How SGD Can Succeed Despite Non-Convexity and Over-Parameterization

Amir Globerson, Tel Aviv University and Google

Deep Learning

- Highly expressive non-linear models.
- Standard usage protocol:
 - Collect large training sets

• Design large models

• Train using SGD and GPUs

Key Problems

• **Non convexity**: high dimensional non-convex optimization. NP hard.

• **Overfitting**: Typically more parameters than data points. Overfits in the worst case (VC bounds).

Design: Which architecture should we use for a given problem?

Outline

• A case where optimization is global (ICML 17)

• A case where large models generalize (ICLR 18)

• Design principles for architectures (ICML 18)

Globally Optimal ConvNets with Gaussian Inputs

ICML 17, with Alon Brutzkus

The Optimization Challenge

- Show a setting where GD/SGD successfully optimizes a non-linear neural-net
- Much progress on "linear" neural nets (Ma, Kawaguchi, Srebro and others)
- Nice early example: **Baum's algorithm** for intersection of half spaces works for *symmetric distributions*.

Our Main Results

- A simple model of a convolutional layer, where:
 - Learning with arbitrary inputs is hard
 - Learning with Gaussian inputs is tractable using gradient descent.

The non overlap model

• Formally:
$$f(\boldsymbol{x}; \boldsymbol{w}) = \frac{1}{k} \sum_{i} \sigma \left(\boldsymbol{w} \cdot \boldsymbol{x}[i] \right)$$

• k is the number of hidden units.

The Learning Problem

- Consider the "realizable" case
- Input features **x** generated by some distribution **D**.
- Output y produced using "true" weights $oldsymbol{w}^*$
- Goal is to minimize squared loss:

$$\ell(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[\left(f(\boldsymbol{x};\boldsymbol{w}) - f(\boldsymbol{x};\boldsymbol{w}^*)\right)^2\right]$$

Distributional Dependent Tractability

- Optimizing non-overlap models is worst case hard.
- Need to make assumptions on data generating distribution.
- Here we study the case where X_i correspond to independent standard normal variables.
- Denote this by G.

Gaussian Inputs

• A useful integral from Cho and Saul [2009]:

$$\mathbb{E}_{\mathcal{G}}\left[\sigma(\boldsymbol{u}\cdot\boldsymbol{x})\sigma(\boldsymbol{v}\cdot\boldsymbol{x})\right] = \frac{1}{2\pi} \left\|\boldsymbol{u}\right\| \left\|\boldsymbol{v}\right\| \left(\sin\theta_{\boldsymbol{u},\boldsymbol{v}} + \left(\pi - \theta_{\boldsymbol{u},\boldsymbol{v}}\right)\cos\theta_{\boldsymbol{u},\boldsymbol{v}}\right)$$

- Where $\theta_{\boldsymbol{u},\boldsymbol{v}}$ is the angle between the vectors.
- Denote this by g(**u**,**v**). Expected loss:

$$\ell(\boldsymbol{w}) = \mathbb{E}_{\mathcal{G}} \left[(f(\boldsymbol{x}; \boldsymbol{w}) - f(\boldsymbol{x}; \boldsymbol{w}^*))^2 \right]$$
$$= \frac{1}{k^2} \left[\gamma \|\boldsymbol{w}\|^2 - 2kg(\boldsymbol{w}, \boldsymbol{w}^*) - 2\beta \|\boldsymbol{w}\| \|\boldsymbol{w}^*\| \right]$$

Convergence of GD

- The Gaussian loss has the following critical points:
 - Non differentiable max at zero
 - Global min at w^*

• Degenerate saddle point at $-\alpha w^*$

• GD will converge in $O(\epsilon^{-2})$

Networks with Overlap

- Can show that local minima emerge.
- But, random initialization seems to find global optimum with high probability
- Analysis left for future work.

Other Results for Gaussians

- Du et al., "Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima", 2017. [Training two layers]
- Zhong et al., "Recovery Guarantees for One-hidden-layer Neural Networks", 2017. [Fully connected]
- Ge et al., Learning One-hidden-layer Neural Networks with Landscape Design, 2017
- Safran & Shamir. "Spurious Local Minima are Common in Two-Layer ReLU Neural Networks", 2017 [Local minima exist for fully connected]
- Goel & Klivans. "Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks", 2017 [Weaker distribution assumptions]
- Soltanolkotabi et al., Theoretical insights into the optimization landscape of over-parameterized shallow neural networks, 2017

SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data

ICLR 18, with Alon Brutzkus, Eran Malach and Shai Shalev-Shwartz

Optimization/Generalization Challenge

- Show case where SGD applied to a **large** neural net:
 - Optimizes successfully
 - Achieves low generalization error
- Several recent works show optimization for large networks (e.g., Soltanolkotabi, Soudry).
- But generalization not guaranteed.

The Linear Case

- Assume data is generated by some linear classification rule.
- No other distributional assumptions.

 Model is a one hidden-layer network, with leaky ReLU activation, and 2k hidden neurons.

 Assume only first layer is trained, and second layer is fixed to {-1,1} weights.

Understanding the Linear Case

- **Perceptron** solves it!
- But can SGD on neural net find a solution?
- If SGD finds a good solution, will it generalize well?
- Prior work analyzes optimization landscape, but does not derive such results (*e.g., Auer et al. 96, Gori & Tesi 92, Frasconi 97, Nguyen & Hein 17*).

Our Results

- **Optimization**: SGD finds a zero error solution.
- Generalization: Guaranteed independent of k.
- **ReLU**: Can fail.

Leaky ReLU

- Activation: $\sigma(\boldsymbol{x}) = \max(\boldsymbol{x}, \alpha \boldsymbol{x})$
- Avoids the "Dead ReLU" problem
- Needed in our analysis.

Notation

• Weights at time t:

 $W_t = [w_t^{(1)}, \dots, w_t^{(k)}, u_t^{(1)}, \dots, u_t^{(k)}]$ Input Hidden Output laver laver laver • Network output: $f(\boldsymbol{x}; W) = \sum^{k} \sigma(\boldsymbol{w}^{(i)} \cdot \boldsymbol{x}) - \sum^{k} \sigma(\boldsymbol{u}^{(i)})$

$$\cdot x)$$

$$w_t^{(1)}$$

$$w_t^{(k)}$$

$$u_t^{(1)}$$

$$u_t^{(1)}$$

$$u_t^{(k)}$$

$$u_t^{(k)}$$

Separability Assumption

- Assume $(\boldsymbol{x},y) \sim \mathcal{D}$ where: $y \boldsymbol{w}^* \cdot \boldsymbol{x} \geq 1$
- So one ERM solution is (up to scale):

$$W^* = [\boldsymbol{w}^*, \dots, \boldsymbol{w}^*, -\boldsymbol{w}^*, \dots, -\boldsymbol{w}^*]$$

Algorithm

• Use simple SGD on hinge loss:

$$\ell(W) = \frac{1}{n} \sum_{i=1}^{n} [1 - y_i f(\boldsymbol{x}_i; W)]_+$$

- Fixed step size η
- Arbitrary initialization

Expressivity

- Consider kd>n case.
- Zero training error "almost" always possible (e.g., Soudry et al. 17).
- Hence overfitting is a real problem
- So perfect optimization does not guarantee good test error.

Optimization

• SGD converges to a global minimum after the following number of non-zero updates:

$$O\left(rac{\|m{w}^*\|_2^2}{lpha^2}
ight)$$
 Independent of k.

- Proof similar to perceptron:
 - Show $W_t \cdot W^*$ increases
 - Show $||W_t||_2^2$ does not increase by much.
 - Use Cauchy Schwartz to get bound on update, independent of number of hidden units.

Generalization

- Learned model only uses a fixed size subset of training data
- Can use a compression bound (Littlestone & Warmuth 86)
- Conclude that test error is: O

$$\left(\frac{\|\boldsymbol{w}^*\|_2^2}{n}\log\frac{n}{\delta}\right)$$

Independent of k

ReLU

- There always exist bad local minima
- Can construct cases where SGD fails
- **Positive:** can construct a case where for large enough network, SGD converges globally.
- Idea: large network overcomes dead ReLUs.

Experiments

- Binary MNIST with 4000.
- Over-parameterized regime shows no over-fitting.

Thoughts on Inductive Bias

- Our results suggests that SGD "likes" linear nets.
- "All else being equal" SGD will converge to a linear rule (roughly)
- What is the right generalization:
 - Minimal rank/trace norm (Ma, Srebro)?

Data from Visual Genome dataset

Network Design for Structured Prediction

with Roei Hertzig, Moshiko Raboh, Gal Chechik, Jonathan Berant and Nataly Brukhim

Choosing Architectures

 How can we choose a good neural architecture for a given task?

Invariance and Architectures

Suppose you know that the true mapping has some invariances.

- Then it would be nice if the architecture has the same invariances.
- Otherwise we're just **wasting parameters**!
- Recently used in DeepSets (Zaheer et al. 17) but also discussed for graph based deep learning (Gilmer et al. 17, Dai et al. 17).
- How can this be applied to scene graphs?

Scene Graphs Generation

- Scene graph prediction is a "structured-prediction" problem (see Taskar 05).
- Namely, it has a complex and structured output.

Context is Key!

- A scene interpretation must make sense as a whole
- Allows us to rule out explanations that are locally plausible but don't make sense globally.
- Structured prediction models (e.g., CRF, M³N) can capture this.

Typical Structured Prediction Architecture

Deep Structure Prediction Architecture

- The black box is often a message passing algorithm like belief propagation.
- But what if we want something more general?
- Which constraints should it satisfy?
- It should be invariant to permutations of the input representation.

Invariant Structured Prediction

- We cast the desired invariance formally.
- Prove that it is satisfied if and only if the architecture has a certain form (specifically, it should be pooled in a certain way).
- This restricts the architecture but leaves much room for play, significantly extending message passing algorithms (e.g., with **attention**).

Results on Visual Genome

• Evaluated by returning 100 triplets and calculating recall w.r.t. ground truth.

Predict and Constrain

- Often want the solution y to satisfy property f(y)=c
- e.g., not more than 5 tables in image
- Value c may depend on input

• Can be trained end-to-end (ICML 18)

Conclusions

- Optimization guarantees possible under distribution assumptions
- Generalization guarantees possible for linear case
- Design principles for complex labeling tasks
- What are optimization/generalization guarantees for these?

