How SGD Can Succeed Despite Non-Convexity and Over-Parameterization

Amir Globerson, Tel Aviv University and Google
Deep Learning

• Highly expressive non-linear models.

• Standard usage protocol:
 • Collect large training sets
 • Design large models
 • Train using SGD and GPUs
Key Problems

- **Non convexity**: high dimensional non-convex optimization. NP hard.

- **Overfitting**: Typically more parameters than data points. Overfits in the worst case (VC bounds).

- **Design**: Which architecture should we use for a given problem?
Outline

• A case where optimization is global (ICML 17)

• A case where large models generalize (ICLR 18)

• Design principles for architectures (ICML 18)
Globally Optimal ConvNets with Gaussian Inputs

ICML 17, with Alon Brutzkus
The Optimization Challenge

- Show a setting where GD/SGD successfully optimizes a non-linear neural-net

- Much progress on “linear” neural nets (Ma, Kawaguchi, Srebro and others)

- Nice early example: Baum’s algorithm for intersection of half spaces works for symmetric distributions.
Our Main Results

• A simple model of a convolutional layer, where:

 • Learning with arbitrary inputs is hard

 • Learning with Gaussian inputs is tractable using gradient descent.
The non overlap model

- Formally: \(f(x; w) = \frac{1}{k} \sum_{i} \sigma (w \cdot x[i]) \)

- \(k \) is the number of hidden units.
The Learning Problem

- Consider the “realizable” case
- Input features \(\mathbf{x} \) generated by some distribution \(D \).
- Output \(y \) produced using “true” weights \(\mathbf{w}^* \)
- Goal is to minimize squared loss:

\[
\ell(\mathbf{w}) = \mathbb{E}_{\mathbf{x} \sim D} \left[(f(\mathbf{x}; \mathbf{w}) - f(\mathbf{x}; \mathbf{w}^*))^2 \right]
\]
Distributional Dependent Tractability

• Optimizing non-overlap models is worst case hard.

• Need to make assumptions on data generating distribution.

• Here we study the case where X_i correspond to independent standard normal variables.

• Denote this by G.
Gaussian Inputs

• A useful integral from Cho and Saul [2009]:

\[
\mathbb{E}_G [\sigma(u \cdot x)\sigma(v \cdot x)] = \frac{1}{2\pi} \|u\| \|v\| \left(\sin \theta_{u,v} + (\pi - \theta_{u,v}) \cos \theta_{u,v} \right)
\]

• Where \(\theta_{u,v} \) is the angle between the vectors.

• Denote this by \(g(u,v) \). Expected loss:

\[
\ell(w) = \mathbb{E}_G \left[(f(x; w) - f(x; w^*))^2 \right]
\]

\[
= \frac{1}{k^2} \left[\gamma \|w\|^2 - 2kg(w, w^*) - 2\beta \|w\| \|w^*\| \right]
\]
Convergence of GD

- The Gaussian loss has the following critical points:
 - Non differentiable max at zero
 - Global min at w^*
 - Degenerate saddle point at $-\alpha w^*$

- GD will converge in $O(\epsilon^{-2})$
Networks with Overlap

• Can show that local minima emerge.

• But, random initialization seems to find global optimum with high probability

• Analysis left for future work.
Other Results for Gaussians

- Du et al., “Gradient Descent Learns One-hidden-layer CNN: Don’t be Afraid of Spurious Local Minima”, 2017. [Training two layers]

- Ge et al., Learning One-hidden-layer Neural Networks with Landscape Design, 2017

- Safran & Shamir. “Spurious Local Minima are Common in Two-Layer ReLU Neural Networks”, 2017 [Local minima exist for fully connected]

- Soltanolkotabi et al., Theoretical insights into the optimization landscape of over-parameterized shallow neural networks, 2017
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data

ICLR 18, with Alon Brutzkus, Eran Malach and Shai Shalev-Shwartz
Optimization/Generalization Challenge

- Show case where SGD applied to a large neural net:
 - Optimizes successfully
 - Achieves low generalization error
 - Several recent works show optimization for large networks (e.g., Soltanolkotabi, Soudry).
 - But generalization not guaranteed.
The Linear Case

- Assume data is generated by some linear classification rule.
- No other distributional assumptions.
- Model is a one hidden-layer network, with \textit{leaky ReLU} activation, and $2k$ hidden neurons.
- Assume only first layer is trained, and second layer is fixed to $\{-1,1\}$ weights.
Understanding the Linear Case

• **Perceptron** solves it!

• But can SGD on neural net find a solution?

• If SGD finds a good solution, will it generalize well?

• Prior work analyzes optimization landscape, but does not derive such results (e.g., Auer et al. 96, Gori & Tesi 92, Frasconi 97, Nguyen & Hein 17).
Our Results

• **Optimization**: SGD finds a zero error solution.

• **Generalization**: Guaranteed independent of k.

• **ReLU**: Can fail.
Leaky ReLU

• Activation: \(\sigma(x) = \max(x, \alpha x) \)

• Avoids the “Dead ReLU” problem

• Needed in our analysis.
Notation

• Weights at time t:

$$W_t = [w_t^{(1)}, \ldots, w_t^{(k)}, u_t^{(1)}, \ldots, u_t^{(k)}]$$

• Network output:

$$f(x; W) = \sum_{i=1}^{k} \sigma(w^{(i)} \cdot x) - \sum_{i=1}^{k} \sigma(u^{(i)} \cdot x)$$
Separability Assumption

• Assume \((x, y) \sim \mathcal{D}\) where: \(yw^* \cdot x \geq 1\)

• So one ERM solution is (up to scale):
 \[W^* = [w^*, \ldots, w^*, -w^*, \ldots, -w^*]\]
Algorithm

• Use simple SGD on hinge loss:

\[\ell(W) = \frac{1}{n} \sum_{i=1}^{n} [1 - y_i f(x_i; W)]_+ \]

• Fixed step size \(\eta \)

• Arbitrary initialization
Expressivity

- Consider $kd\geq n$ case.
- Zero training error “almost” always possible (e.g., Soudry et al. 17).
- Hence overfitting is a real problem.
- So perfect optimization does not guarantee good test error.
Optimization

• SGD converges to a global minimum after the following number of non-zero updates:

\[O \left(\frac{\|w^*\|^2}{\alpha^2} \right) \text{ Independent of } k. \]

• Proof similar to perceptron:

 • Show \(W_t \cdot W^* \) increases

 • Show \(\|W_t\|^2 \) does not increase by much.

 • Use Cauchy Schwartz to get bound on update, independent of number of hidden units.
Generalization

• Learned model only uses a fixed size subset of training data

• Can use a compression bound (Littlestone & Warmuth 86)

• Conclude that test error is: $O\left(\frac{\|w^*\|_2^2}{n} \log \frac{n}{\delta}\right)$

• Independent of k
ReLU

• There always exist bad local minima
• Can construct cases where SGD fails

• **Positive:** can construct a case where for large enough network, SGD converges globally.

• **Idea:** large network overcomes dead ReLUs.
Experiments

- Binary MNIST with 4000.
- Over-parameterized regime shows no over-fitting.

![Graphs showing training and test error over epochs for different numbers of hidden neurons.](image)
Thoughts on Inductive Bias

• Our results suggests that SGD “likes” linear nets.

• “All else being equal” SGD will converge to a linear rule (roughly)

• What is the right generalization:
 • Minimal rank/trace norm (Ma, Srebro)?
Network Design for Structured Prediction

Data from Visual Genome dataset

with Roei Hertzig, Moshiko Raboh, Gal Chechik, Jonathan Berant and Nataly Brukhim
Choosing Architectures

• How can we choose a good neural architecture for a given task?
Invariance and Architectures

• Suppose you know that the true mapping has some invariances.

• Then it would be nice if the architecture has the same invariances.

• Otherwise we’re just wasting parameters!

• Recently used in DeepSets (Zaheer et al. 17) but also discussed for graph based deep learning (Gilmer et al. 17, Dai et al. 17).

• How can this be applied to scene graphs?
Scene Graphs Generation

- Scene graph prediction is a “structured-prediction” problem (see Taskar 05).
- Namely, it has a complex and structured output.
Context is Key!

- A scene interpretation must make sense as a whole.
- Allows us to rule out explanations that are locally plausible but don’t make sense globally.
- Structured prediction models (e.g., CRF, M^3N) can capture this.
Typical Structured Prediction Architecture
Deep Structure Prediction Architecture

• The black box is often a message passing algorithm like belief propagation.

• But what if we want something more general?

• Which constraints should it satisfy?

• It should be invariant to permutations of the input representation.
Invariant Structured Prediction

• We cast the desired invariance formally.

• Prove that it is satisfied **if and only if the architecture has a certain form** (specifically, it should be pooled in a certain way).

• This restricts the architecture but leaves much room for play, significantly extending message passing algorithms (e.g., with **attention**).
Results on Visual Genome

• Evaluated by returning 100 triplets and calculating recall w.r.t. ground truth.
Predict and Constrain

• Often want the solution y to satisfy property $f(y) = c$

• e.g., not more than 5 tables in image

• Value c may depend on input

\[\rightarrow f(y) = c \rightarrow \text{Constrained Opt.} \rightarrow y: f(y) = c \]

• Can be trained end-to-end (ICML 18)
Conclusions

• Optimization guarantees possible under distribution assumptions

• Generalization guarantees possible for linear case

• Design principles for complex labeling tasks

• What are optimization/generalization guarantees for these?