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Three fundamental questions

(b) How far can we move along  
 a direction while staying 
      feasible?

(c) Can we learn which algorithm works best on an 
       unseen instance? 

(a) How to compute projections?
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Why are projections important? 
Key step in many algorithms across 

Online Learning 
Game Theory 

Machine Learning 
Stochastic optimization 

Robust optimization 
…

• Problem setup 
• Examples 
• Online Mirror Descent 
• Projection! 
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Online Learning
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Online Learning

Select an action 
Or a decision

Historic Data 
Or Prior knowledge

Incur losses or gains in a 
dynamic environment

Repeats over time
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Online Learning

Select an action 
Or a decision

Historic Data 
Or Prior knowledge

Incur losses or gains in a 
dynamic environment

Repeats over time

How to perform well compared to 
best fixed decision in hindsight? 
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Online Learning
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pages rank

Matchings

i j

Online Learning
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Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

pages rank

Matchings

i j

Online Learning
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Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

s-t paths 

pages rank

Matchings

i j

[Cohen, Gupta, Kalas, 
Perakis, ‘16]

Online Learning
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Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

s-t paths 

pages rank

Matchings

i j

Spanning Trees

[Cohen, Gupta, Kalas, 
Perakis, ‘16]

Online Learning

5
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



allow convex 
combinations, 
sample at 
random

Decision Space Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

Online Learning
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Decision Space Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

Online Learning Framework 

- learner chooses a decision, 

- a linear loss revealed, 

- the loss incurred for time t:  

Online Learning
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Suppose  
xt = (2, 3 ,1, 4) 

Online Learning Framework 

- learner chooses a decision, 

- a linear loss revealed, 

- the loss incurred for time t: 

Page 1 at rank 2 
Page 2 at rank 3 
Page 3 at rank 1 
Page 4 at rank 4 

Display: 
Page 3 
Page 1 
Page 2 
Page 4

Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

Example
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Suppose  
xt = (2, 3 ,1, 4) 

Online Learning Framework 

- learner chooses a decision, 

- a linear loss revealed, 

- the loss incurred for time t: 

Page 1 at rank 2 
Page 2 at rank 3 
Page 3 at rank 1 
Page 4 at rank 4 

Display: 
Page 3 
Page 1 
Page 2 
Page 4

Observe user clicks:

20% 
40% 
30% 
10% 

Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

0.40 
0.30 
0.20 
0.10

Example
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Suppose  
xt = (2, 3 ,1, 4) 

Example Loss Function:

Online Learning Framework 

- learner chooses a decision, 

- a linear loss revealed, 

- the loss incurred for time t: 

Page 1 at rank 2 
Page 2 at rank 3 
Page 3 at rank 1 
Page 4 at rank 4 

Display: 
Page 3 
Page 1 
Page 2 
Page 4

Observe user clicks:

20% 
40% 
30% 
10% 

Penalizes if a highly desired page is 
put later in the ranking  

Loss for xt  
= 2*0.40 (page 1) + 3*0.30 (page 2) + 1*0.20 (page 3) + 4*0.10 (page 4). 

Permutations  
1, 2, 3, 4,  
2, 3, 1, 4,  
3, 1, 4, 2,  
4, 1, 3, 2,  
2, 3, 4, 1…

0.40 
0.30 
0.20 
0.10

Example
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Bottleneck in First-Order Projection-
Based Algorithms 

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases  
[for e.g. Srebro, Sridharan, Tewari 2010] 

But Computationally Slow! 

Online Mirror Descent
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Bottleneck in First-Order Projection-
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constrained decision set 
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Bottleneck in First-Order Projection-
Based Algorithms 

unconstrained gradient step

constrained decision set 

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases  
[for e.g. Srebro, Sridharan, Tewari 2010] 
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Bottleneck in First-Order Projection-
Based Algorithms 

project

unconstrained gradient step

constrained decision set 

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases  
[for e.g. Srebro, Sridharan, Tewari 2010] 

But Computationally Slow! 
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Bottleneck in First-Order Projection-
Based Algorithms 

project
Projections are obtained by 

minimizing a convex function 
(potentially in each time step)

unconstrained gradient step

constrained decision set 

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases  
[for e.g. Srebro, Sridharan, Tewari 2010] 

But Computationally Slow! 

Online Mirror Descent
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1. Projections 
▪ Motivation 
▪ Problem setup  
▪ Novel algorithm: Inc-Fix for separable convex minimization:  
▪ Main Result: O(n) SFM or O(n) Line searches 
▪ Exact computations, modulo solving a univariate equation  

2. Line Searches 
▪ Previous best known: Megiddo’s parametric search 
▪ Using Newton’s Discrete Method: n2 + n log2n SFM (n6 improvement) 

3. What works best when 
▪ Problems with Max-Cut and QUBO heuristics comparative studies 
▪ Our framework: Expanded instance library, Implementation of 37 heuristics, 

Large-scale cloud computing on the cross product 
▪ Hyper-heuristic: Map every instance to a feature space, learn 

“performance” of heuristics 

Outline 9
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(i) Which decision sets? Submodular Base 
Polytopes

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



10

(i) Which decision sets?
Permutations  
1, 2, 3,   
2, 3, 1,  
3, 1, 2…

Submodular Base 
Polytopes
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(i) Which decision sets?
Permutations  
1, 2, 3,   
2, 3, 1,  
3, 1, 2…

B(f)

P(f)

(1,2,3)

(1,3,2)

(2,3,1)
(3,2,1)

(3,1,2)

(2,1,3)

(3,0,2)

(3, 0, 0)

(0,0,3)

(3,2,0)

Submodular Base 
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(i) Which decision sets?
Permutations  
1, 2, 3,   
2, 3, 1,  
3, 1, 2…

Submodular set function 
Captures the property of diminishing 
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(i) Which decision sets?
Permutations  
1, 2, 3,   
2, 3, 1,  
3, 1, 2…

Submodular set function 
Captures the property of diminishing 
returns

B(f)

P(f)

(1,2,3)

(1,3,2)

(2,3,1)
(3,2,1)

(3,1,2)

(2,1,3)

f(S) =

Choice of f(.) gives 
different structures

Exp!

MANY MANY MORE  
INTERESTING EXAMPLES!!

(3,0,2)

(3, 0, 0)

(0,0,3)

(3,2,0)

Submodular Base 
Polytopes

Ground set E
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(ii) Minimize what?
▪ Bregman Divergences

Convex, non-negative, not symmetric 

11
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(ii) Minimize what?
▪ Bregman Divergences

Convex, non-negative, not symmetric 

12

Separable Strictly Convex 
Functions
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(ii) Minimize what?
▪ Bregman Divergences

Convex, non-negative, not symmetric 

12

Separable Strictly Convex 
Functions

Why do we need different divergences: convergence, regret bounds
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Algorithm Inc-Fix 
For Separable Strictly Convex Minimization 
Over Base Polytopes:

(b). Minimizing 
separable convex fns  
(sq. Euclidean distance, 
KL-divergence, ...)

(a). Which decision sets? 
Submodular Base 
Polytopes: B(f)  
(Permutations, k-subsets..)

13

13



(1,3,2)

(2,3,1)

(3,2,1)

(3,1,2)

(2,1,3)
(1,2,3)

(3,0,2)

(3, 0, 0)

(0,0,3)

(3,2,0)

yB(f)

e3

e2

e1

-
4

-1.4

-1

0.3

= 
x e

-y
e

Project: y = (1.4, 4, 1)T 

under Euclidean distance

“greedy in gradient space” – proof from first-order optimality conditions

14Inc-Fix Algorithm

[Gupta, Goemans, Jaillet]
14
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x(*) 

“greedy in gradient space” – proof from first-order optimality conditions

14Inc-Fix Algorithm

[Gupta, Goemans, Jaillet]
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Running time
Squared Euclidean Distance,  
KL-Divergence: 
Movement along lines 

In general:  
Piecewise smooth movement

y
15
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Running time
Squared Euclidean Distance,  
KL-Divergence: 
Movement along lines 

In general:  
Piecewise smooth movement

y

Details: How to do this 
movement? 
O(n) Line Searches + non-linear equations in a single variable  

15
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Running time
Squared Euclidean Distance,  
KL-Divergence: 
Movement along lines 

In general:  
Piecewise smooth movement

y

Details: How to do this 
movement? 

Using structural properties, we show Inc-Fix can be implemented in, in general, 

O(n) Submodular Function Minimizations*

O(n) Line Searches + non-linear equations in a single variable  

Running time?

LSW’15: CLSW’16:
*Require maximal minimizers,  
note that checking for feasibility itself      
requires a SFM.

15
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Setup: 
100 Elements, 
Fixed cardinality-based 
submodular function,  
Projections of 10 randomly 
generated points 

 Frank-Wolfe

Inc-Fix

0          20              40           60              80          100 
  Elements                   

0          20              40           60              80          100 
  Elements                   
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Inc-Fix Frank-WolfeGap from optimality 

Computations for cardinality-based f(.)

For cardinality-based functions, Inc-Fix takes             for 
exact, while vanilla FW takes                                for    -
approx. 
(O(n (log n + k)) for simplex, k-subsets, k-truncated-permutations) 

16
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1. Projections 
▪ Motivation 
▪ Problem setup  
▪ Novel algorithm: Inc-Fix for separable convex minimization:  
▪ Main Result: O(n) SFM or O(n) Line searches 
▪ Exact computations, modulo solving a univariate equation  

2. Line Searches 
▪ Previous best known: Megiddo’s parametric search 
▪ Using Newton’s Discrete Method: n2 + n log2n SFM (n6 improvement) 

3. What works best when 
▪ Problems with Max-Cut and QUBO heuristics comparative studies 
▪ Our framework: Expanded instance library, Implementation of 37 heuristics, 

Large-scale cloud computing on the cross product 
▪ Hyper-heuristic: Map every instance to a feature space, learn 

“performance” of heuristics 

Outline 17
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3. Feasibility along a Line

How much to move 
in a direction while staying 
feasible?

18
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3. Feasibility along a Line

How much to move 
in a direction while staying 
feasible?

Sub-problem in many methods:  
• Inc-Fix, of course 

• Frank-Wolfe 
[Frank, Wolfe, Jaggi, Lacoste-Julien, 
Freund, Grigas, …] 

• Caratheodory’s Theorem 

18
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3. Feasibility along a Line

How much to move 
in a direction while staying 
feasible?

Sub-problem in many methods:  
• Inc-Fix, of course 

• Frank-Wolfe 
[Frank, Wolfe, Jaggi, Lacoste-Julien, 
Freund, Grigas, …] 

• Caratheodory’s Theorem 

Others:  
▪ Densest sub-graphs  

[Nagano et al. 2011] 

▪ Minimum Ratio Problems  
[Cunningham 1985]  

18
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Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Discrete Newton Method 
for Parametric Line 
Search

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Discrete Newton Method 
for Parametric Line 
Search

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Discrete Newton Method 
for Parametric Line 
Search

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Discrete Newton Method 
for Parametric Line 
Search

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search
Inc-Fix uses only positive directions (well-understood)  
General: Megiddo’s parametric search: Õ(n8) SFM [Nagano 2011]

Discrete Newton Method 
for Parametric Line 
Search

Open question to bound 
the no. of iterations!

Recall
19

19
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Line Search

We show a quadratic bound on the number of Newton’s iterations:    
<= n2 + o(n log2n) SFM  (n6 improvement) [Goemans, Gupta, Jaillet, IPCO 2017]
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1. Projections 
▪ Motivation 
▪ Problem setup  
▪ Novel algorithm: Inc-Fix for separable convex minimization:  
▪ Main Result: O(n) SFM or O(n) Line searches 
▪ Exact computations, modulo solving a univariate equation  

2. Line Searches 
▪ Previous best known: Megiddo’s parametric search 
▪ Using Newton’s Discrete Method: n2 + n log2n SFM (n6 improvement) 

3. What works best when 
▪ Problems with Max-Cut and QUBO heuristics comparative studies 
▪ Our framework: Expanded instance library, Implementation of 37 heuristics, 

Large-scale cloud computing on the cross product 
▪ Hyper-heuristic: Map every instance to a feature space, learn 

“performance” of heuristics.  

Outline 21
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From learning decisions, 

to learning performance of algorithms



Max-Cut: An NP-Hard Problem

Given an edge-weighted graph, partition nodes into two 
sets to maximize the weight of the edges between the sets

Equivalence with Quadratic Unconstrained Binary 
Optimization Problem (QUBO) 

A lot of applications, and a lot of research! 
◇ >32 published papers since 2010.  

Computational experiments key to heuristic evaluation!  

But hard to find which heuristic works best when 
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Problems with standard testbed
Homogeneous Test Bed: Max-Cut (105 graphs), QUBO (126 matrices) 

Max-Cut Instances QUBO instances
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Problems with standard testbed
Homogeneous Test Bed: Max-Cut (105 graphs), QUBO (126 matrices) 

Max-Cut Instances QUBO instances

Which Max-Cut heuristic works best for high density graphs? 
Which QUBO heuristic works best for sparse matrices? 
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Problems with status-quo

Same runtime limit?

Same 
hardwa
re?

No Yes

No 55% 4%

Yes 31% 10%

◇ few published source code 
◇ reimplementation uncommon 
◇ different testing criteria  
◇ comparison with small no. of heuristics… 
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Our Approach
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Our Approach
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Expanded Instance Library
◇ Heterogeneous instances, capture instances in real instances 
◇ Real World Instances (tsplib, steinlib, dimacs, road networks, …) 
◇ Network science generators (ER, NWS, BA, …) 
◇ Sampled weights from 65 prob. distributions (uniform, weibull, …)
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Heterogeneity: 58 Metrics

◇ 10 global metrics:  
◇ nodes, edges, 1st and 2nd eigenvalues of Laplacian,  
    chromatic number, …  

◇ 48 local metrics from summary statistics of edge/node attributes: 
◇ degree, avg. neighbor degree, clustering coefficient, core… 

◇ Fast to compute – at most        

◇ Coverage (for normalized metrics in [0,1]): union over all instances 
of a small interval around the metric value for each instance 
◇ average metric coverage for new test bed: 0.88 (interval +-0.05) 
◇ 0.31 for 95 std Max-Cut v/s 0.71 (0.69-0.77) for ~ 95 random new 
◇ 0.38 for 56 std QUBO  v/s  0.64 (0.59-0.68) for ~56 random new
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Our Approach
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Implementation + Evaluation

◇ We did what one would expect
◇ thorough lit review (810 papers)
◇ selected 95 papers (new heuristics)
◇ implemented 37 heuristics from 19 highly cited papers
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Implementation + Evaluation

◇ We did what one would expect
◇ thorough lit review (810 papers)
◇ selected 95 papers (new heuristics)
◇ implemented 37 heuristics from 19 highly cited papers

◇ Minor modifications to standardize: 
◇ added random restarts
◇ shared common code – data structures and subroutines
◇ no parameter tuning 

◇ Cloud Computing – Amazon EC2
◇ Instance specific runtime limit computation
◇ too low: miss performance 
◇ too high: waste computational budget

◇ any new heuristic can be tested for $32.5 (20.6 CPU days/
heuristic)
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https://github.com/MQLib/MQLib
Open Source Code available at 

32
Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute



Our Approach
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Our Approach
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Results

◇ No heuristic dominated all the others 
◇ 30/37 heuristics strictly best on at least one 

instance 
◇ No heuristic matched the best performance on 

more than 22.9% of the testbed 

◇ Standard test beds do not capture performance 
◇ Example: GLS heuristic (Merz, Freisleben 1999) 
◇ Strictly best on no instances in the std test bed 
◇ Sole best-performing on 6.9% expanded test bed 

instances!
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Can we predict which heuristic  
would work best on an unseen data instance? 

36

“the algorithm selection problem is to 
learn the mapping from instance features 

to the best algorithm to run on an 
instance”  

— Rice (1976) 
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… Phase transitions 

(Cheeseman et al. 1991,


Hartman and Weigt, 
2006)


… Landscape analysis

(Stadler and Schnabl 

1992, 

Krzkakala et al. 2004, 

Hartman and Weigt 

2003, 

Gent and Walsh 1996, 


Smith-miles et al. 2010, 

Wang et al. 2013… )




Interpreting Heuristic Performance
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[… “algorithmic footprints” Smith-Miles et al. 2014]



Interpreting Heuristic Performance
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Conjecture Generation?
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[… “algorithmic footprints” Smith-Miles et al. 2014]



Comparing Heuristic Performance

39



Heuristic Class Performance
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Our Approach
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Algorithm Portfolio  
or Hyper-heuristic

◇ Random Forest Model for each heuristic 
◇ Predicts if it will obtain the best solution using 58 features 
◇ Final heuristic selected has maximum predicted probability 
◇ Small fraction of runtime budget to select heuristic and then run the 

selected heuristic on remaining time 

◇ Represents state-of-the-art Max-Cut and QUBO heuristic! 
◇ Improves significantly over best single heuristic (BUR02):  
◇ Probability of obtaining best solution: increased from 15% to 37% 
◇ Avg. deviation from best solution reduced from 0.34% to 0.09% 
◇ Running 8 heuristics in parallel: 48% best solution, 0.05% avg. dev.
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(joint work with Iain Dunning, John Silberholz. INFORMS Journal on Computing, 2017)

[… SAT solvers (Xu et al 2008), constrained 
prog (O’ Mahoney et al. 2008)]
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swatig@alum.mit.edu       
     swatigupta.tech
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