
How SGD Can Succeed
Despite Non-Convexity

and Over-Parameterization

Amir Globerson, Tel Aviv University and Google

Deep Learning
• Highly expressive non-linear models.

• Standard usage protocol:

• Collect large training sets

• Design large models

• Train using SGD and GPUs

Key Problems
• Non convexity: high dimensional non-convex

optimization. NP hard.

• Overfitting: Typically more parameters than data
points. Overfits in the worst case (VC bounds).

• Design: Which architecture should we use for a
given problem?

Outline
• A case where optimization is global (ICML 17)

• A case where large models generalize (ICLR 18)

• Design principles for architectures (ICML 18)

Globally Optimal ConvNets
with Gaussian Inputs

ICML 17, with Alon Brutzkus

The Optimization Challenge
• Show a setting where GD/SGD successfully

optimizes a non-linear neural-net

• Much progress on “linear” neural nets (Ma,
Kawaguchi, Srebro and others)

• Nice early example: Baum’s algorithm for
intersection of half spaces works for symmetric
distributions.

Our Main Results
• A simple model of a convolutional layer, where:

• Learning with arbitrary inputs is hard

• Learning with Gaussian inputs is tractable using
gradient descent.

The non overlap model

• Formally:

w

ReLU

+

y

x
w w

f(x;w) =
1

k

X

i

� (w · x[i])

• k is the number of hidden units.

The Learning Problem
• Consider the “realizable” case

• Input features x generated by some distribution D.

• Output y produced using “true” weights

• Goal is to minimize squared loss:

w⇤

`(w) = Ex⇠D

h
(f(x;w)� f(x;w⇤))2

i

Distributional Dependent Tractability

• Optimizing non-overlap models is worst case hard.

• Need to make assumptions on data generating
distribution.

• Here we study the case where Xi correspond to
independent standard normal variables.

• Denote this by G.

Gaussian Inputs
• A useful integral from Cho and Saul [2009]:

• Where is the angle between the vectors.✓u,v

• Denote this by g(u,v). Expected loss:
`(w) = EG

⇥
(f(x;w)� f(x;w⇤))2

⇤

=
1

k2

h
�kwk2 � 2kg(w,w⇤)� 2� kwk kw⇤k

i

EG [�(u · x)�(v · x)] = 1

2⇡
kuk kvk

sin ✓u,v +

⇣
⇡ � ✓u,v

⌘
cos ✓u,v

!

Convergence of GD
• The Gaussian loss has the following critical points:

• Non differentiable max at zero

• Global min at

• Degenerate saddle point at

w⇤

�↵w⇤

w⇤

�↵w⇤

• GD will converge in O(✏�2)

Networks with Overlap
• Can show that local minima

emerge.

• But, random initialization
seems to find global optimum
with high probability

• Analysis left for future work.

Other Results for Gaussians
• Du et al., “Gradient Descent Learns One-hidden-layer CNN: Don’t be Afraid of

Spurious Local Minima”, 2017. [Training two layers]

• Zhong et al., “Recovery Guarantees for One-hidden-layer Neural Networks”,
2017. [Fully connected]

• Ge et al., Learning One-hidden-layer Neural Networks with Landscape Design,
2017

• Safran & Shamir. “Spurious Local Minima are Common in Two-Layer ReLU
Neural Networks”, 2017 [Local minima exist for fully connected]

• Goel & Klivans. “Eigenvalue Decay Implies Polynomial-Time Learnability for
Neural Networks”, 2017 [Weaker distribution assumptions]

• Soltanolkotabi et al., Theoretical insights into the optimization landscape of
over-parameterized shallow neural networks, 2017

SGD Learns Over-parameterized
Networks that Provably Generalize on

Linearly Separable Data

ICLR 18, with Alon Brutzkus, Eran Malach and Shai Shalev-Shwartz

Optimization/Generalization
Challenge

• Show case where SGD applied to a large neural net:

• Optimizes successfully

• Achieves low generalization error

• Several recent works show optimization for large
networks (e.g., Soltanolkotabi, Soudry).

• But generalization not guaranteed.

The Linear Case
• Assume data is generated by some linear

classification rule.

• No other distributional assumptions.

• Model is a one hidden-layer network, with leaky
ReLU activation, and 2k hidden neurons.

• Assume only first layer is trained, and second layer
is fixed to {-1,1} weights.

Sign

Hidden
layer

Input
layer

Output
layer

+1

�1

Understanding the Linear Case
• Perceptron solves it!

• But can SGD on neural net find a solution?

• If SGD finds a good solution, will it generalize well?

• Prior work analyzes optimization landscape, but
does not derive such results (e.g., Auer et al. 96,
Gori & Tesi 92, Frasconi 97, Nguyen & Hein 17).

Our Results
• Optimization: SGD finds a zero error solution.

• Generalization: Guaranteed independent of k.

• ReLU: Can fail.

Leaky ReLU
• Activation:

• Avoids the “Dead ReLU” problem

• Needed in our analysis.

�(x) = max(x,↵x)

Notation
• Weights at time t:

Wt = [w(1)
t , . . . , w(k)

t , u(1)
t , . . . , u(k)

t]

+1

�1

• Network output:

f(x;W) =
kX

i=1

�(w(i) · x)�
kX

i=1

�(u(i) · x)

Separability Assumption
• Assume where: yw⇤ · x � 1(x, y) ⇠ D

• So one ERM solution is (up to scale):

W ⇤ = [w⇤, . . . ,w⇤,�w⇤, . . . ,�w⇤]

+1

�1

Algorithm
• Use simple SGD on hinge loss:

`(W) =
1

n

nX

i=1

[1� yif(xi;W)]+

• Fixed step size

• Arbitrary initialization

⌘

Expressivity
• Consider kd>n case.

• Zero training error “almost” always
possible (e.g., Soudry et al. 17).

• Hence overfitting is a real problem

• So perfect optimization does not
guarantee good test error.

Optimization
• SGD converges to a global minimum after the

following number of non-zero updates:

O

✓
kw⇤k22
↵2

◆

• Proof similar to perceptron:

• Show increases

• Show does not increase by much.

• Use Cauchy Schwartz to get bound on update,
independent of number of hidden units.

Wt ·W ⇤

kWtk22

Independent of k.

Generalization
• Learned model only uses a fixed size subset of

training data

• Can use a compression bound (Littlestone & Warmuth 86)

• Conclude that test error is:

• Independent of k

O

✓
kw⇤k22

n
log

n

�

◆

ReLU
• There always exist bad local minima

• Can construct cases where SGD fails

• Positive: can construct a case where for large
enough network, SGD converges globally.

• Idea: large network overcomes dead ReLUs.

Experiments
• Binary MNIST with 4000.

• Over-parameterized regime shows no over-fitting.

(a) (b)

Figure 1: Classifying MNIST images with over-parameterized networks. The setting of Section 5 is
implemented (e.g., SGD with batch of size 1, only first layer is trained, Leaky ReLU activations) and
SGD is initialized according to the initialization defined in Eq. 6. The linearly separable data set
consists of 4000 MNIST images with digits 3 and 5, each of dimension 784. The size of the training
set is 3000 and the remaining 1000 points form the test set. Three experiments are performed which
di↵er only in the number of hidden neurons, 10, 100 and 1000. In the latter two, the networks are
over-parameterized. For each number of hidden neurons, 40 di↵erent runs of SGD are performed and
their results are averaged. (a) shows that in all experiments SGD converges to a global minimum.
(b) shows that the global minimum obtained by SGD generalizes well in all settings (including the
over-parameterized).

Thus for fixed kw⇤
k and ⌘ we obtain a sample complexity guarantee that is independent of the

network size (See Remark 5 for a discussion on the dependence of the bound on ⌘). This is despite the
fact that for su�ciently large k, the network has global minima that have arbitrarily high test errors,
as we show in the next section. Thus, SGD and the linearly separable data introduce an inductive
bias which directs SGD to the global minimum with low test error while avoiding global minima with
high test error. In Figure 1 we demonstrate this empirically for a linearly separable data set (from
a subset of MNIST) learned using over-parameterized networks. The figure indeed shows that SGD
converges to a global minimum which generalizes well.

Remark 5. The generelization bound in Eq. 7 holds for ⌘ ! 1, which is unique for the setting

that we consider, and may seem surprising, given that a choice of large ⌘ often fails in practice.

Furthermore, the bound is optimal for ⌘ ! 1. To support this theoretical result, we show in Theorem

2 an example where indeed ⌘ ! 1 is optimal in terms of the number of updates and generalization.

On the other hand, we note that in practice, it may not be optimal to use large ⌘ in our setting,

since this bound results from a worst-case analysis of a sequence of examples encountered by SGD.

Finally, the important thing to note is that the bound holds for any ⌘, and is thus applicable to realistic

applications of SGD.

6.2 Expressiveness

Let X 2 Rd⇥n be the matrix with the points xi in its columns, y 2 {�1, 1}n the corresponding vector
of labels and let NW(X) = v>

�(WX) be the network defined in Eq. 1 applied on the matrix X. By

7

Thoughts on Inductive Bias
• Our results suggests that SGD “likes” linear nets.

• “All else being equal” SGD will converge to a linear
rule (roughly)

• What is the right generalization:

• Minimal rank/trace norm (Ma, Srebro) ?

Network Design for
Structured Prediction

with Roei Hertzig, Moshiko Raboh, Gal
Chechik, Jonathan Berant and Nataly

Brukhim

Data from Visual Genome dataset

Choosing Architectures
• How can we choose a good neural architecture for

a given task?

?

Invariance and Architectures
• Suppose you know that the true mapping has

some invariances.

• Then it would be nice if the architecture has the
same invariances.

• Otherwise we’re just wasting parameters!

• Recently used in DeepSets (Zaheer et al. 17)
but also discussed for graph based deep
learning (Gilmer et al. 17, Dai et al. 17).

• How can this be applied to scene graphs?

Scene Graphs Generation
• Scene graph prediction is a “structured-prediction”

problem (see Taskar 05).

• Namely, it has a complex and structured output.

Woman Elephant1Feeding

Elephant2Man Taking
Picture

Wearing

Shirt White
Grass

On

On

On

On

Path Color

Context is Key!
• A scene interpretation must make sense as a whole

• Allows us to rule out explanations that are locally
plausible but don’t make sense globally.

• Structured prediction models (e.g., CRF, M3N) can
capture this.

Woman TreeTouching

ManTaking
Picture

Woman Elephant1Feeding

Elephant2Man Taking
Picture

Typical Structured Prediction Architecture

Man Woman Tree Elephant

Man 8 6

Woman 12 5 1

Tree 1 10

Elephant 1 40

Inference

12

1

3

3

4

1

2

1

3

3

Man Woman Tree Elephant

Man 8 6

Woman 12 5 25 18

Tree 1 6

Elephant 1 3 4

Man Woman Tree Elephant

Man 8 6

Woman 12 5 1

Tree 1 10

Elephant 1 3

4

1=Woman

2=Man

3=Elephant

4=Elephant

Deep Structure Prediction Architecture

• The black box is often a
message passing
algorithm like belief
propagation.

• But what if we want
something more general?

• Which constraints should it satisfy?

• It should be invariant to permutations of
the input representation.

Man Woman Tree Elephant

Man 8 6

Woman 12 5 1

Tree 1 10

Elephant 1 15

Man Woman Tree Elephant

Man 8 6

Woman 12 5 20 18

Tree 1 6

Elephant 1 3 4

Man Woman Tree Elephant

Man 8 6

Woman 12 5 1

Tree 1 10

Elephant 1 15

1=
2=
3=E
4=E

Man Woman Tree Elephant

Man 8 6

Woman 12 5 1

Tree 1 10

Elephant 1 15

Man Woman Tree Elephant

Man 8 6

Woman 12 5 20 18

Tree 1 6

Elephant 1 3 4

Man Woman Tree Elephant

Man 8 6

Woman 12 5 1

Tree 1 10

Elephant 1 15

1=
2=
3=E
4=E

Invariant Structured Prediction
• We cast the desired invariance formally.

• Prove that it is satisfied if and only if the
architecture has a certain form (specifically, it
should be pooled in a certain way).

• This restricts the architecture but leaves much
room for play, significantly extending message
passing algorithms (e.g., with attention).

Results on Visual Genome
• Evaluated by returning 100 triplets and calculating

recall w.r.t. ground truth.

13.0

19.5

26.0

32.5

39.0

R@100

Lu et al. 16
Xu et al. 16
Zellers et al. 18
Ours

Predict and Constrain
• Often want the solution y to satisfy property f(y)=c

• e.g., not more than 5 tables in image

• Value c may depend on input

f(y) = c Constrained
Opt. y: f(y)=c

• Can be trained end-to-end (ICML 18)

Conclusions
• Optimization guarantees possible under

distribution assumptions

• Generalization guarantees possible for linear case

• Design principles for complex labeling tasks

• What are optimization/generalization guarantees
for these?

