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An early computational view of 
evolution 

•  Charles Babbage    
Ninth Bridgewater treatise 
ca. 1830 (paraphrased): 
 

The Supreme Being created not species, but 
the algorithm for creating species 



Wallace-Darwin 1858: 
Exponential growth  

is incompatible with Life 



The Origin of Species                   

•  Natural Selection 
•  Common Ancestry 
•  Possibly the world’s most masterfully 

compelling scientific argument 
•  The six editions:1859, 1860, 1861, 1866, 1869,  

1872 



Cryptography against Lamarck 

 
A. Weismann 

[ca. 1880, paraphrased]  
“The mapping from genotype to phenotype is 
one-way” 



Surprise! Inheritance is discrete 

•  Gregor Mendel  [1866] 
•  Number of citations  
    between 1866 and 1901:  

    3 



The “Modern Synthesis” 
1918 - 1940 

Fisher – Wright - Haldane 



Meanwhile at the farm… 
(1929 – 1946) 

Gödel   -  Turing  -  von Neumann 



Theory of Computing 
(last six decades) 

A mathematical framework, stance, and 
methodology for understanding the 
capabilities and limitations of the computer 



•  When the point of view of the Theory of 
Computing is applied to a field of science, 
progress often happens 

•  E.g.:  Statistical physics, quantum mechanics, 
game theory and economics, social science, 
molecular biology and evolution 

 

The Lens 
of Computation 



Btw: the special affinity between 
computation and biology 

There is “innate explicit code” in Life 
 



The Theory of Computing, 
in a nutshell 

•  Life is hard 
•  computers can occasionally help                    

  à algorithms 
•  other times, they can’t 

  à complexity 



Algorithms 

•  Computational problem: 
•  An infinity of inputs, each seeking an output  
•  The output must be in a particular relation 

to the input 
•  Inputs and outputs are strings of bits 
•  Graphs, matrices, etc. can be so represented 



Algorithms (cont.) 

•  Algorithm A for computational problem C 
•  Must be correct ( = eventually stop with the 

right output for each input of C) 
•  TA,C (n) = the number of elementary steps A 

takes until completion, when supplied with 
an input of length n, maximized over all 
inputs of length n (“worst-case analysis”) 



Examples of computational 
problems 

•  Linear programming 
•  Shortest path from s to t in a graph 
•  Traveling salesman problem 
•  Integer programming 
•  Sequence alignment 
•  Sequence centroid 



Sequence alignment  
(or edit distance) 

•  Input:  two sequences ACGGTGT… and 
CTAGTAA… and parameter d 

•  Output sought:  An alignment with at most d 
skips/overwrites 

•  There is an algorithm A with TA,C(n) = O(n2) 
•  (When d is small, can be solved in linear time 

cf. BLAST) 



Sequence centroid 

•  Given s sequences ACC…, GCC…, ACT… 
etc. and a parameter d 

•  Output sought:  A new sequence AGC… 
which has edit distance ≤	
 d from each 

•  Can be found in time TA,C(n) = O(2n) 
•  Fact: all algorithms known for this problem 

require exponential time 



Is exhaustive search ever 
necessary? 

•  NP: all search problems 
•  P: all search problems solvable in 

polynomial time (e.g., sequence alignment) 
•  Conjecture 1:  P ≠ NP 
•  Conjecture 2: Sequence centroid is not in P 
•  Fact:  These two conjectures are equivalent 
•  Sequence centroid is NP-complete  



Sooooo, the Theory of Computing 

•  A comprehensive methodology for dealing 
with computational problems 

•  Develop efficient algorithms for them 
•  Or establish complexity lower bounds, such 

as NP-completeness 
•  Plus more complex strategies, such as 

approximations and heuristics 



Life algorithms (and complexity) 

•  Protein folding and the Levinthal paradox 
•  The H-P model [Ken Dill, ca 1990] 
•  PHPPHPHPPHPHP: fold it! 
   H – P                              
   P – P – H    
   P – H – P    P 
   P – H – P – H  

s 

score = 4 



Trouble in Life… 

Theorem [CGPPY98, BL98]: The HP folding 
problem is NP-complete 
•  Levinthal’s paradox sharpened 
•  Remember: exponentials incompatible with 

Life 
•  Is the real problem simpler than the HP 

cartoon?  (hard to believe…) 

 



Or could it be that… 

•  …proteins have been selected so that they 
fold easily? 

•  Remember worst case: even the hardest 
problems have easy inputs 



e.g., the traveling salesman 
problem 



Or could it be that… 
•  …proteins in real organisms have been 

selected so that they fold easily? 
•  Remember worst case: even the hardest 

problems have easy inputs 
•  Life is hard, but natural selection can favor 

easy inputs… 
•  [CHP, Sideri 1999]  experiments with the 

traveling salesman problem: evolve a 
population of TSP inputs, fitness = “ease” 



after a few 
generations 
becomes… 





Online algorithms  
and the experts problem 

•  Every day you must choose one of n experts 
•  The advice of expert i on day t results in a 

gain    G[i, t] in  [-1, 1] 
•  Challenge: Do as well as the best expert in 

retrospect 
•  Surprise:  It can be done! 
•  Hannan 1958, T. Cover 1991, Winnow, 

Boosting, no-regret learning, MWUA, … 



Multiplicative weights update 

•  Initially, assign all experts same weight/
probability 

•  (Or think of the distribution on the experts 
as a stock portfolio) 

•  At each step, increase the weight of each by 
(1 + ε G[i, t])  (and then normalize) 

•  Theorem:  Does as well as the best expert 



Intuition 
•  Each day t, pi becomes  
   pi(1+εG[i, t]) ≈ pi exp(εG[i, t]) 
•  After many days, pi ≈ exp(ε Σt G[i, t]) 
•  The protfolio will consist almost 

exclusively of the best performing stock – 
in hindsight. 

•  (Unless there are near ties, in which case we 
do not care much…) 



There is more…                   

The same algorithm solves zero-sum games, 
linear and convex programming, network 
congestion,… 
 
Computer scientists find it  
hard to believe that such a  
crude technique solves all these  
sophisticated problems 

 



Heuristics inspired by Evolution 

•  Local search [Croes 58, Bock 58] 
•  [Dunham, Fridshal, Fridshal, North 61] 

“Design by natural selection” 
•  Simulated annealing [Kirkpatrick et al. 83] 
•  “Go with the winners” [Aldous-Vazirani 93] 
•  Tabu search [Glover 84] 
•  …. 



Genetic algorithms 

•  Maintain a population of solutions 
•  Encoded as some kind of genotype 
•  Fitness = goodness as a solution 
•  Next generation created by mutations and 

(uaually) recombination 
•  Influentially proposed by [Holland 80] 



More… 

•  Evolutionary strategies 
•  Evolutionary programming 
•  Genetic programming 
•  Differential evolution 
•  …and not to mention ant colony algorithms, 

bee hive algorithms, cuckoo algorithms,… 
•  Artificial life (e.g. Avida) 
 



Rough classification of 
evolution-inspired heuristics 

•  Simulated annealing:  variants of the local 
search algorithm, one solution or very few 
solutions maintained, mutation but no 
recombination  à asexual evolution 

•  Genetic algorithms: population of solutions 
maintained, genetic encoding, new generation 
produced through mutation plus recombination 
à sexual evolution 



Comparison 

•  Genetic algorithms encoding is very hard to 
do right – must reflect latent modularity in 
the solution space 

•  Not many practical successes known 
•  In contrast, simulated annealing heuristics 

are often the best known algorithms for 
certain applications 



Back to Evolution: it is full  
of fascinating problems 

•  The role of sex 
•  The maintenance of variation 
•  The emergence of novelty 
•  …among many others 
( Remembering G. H. Hardy, 1908:  
“I am reluctant to intrude in a discussion 
concerning matters on which I have no expert 
knowledge” ) 



The role of sex 

•  Sex is ubiquitous in Life 
•  Despite its multifaceted costs 
[Barton and Charlesworth “Why sex and 
recombination?”, 1998] 
•  Which makes the apparent advantage of 

simulated annealing (asexual evolution) 
over genetic algoorithms (sexual evolution) 
hard to explain… 



A Radical Thought 

•  What if sex is a mediocre optimizer of 
fitness? 

[A. Livnat, J. Doushoff, P., M. Feldman, 
PNAS 2008] 



Selection at two loci 

•  Fitness landscape of a 2-gene organism 
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Asexual evolution 

•  Asex will select the largest numbers 
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Mixability 

•  But sex favors the alleles that perform well 
with many genetic partners 
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In pictures 

[Livnat, P., Feldman 
J. Th. Bio 2011] 
 
Unless 
peaks > 2×plateau 
the plateau 
will prevail under sex 



Weak selection 
!
!
!
!
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wij = 1 + s Δij  
with s << 1  



Linkage equilibrium  
[Nagylaki 1993] 

Under weak selection, pij = xi yj + o(s2) 
(after log n generations) 
where xi = Σj pij and yj = Σi pij  
 

The Fisher-Wright equations become 

xi
t+1 = xi

t (1 + s Σj yj
t Δij) 



Remember multiplicative 
updates? 

Under weak selection, evolution becomes a game 
•  The players  = the loci 
•  The strategies = the alleles 
•  The common utility = the organism’s fitness 
         (coordination game) 
•  The players play by MWUA 
[E. Chastain, A. Livnat, P., U. Vazirani, 2013]                                                                                                                                                                                                                                                                                                                                                                                                 



Reinterpret as an online 
optimization problem 

 
At each generation, each locus maximizes 

 
the cumulative expected fitness of the organism 

over all previous generations 

+ 
 (1/s) times the entropy of the alleles’ distribution  

 



Changing the subject: 
Pointer Dogs 



Pointer Dogs 

C. H. Waddington 



Waddington’s Experiment (1952) 

Generation 1 
Temp:   20o C 



Waddington’s Experiment (1952) 

Generation 2-4 
Temp:   40o C 
~15% changed 
Select and breed  
those 



Waddington’s Experiment (1952) 

Generation 5 
Temp:   40o C 
~60% changed 
Select and breed  
those 



Waddington’s Experiment (1952) 

Generation 6 
Temp:   40o C 
~63% changed 
Select and breed  
those 



Waddington’s Experiment (1952) 

         (…) 
Generation 20 
Temp:   40o C 
~99% changed 



Surprise! 

Generation 20 
Temp:   20o C 
~25% stay changed!! 



Genetic Assimilation 

•  Adaptations to the environment become 
genetic! 



Is There a Genetic Explanation? 

Function f ( x, h ) with these properties: 
•  Initially, Prob x ~ p[0] [f ( x, h = 0)] ≈ 0% 
•  Then Probp[0][f ( x, 1)] ≈ 15% 
•  After breeding Probp[1][f ( x, 1)] ≈ 60% 
•  Successive breedings, Probp[20][f ( x,1)] ≈ 99% 
•  Finally, Probp[20][f ( x, 0)] ≈ 25% 



A Genetic Explanation 

•  Suppose that “red head” is this Boolean 
function of 10 genes and “high temperature”  

 “red head” = “x1 + x2 + … + x10  + 3h  ≥ 10” 
•  Suppose also that the genes are independent 

random variables, with pi initially half, say 
•  All properties of the Waddington 

experiment satisfied 
•  [Stern AN 1958] 



Arbitrary Boolean Functions 

•  What if we have an arbitrary Boolean 
function of genes (no environmental 
variable h) 

•  Suppose the satisfying genotypes have a 
fitness advantage (1 + ε  vs. 1, say) 

•  Will this trait be fixed eventually? 



Arbitrary Functions: Yes!  

Theorem:  Any Boolean function of genes 
which confers an 1 + ε selection advantage will 
be fixed  (with high probability within poly 
generations and with poly population). 
[2014; with Adi Livnat, Aviad Rubinstein, 
Greg Valiant, Andrew Won] 



“Look, Ma, no mutations!” 

Emergence of a trait in the whole population, 
without Fisherian propagation, 
through the manipulation by selection of the 
allelic frequencies 



Sooooooo… 

•  Fascinating field, exquisite problems 
•  Computational insights appear to be 

reasonably productive 
•  Analytical proof of the mixability principle? 
•  Is implicit entropy maximization a more 

general phenomenon in evolution? 



Thanks! 

Thank You!



