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Overall objectives and assessment of the program

Evolutionary biology is an intellectually rich field with a long history which has advanced re-
markably through a synergistic interplay between deep understanding of biology and mathematical
techniques, especially from probability and statistics. Over the past several decades, the role of
computer science in studying biology has grown enormously, and computation has now become an
indispensable part of the intellectual mix. Many current problems in evolutionary biology push the
limits of computation, and new algorithmic insights are needed to make progress.

The main objectives of the Simons Institute program on “Evolutionary Biology & the Theory
of Computing” were twofold:

1. To promote the interaction between theoretical computer scientists and researchers from the
evolutionary biology, physics, and probability and statistics communities.

2. To encourage the participants to collaborate on identifying and tackling some of the most
important theoretical and computational challenges arising from evolutionary biology.

One important tactical goal of the program was to provide theoretical computer scientists with the
opportunity to understand the fundamental concepts and key questions in evolutionary biology.

This was an ambitious program that aimed to bring together experts from diverse disciplines
and encourage interaction. The initial language barrier was not a major problem; a much bigger
challenge was bridging the gap between disparate research interests to find common goals. Most
mathematicians, statisticians and physicists participating in the program already had experience of
collaborating fruitfully with evolutionary biologists. However, the cultural difference between the-
oretical computer scientists and the rest of the program participants was bigger than anticipated.
Theoretical computer scientists prefer to work with simple models that can be understood in detail
and for which they can prove rigorous theorems which may or may not generalize to more com-
plex models. In contrast, evolutionary biologists put much more emphasis on biologically realistic
models and inference methods for analyzing data. Another observed division was at the level of
modeling. Specifically, most evolutionary biologists were focused on understanding the evolution-
ary mechanisms underlying population genetic variation, and the genetic basis of phenotypic traits
and adaptation to new environments. On the other hand, a large fraction of theoretical computer
scientists were more interested in understanding how systems evolve. Realizing these differences is
a necessary step towards bringing the two communities closer, and the Simons Institute program
provided a valuable opportunity for each community to become more aware of the other group’s
views and interests.

Despite the challenges just described, all participants found the program to be thought-
provoking, and it was largely successful at meeting the aforementioned main objectives. The pro-
gram’s Research Fellows played a pivotal role in giving life to the program throughout the semester.
Also, several junior theoretical computer scientists — especially Varun Kanade, Paul Valiant and
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Greg Valiant — deserve credit for taking part in many of the activities described below and trying
to reach out to the participants from other disciplines.

The reunion workshop (held July 27-29, 2015) provided an excellent opportunity to reflect on
the program. In particular, there was a panel discussion to highlight some of the key open prob-
lems in theoretical biology, and to discuss how to bridge better the existing gap between biology
and theoretical computer science. Paul Valiant voiced the view that the biology community is
inward-looking and that it has largely ignored previous biology-related work by theoretical com-
puter scientists. To increase impact and visibility, it was suggested that theoretical computer
scientists should try to work on problems that biologists care about, and to publish in biology
journals and have their papers peer reviewed by biologists. Furthermore, trying to tackle narrow,
well-defined problems rather than aiming at overly general, ambitious goals might be a promising
way to bring the two communities closer in the immediate future. Lastly, Chuck Langley pointed out
that biology is currently awash with data, often of poor quality, and that biologists are struggling
to process and make sense of it. Theoretical investigations that address this issue would be most
welcome, as would work that characterizes the fundamental limits of what can be learned from data.

Program activities and range of themes covered

The program started with a week-long Boot Camp, with introductory lectures given by theoret-
ical computer scientists, biologists, mathematicians and physicists. A wide range of topics were
covered, touching on the key themes of the program. Monty Slatkin’s account of the historical
development of evolutionary biology and Charles Marshall’s lectures on “The Origin and Evolution
of Life on Earth” were particularly well received. Christos Papadimitriou and Varun Kanade also
gave excellent lectures on “Computational Views of Evolution” and “Evolution as Computational
Learning” respectively; these lectures helped to clarify to the scientists from other disciplines the
key questions in evolutionary biology that are of interest to theoretical computer scientists and how
they go about thinking about them.

There were three workshops associated with the program. The first workshop was centered on
statistical inference methods and computational challenges in large-scale population genomics in
light of the recent explosion of DNA sequence data. The second workshop was closer to theoretical
computer science, showcasing the key models and theories of evolution inspired by computational
considerations, as well as highlighting research questions in evolutionary biology which might benefit
from computational insights and methodology. The third workshop focused on new directions in
probabilistic models of evolution, addressing a broad set of topics including the evolution of diseases
and pathogens. Details on the outcomes of these workshops are provided in separate reports.

Three weekly activities were organized throughout the program to facilitate the convergence
of backgrounds and research interests. A seminar series was held on Tuesdays, during which
participants from diverse areas gave talks on their research. Every Thursday afternoon, there was
an informal discussion session on “Ideas and Problems” related to evolutionary biology. Lastly,
every Friday afternoon, there was a reading group dedicated to discussing classic and recent papers
relevant to the main themes of the program. These activities encouraged participants to interact
with each other on a daily basis, exchange ideas, and help each other learn complementary subjects.
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Notable successes of the program

There were several notable research results that arose during and as a direct consequence of the
interaction between the participants of the program, a few of which are highlighted below. In the
following summaries, program participant names are shown in boldface when mentioned for the
first time.

The hypercycle and speed of evolution: In 1978 Manfred Eigen along, with Peter Schuster,
proposed a theory for the chemical origin of life — the hypercycle. The hypercycle is a continuous-
time dynamical system where the rate of change of a type in a population depends not only on its
concentration in the population, but also on a set of predecessors, which makes the equations have
degree two or higher. Surprisingly, such dynamical systems neither have stable fixed points nor are
they chaotic when there are more than four types. It was conjectured by Eigen and Schuster, and
later proved by Hofbauer et al., that for more than four types, the dynamical system converges to a
limit cycle in the interior of the simplex. This “existence” theorem is rather remarkable as it implies
that the dynamical system is “well-behaved,” since there is chaos in three or more dimensions.
Indeed, the proof relies on the famous Poincaré-Bendixson theorem, which rules out chaos in two
dimensions, implying that the dynamical systems arising in the hypercycle are effectively two-
dimensional. The natural question about the time it takes to converge to the limit cycle remained
a gaping hole in this literature for a good reason: we had no computational understanding of the
Poincaré-Bendixson theorem. During the program, Nisheeth Vishnoi (EPFL) and Christos
Papadimitriou (UC Berkeley) collaborated to investigate the computational complexity of the
Poincaré-Bendixson theorem, and have resolved the computational complexity of this problem [81].
They also introduced the notion of an “approximate cycle” and proved an approximate Poincaré-
Bendixson theorem guaranteeing that some orbits come very close to forming a cycle in the absence
of approximate fixed points, a surprising fact that holds in all dimensions. However, the original
question that they started with — i.e., can the limit cycle of the hypercycle (that is to say, life!)
be approached in polynomial time? — remains open.

In the bigger scheme of understanding evolution and how life could have originated, Vishnoi
has also been working on understanding the mixing time of stochastic evolutionary dynamics in
finite populations. Such processes lie at the core of evolution and in the recent past (e.g., the
stochastic version of Eigen’s quasispecies model) have been used to model viral populations from
the viewpoint of mutagenic drug design. Here, the time it takes for the population to reach a
steady state is important both for the estimation of the steady-state structure of the population, as
well as for determining the duration and strength of drug treatment. During the program, Vishnoi
completed an important first paper on this problem where he proved that in the case of two
genotypes, the underlying Markov chain mixes rapidly. More importantly, he made a connection
with a discrete time dynamical system that is interesting in its own right [111]. To make progress on
the general problem of proving rapid mixing when there are more than two genotypes, Vishnoi and
graduate student Piyush Srivastava (UC Berkeley) collaborated extensively during the program,
and developed a series of observations and understood obstacles in extending Vishnoi’s previous
results. Following the program, along with Ioannis Panageas, they were able to make use of
the observations made during the program to prove a rapid mixing result for a broad class of
such dynamics, thus resolving the central problem [79]. Technically, their result relies on a novel
connection between Markov chains arising in such evolutionary dynamics and dynamical systems
on the simplex. More generally, their result sheds light on how quickly life could have evolved.

Consistency of phylogenetics methods: Several theoretical problems in phylogenetics were fruit-
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fully tackled during the program. One particularly important problem is reconstructing the an-
cestral state of a phylogenetic tree given the information about the state at the leaves of the tree.
There are two very natural algorithms for accomplishing this: (i) maximum parsimony, which min-
imizes the number of state changes required to explain the data; and (ii) majority rule, which
simply picks the majority among the states at the leaves of the tree. As one can construct specific
trees on which one method outperforms the other, it would be useful to study the performance
of these methods on random trees generated under widely-used evolutionary models. Mike Steel
(University of Canterbury, New Zealand) spent a very productive month at the Institute where
he initiated, completed, and submitted a paper with Elchanan Mossel (UC Berkeley) which
addressed this problem. Using tools from probability theory such as coupling and the reflection
principle, they were able to show that the majority rule is more accurate than maximum parsimony
at reconstructing the state of an ancestor when evolutionary trees are drawn from the Yule model
[73]. Steel also initiated and completed a new research project with Sebastien Roch (University
of Wisconsin) on the consistency of multi-locus methods in phylogenetics [96]. More specifically,
they studied a widely-used method known as concatenation which involves, as the name suggests,
concatenating the sequences from a number of genes into a super-gene and pretending as if all the
nucleotides in the entire super-gene arose independently according to a mutational process on a
single phylogenetic tree. They showed formally that this procedure can lead to serious statistical
issues. In particular, they proved rigorously that maximum likelihood estimation on concatenated
data can be guaranteed to reconstruct an erroneous evolutionary history. Roch also initiated a
new collaboration with Constantinos Daskalakis (MIT) on the effect of lateral gene transfer
(LGT) in phylogenomic studies. LGT is problematic because it introduces cross-edges in what
would otherwise be a tree structure across species, making the reconstruction of phylogenetic trees
significantly more challenging. In previous work with Sagi Snir, Roch had shown that, under the
assumption that LGT occurs at random along the tree of life, one can still recover the “tree signal”
from the data in the presence of high levels of LGT. Daskalakis and Roch improved this result dur-
ing the program by obtaining matching (up to constants) upper and lower bounds on the amount
of LGT that is tolerable for reconstruction, and a manuscript on this work is in preparation [26].
The program also gave Roch a chance to complete an earlier project with Mossel on studying the
trade-off between the number of loci and the length of each locus that is necessary to reliably re-
construct a species tree from a given fixed amount of sequence data. They showed that for a fixed
amount of sequence data, it is always better to have a large number of short genes rather than a
smaller number of longer genes [72].

Demographic inference from allele frequency data: One of the fundamental problems in evolu-
tionary biology involves understanding the impact of population demography on the distribution
of allele frequencies in the population. Much research activity is currently centered on inferring
the population demography from the frequency of alleles in large genome samples drawn from the
population. Despite the popularity of frequency spectrum-based inference methods, currently little
is known about the information-theoretic limit on the estimation accuracy as a function of sample
size. While previous work [8] — by program organizer Yun Song and Research Fellow Anand
Bhaskar (UC Berkeley), revised during the program — has shown that one can uniquely recover
details of the historical population demography given perfect allele frequency information (which
is akin to having data from infinitely many sites in the genome), in practice, the finite length
of the genome introduces sampling variance that can make it difficult to precisely infer details
about historical population demography solely based on allele frequency data. To investigate this
issue theoretically, Yun Song and program participant Jonathan Terhorst (UC Berkeley) initi-
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ated a project during the program and showed that allele frequency data are not very informative
about the deep history of populations [104]. In particular, if the population size has undergone a
constriction in the past, say due to a migration bottleneck, the minimax error in estimating the
historical population size at times more ancient than the bottleneck is at least O(1/ log s), where
s is the number of independent polymorphic sites used in the analysis. This rate is exponentially
worse than known convergence rates for many classical estimation problems in statistics. Another
surprising aspect of their theoretical bound is that it does not depend on the number of sampled
individuals. This means that, for a fixed number s of polymorphic sites considered, using more
individuals does not help to reduce the minimax error bound. Also during the program, Anand
Bhaskar, Yun Song and Sebastian Roch initiated a collaboration to study the geometry of the
distribution of allele frequencies in a genomic sample and characterize its dependence on the un-
derlying population demographic model. They have several novel and unexpected results about
the limits of demographic inference from allele frequency data that apply to any inference algorithm.

Assortative mating in human populations: A standard assumption in most population genetic
analyses is that populations are well-mixed and individuals mate randomly. While this assumption
is made for mathematical and computational convenience, little work has been done to study
the extent to which this violation is violated in practice. During the program, Research Fellows
James Zou (Harvard University) and Sriram Sankararaman (Harvard University) initiated
a collaboration and realized that publicly available genomic data could be used to answer this
question. Initially they found that, in admixed populations such as African-Americans and Latinos,
the maternal and paternal genomes of an individual are significantly more similar than that of
random couples. To understand this observation, they needed to infer the ancestries of the parents of
an individual from the genotype of the individual. These ancestries can then be used to quantify the
propensity for assortative (i.e., non-random) mating and to identify genetic loci that could mediate
these patterns. Together with long-term participant Eran Halperin (Tel Aviv University), they
developed a statistical model and method to estimate the genome-wide ancestral contributions of
each parent of an admixed individual from the individual’s genomic data [122]. The statistical
model employed in this work consists of a pooled semi-Markov process and is related to factorial
hidden Markov models. There are interesting statistical questions about efficient inference in these
models, since the combinatorial constraints of the pooling make standard variational inference
inapplicable.

To apply this model to better understand genomic data, they collaborated with groups at UCSF
who had collected genotype and socio-economic data of Mexican and Puerto Rican individuals. By
jointly analyzing the socio-economic and genomic data, they have been able to infer the relative
contributions of genetic vs. socio-economic factors to non-random mating, and to identify specific
subsets of the genome that are associated with these patterns of assortative mating [123]. They
have found that genomic ancestry is a major factor in determining mating patterns, much more
so than education level and other socio-economic factors. This project also involved collaboration
with long-term participants Yun Song and Eran Halperin.

This line of work has helped to characterize the extent of non-random or assortative mating in
human populations and has clearly underlined the importance of moving beyond the traditional
assumptions of random mating in population genetics models. Taking this thread of research fur-
ther, Halperin and Noah Zaitlen (UCSF) have been developing population genetic theory that can
better account for assortative mating. In particular, they have found that estimation of parameters
such as migration rates, recombination rates, and the dates of admixture are all affected by assor-
tative mating, and they have derived analytic formulas to infer these parameters from sequence
data under assortative mating models.
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Other research highlights of the program

Nayantara Bhatnagar (University of Delaware) initiated a collaboration with Erick Matsen
and Robert Bradley from the Fred Hutchinson Cancer Research Center [10]. They are looking
at statistical barriers to sequence alignment, in particular giving statistical explanations for the
barrier encountered by most commonly used alignment programs in the “twilight zone” of sequence
identity.

Research Fellow Iain Mathieson (Harvard) started a collaboration with Ken Wachter, pro-
fessor of Demography at Berkeley. They are looking at the effect of genetic load on cognitive
function and morbidity in the elderly. Wachter (along with Steve Evans and David Steinsalz)
has done some theoretical work on this topic and has access to some suitable cohorts to investigate
empirically. The plan is that they will directly test for an effect in these cohorts.

The program allowed Gerton Lunter (University of Oxford) to meet for the first time David
Patterson of the Computer Science Division at Berkeley, to discuss a common benchmarking strat-
egy for variant identification in genomics data. This visit culminated in their both participating
in the Global Alliance for Genomics and Health (GA4GH, http://genomicsandhealth.org), in
particular the Benchmarking and Reference Variation task teams, to develop common standards
and protocols aimed at facilitating the exchange of genetics information.

David Tse (Stanford) had discussions with Yun Song and Anand Bhaskar that formed the seed
for a project on developing algorithms for geographical localization of individuals from genotype
data, and using such information to correct for spurious associations due to population stratification
in genome-wide association studies. This project began in earnest during the Spring 2015 program
on Information Theory at the Simons Institute (organized by Tse).

Eleazar Eskin (UCLA) collaborated with Eran Halperin and James Zou to develop statistical
techniques to deconvolve multiple cell types in epigenetic data. Their work provides a new capability
for analyzing such data without the need for expensive reference panels.

Oskar Hallatschek (UC Berkeley) started a collaboration with Joachim Hermisson (Uni-
versity of Vienna) on adaptation in a spatially structured population and its consequences for the
site frequency spectrum. Hermisson also initiated a collaboration with Peter Pfaffelhuber (Uni-
versity of Freiburg) to derive analytical results for the frequency of soft selective sweeps in spatially
structured populations [44].

Paul Valiant led a popular open problems session where he demonstrated the challenges of
simulating evolution on a computer through his attempts to evolve agents that can play Go. Agents
receive a reward (fitness) based on their moves and can make local changes (mutations) to their
algorithm.

Impact of the program on the participants

Several participants, especially the Research Fellows, benefited significantly from the program, by
being given a chance to meet scientists from several fields and at various stages of their career. The
daily tea time at the institute provided an informal yet structured setting where participants could
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get together and talk about their work. Several participants also noted that the ample coffee breaks
during the week-long workshops were a big success in letting people follow up on the discussions
that arose during the preceding workshop talks, and several collaborations arose spontaneously
over these discussions.

Over the course of the program, the computer science theory community gained a more so-
phisticated understanding of the biological complexities of evolution due to exposure to ideas from
other communities. The effects of this became evident, for example, in the work of theoretical
computer scientist Vishnoi [111], which rigorously studies the mixing time of a very realistic and
complicated Markov chain that commonly arises in evolutionary genetic models. The program
can be viewed as a successful and important first step towards developing non-trivial connections
across interdisciplinary boundaries in the study of evolution; it is to be hoped that the momentum
initiated by the program will lead to a deepening of these connections over time.
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