeoff between proximity to the ground state and
a bound on the entanglement entropy.

Using an AGSP with a good product state. The high-level lemma
which stitches together the various parts of the proof is the following.
In words, it says that the existence of a good AGSP and a good product
state suffices to establish an area law.

Lemma 7.13 (Arad, Landau, and Vazirani [20]). Let |T") be the ground
state of H and |¢) a product state such that |[(¢|I')] = p. Then, the
existence of a (D, A)-AGSP K implies that the entanglement entropy
S of |I') is bounded by

log 11
S<O0(1)- Tog A log D.
Proof. Let |I') = >, \i|L;) ® |R;) be the Schmidt decomposition of the
ground state |I'), where the Schmidt coefficients \; are in decreasing
order. Then, the entanglement entropy is defined as — >, A\? log A?. To
bound this quantity, we consider the family of states K*|¢). By Defini-
tion we know that these states satisfy the following two properties:

1. The Schmidt rank of K*|#) is at most D’.

2. The inner product between K¢|¢) and |TI') is at least
u/\/u2 + ANL = p?).

We now use these facts to bound the entropy in two steps. We show
the first of these steps, and guide the reader through the second step
via a sequence of questions. Our starting point is the Eckart-Young
theorem [60], which implies that the magnitude of the inner product
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between |I') and any normalized state with Schmidt rank r is upper-
bounded by the Euclidean norm of the vector of the first » Schmidt
coefficients, i.e. by (32_; A?)1/2. Therefore,

2 2

p 1
A2 > >
> P2 ETA a8 D B4 A

where the first inequality follows from the Eckart-Young theorem and
point 2 above. This implies that

2 ¢ ¢
i A A

M <1— = < — =:ps.
i;;e w2+ AL g2 AT 2

If we now choose £y = [ll‘z)gg“: 1 so that ps, < 1, it follows that the
contribution of entropy from the first D*0 Schmidt coefficients is at
most

2 2 44 log 1°
— E A log \; <log D™ = 4lylog D = O(1) - log D,
. log A
ZSDAMO

where the first inequality follows since the entropy of a (sub)normalized
d-dimensional vector is at most log d.

The next step is to bound the contribution to the entropy of the
remaining Schmidt coefficients, which the following two questions guide
the reader through.

Question 21. Show that if £ > £y, the contribution of entropy from
the (D% 4-1)-th to D>*+1_th Schmidt coefficients is at most A~ (£ —
A Y D2E+1)/(e—=Lg)
0) log =—Fx—.

Hint 6. Use the fact that Zgg;ﬁl A? < pa < py.

Question 22. Using the answer to Question [21] show that

A DS
2 2
_ 2 2 = '
E A7 log \; a 2 log

i>D*o

T

Hint 7. Use the series equality >_ ;>4 gri = =z
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Combining the two bounds we have derived, it follows that the
entanglement entropy of the ground state satisfies

log 1? A Db
loeD + ———log —.
ogA BPT A ZAR B A

S <0(1)-

Finally, note that for any k > 1, K* is a (D*, A¥)-AGSP. Moreover, if
we choose k = [—@], we can ensure that i < AF < % Substituting
DF for D and AF for A, we obtain

S<O()-k-(—logu*log D +logD —1) < O(1) -

7.5.2 Good AGSP implies a good product state

Lemma stated that to prove the area law, it suffices to have a
good AGSP along with a product state with constant overlap with the
ground state. It turns out that the former criterion actually implies the
latter, as we now show in this section via the following lemma.

Lemma 7.14. If there exists a (D, A)-AGSP K such that D - A < 1,
then there exists a product state |¢p) = |L) ® |R) whose overlap with
the ground state |I') is u = |(T'|¢)| > 1/v/2D.

Proof. We proceed by contradiction. Let |¢’) be a product state with
the maximum possible overlap p with the ground state, and assume for
sake of contradiction that p < 1/4/2D. Then, consider the state |¢) :=
K|¢')/||K|¢')||. By definition of an AGSP, the Schmidt rank of |¢) is
at most D, and therefore it can be written as |¢) = S°2 | Xi|L;) @ | R;).
It follows that

2

HKTLW = [(T|g)?
D 2
< (Z N I(TI(L) © |Ri>>)
=1
D
< Z|<T!(|Li>®!Rz’>)\2,

@
Il
—_
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where the last inequality uses the Cauchy-Schwarz inequality and the
fact that >, A\? = 1. Therefore, there exists some i such that

2 2

' Y2 M H
|<F|(|Lz>®|RZ>)‘ > D||K|¢’>||2 z D(NZ—I—A)’

where the last inequality follows from the fact that K is a (D, A)-AGSP.
However, D(y? + A) = Dp? + DA < 1 + 1 = 1, which implies that
|L;) ® |R;) has a larger overlap with the ground state than |¢’) does.
This is a contradiction, and therefore we have shown that u > 1/ V2D.

OJ

To recap, by combining Lemmas and we have the fol-
lowing theorem, which sets the stage for our final area laws section on

constructing a good AGSP (§7.5.3)).

Theorem 7.15. If there exists a (D, A)-AGSP such that D - A < 1,
the ground state entanglement entropy is bounded by O(1) - log D.

7.5.3 Constructing a good AGSP

Theorem [7.15] implies that in order to show an area law, it suffices
to construct a good AGSP. In this section, we do precisely this. For
simplicity in exposition, in this review, our exposition will attempt to
deliver the main ideas behind the construction, without overwhelming
the reader with technical details.

To begin, how does one go about constructing an AGSP, i.e. an
operator that leaves the ground state invariant and shrinks every vector
that is orthogonal to the ground state? Since the only information
regarding the ground state in our possession is the Hamiltonian H
itself, we use H as our starting point. Consider the first attempt of
K =1 — H/||H||; it is easy to check that K leaves the ground state
invariant and cuts the norm of any orthogonal state to at most 1 —
ﬁ (recall that e is the spectral gap of the given Hamiltonian). Thus,
K* for large values of k yields an AGSP with a good value of A.
Unfortunately, however, in general with this construction D will also
grow exponentially in k. Thus, this candidate AGSP does not satisfy
our required condition that D - A < %
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4 — Cs6(x)

1 it ~ 40.26

1
To(—37/36)

-1+

Figure 7.1: The polynomial Cs6(x), constructed based upon the Chebyshev poly-
nomial of the first kind.

However, this first attempt has taught us something — that we can
manipulate the spectrum of H via matrix polynomials. Namely, if we
have a polynomial f(x) that maps 0 to 1 and [e, ||H]||] to [0, A], f(H)
will be an AGSP with the shrinking factor A. The remaining task then
would be to show that f(H) has a small Schmidt rank. Naturally one
would expect that f must have a small degree, because the naive bound
on the Schmidt rank grows at least exponentially in the degree of the
polynomial.

But which f should we choose? In approximation theory, there is a
well-known family of polynomials T, called the Chebyshev polyno-
mial of the first kind, which has the following properties [3]:

1. The degree of Ty(z) is £.
2. For z € [-1,1], |Ty(z)| < 1.

3. For z > 1, Ty(z) > 12V (@-D/(@+l),

The main point is that once x passes the value 1, the polynomial begins
to increase very rapidly, giving rise to a threshold-like behavior. We will
use this behavior to address the challenge that the AGSP should have
an eigenvalue of 1 for the ground state while it should have a very

small eigenvalue for the first excited state which is only € away from
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s particles

@—cco—%—cc

Figure 7.2: Hamiltonian truncation. We focus on a segment of s particles around
the cut, denoting the multiparticle Hamiltonians to the left and right of the segment
by Hr and Hpg respectively.

the ground state in the energy spectrum. The strategy is to make the
first excited state correspond to Ty(1) and the largest eigenvector to
Ty(—1) so that all excited states have eigenvalues at most 1, while the
ground state, which will then correspond to Ty(1+y) for some small y,
has a much greater eigenvalue. Then we can renormalize the operator
so that the eigenvalue of the ground state becomes 1, as required by
the definition of an AGSP.

In other words, we construct a family of polynomials Cy by scaling
and translating Ty as follows:

||H|| +€—22 ||HI|| + €
C@(x) =1 ( Tyl —— ).
|| HI[ € | HI| -«
It is then straightforward to check that Cy(H) is an AGSP with A =
Qo4 €/ IIH]|

Unfortunately, an immediate difficulty in using the above bound on
A is that ||H|| can be very large, significantly slowing down the decay
of A. This issue can be addressed by a technique called Hamiltonian
truncation. The technique consists in picking out s particles around
the cut that we are concerned with and truncating the upper spectrum
of the other “less important” particles. More precisely, we write the
Hamiltonian as H = Hy, + H{ + ---+ Hs + Hpi as shown in Figure
and then replace Hy, and Hp by their respective truncated versions HLSt
and Hgt, where AS! denotes the matrix obtained from A by replacing
all eigenvalues greater than ¢ with ¢ and leaving the other eigenvalues
unchanged. It is clear that the resulting truncated Hamiltonian H’ has
norm bounded by s + 2t, and it can also be shown that there exists
some constant ¢ such that the spectral gap of H' remains to be Q(1)-e.
Moreover, since the Hamiltonian is frustration-free, H and H’ have the
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same (unique) ground stateﬂ This means that we can use H' in place
of H in our construction of the AGSP.

Finally, we need to show that the resulting AGSP C;(H’) has a
small Schmidt rank across the given cut. Intuitively speaking, this fol-
lows from the fact that each term in the expansion of Cy(H') is a
product of at most ¢ terms of H', and therefore on average contributes
Schmidt rank of d/(5t1) to a cut, where d is the local dimension of the
particles (there are s+ 1 possible cuts in H'). The challenge here is that
there are exponentially many terms in the expansion of Cy(H') and thus
we cannot simply sum these up. Fortunately, it is possible to circumvent
this problem by cleverly grouping the exponential number of terms into
a small number of large sums, with each sum again having small en-
tanglement. The argument uses polynomial interpolation (see Lemma
4.2 of [19]) and we end up with the bound of D = (dﬁ)o(max{g/s"/z}).

Comparing this bound with our previously derived expression A =
4e~*V¢/IIHI reveals that a suitable choice of parameters £ = O(s?)
and s = O((log”d)/e)) gives us D - A < . We conclude that, by
Theorem [7.15] there exists an area law for 1D gapped systems.

!'Note that this is the only use of the frustration-free assumption in our presen-
tation. In fact, the proof of the frustrated case also follows exactly the same outline
except that there we need a more delicate argument to prove that the ground states
of H and H’, which may now be distinct, are very close to each other. The interested
reader can refer to §6 of [19].
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