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Quick recap

I Large discrete-time randomly mating Wright-Fisher population→
continuous-time coalescent process for the genealogy of a sample
of size n drawn at present

I Continuous-time Markov chain with transitions from k ancestral
lineages to k − 1 at rate

(k
2

)

I Mutations can be superimposed on the genealogical tree to gen-
erate allelic types in the sample
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Quick recap

I Large discrete-time randomly mating Wright-Fisher population→
continuous-time coalescent process for the genealogy of a sample
of size n drawn at present

I Continuous-time Markov chain with transitions from k ancestral
lineages to k − 1 at rate

(k
2

)

I Mutations can be superimposed on the genealogical tree to gen-
erate allelic types in the sample

But ...

I What if the population size is changing or has a more complicated
structure?

I How to extend these models to more than one genomic posi-
tion/locus?
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What might you do with all this theory?

I Generative model for sequence data that captures the most im-
portant biological mechanisms

I Infer biological parameters of the population: mutation rates,
genome-wide recombination maps

I Infer demographic structure of the population

I Regions of the genome under selective pressure
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Demographic structure
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Demography – example

Expansion, there was a continuous de-
crease of genetic diversity with geographic
distance from the place of origin in Africa
(this takes account of the likely path of
migration over land). The linear correla-
tion between loss of genetic diversity and
geographic distance from the origin of
expansion in Africa is close to 90%.
The Great Expansion is thus consistent

with serial colonization and concomitant
loss of genetic heterozygosity, a process
called a serial founder effect (Fig. 2)
(21, 24, 25). A serial founder effect model
involves three explicit assumptions. First,
migration after the initial founder expan-
sion was sufficiently limited that the pop-
ulations in the series did not reach
demographic equilibrium. This assump-
tion appears warranted by the detectable
substructure among continental and sub-
continental populations throughout the
globe (Fig. 1) (22, 23, 26–28). Second, the
serial founder populations migrated into
virgin territory or had no substantial
admixture with other resident, and pre-
sumably divergent, populations. In the
context of human evolution, admixture
could potentially occur between humans
and Neanderthals or other archaic species.
Ancient DNA from Neanderthal and
Denisova specimens remain subject to
mixed interpretations. Ancient DNA
sequences suggest that these hominin
species were highly diverged from the
ancestors of modern humans, more than
400 kya (29), and their unique haploid
mtDNA and Y-chromosome signatures
are not present among any modern
humans (30, 31). On the contrary, analysis

of several genomes indicated 1% to 7%
differential archaic admixture among
populations outside of Africa (32, 33).
Importantly for the serial founder effect
theory, a limited amount of archaic ad-
mixture does not destroy our power to
detect a serial founder migration of the
kind modeled for humans (24, 25).
Archaic admixture of 10% or greater
would produce a discontinuous relation-
ship between heterozygosity and distance
and inflate long-range linkage disequilib-
rium measures (24).
The third assumption is that there have

been no dramatic postexpansion bottle-
necks that differentially affected pop-
ulations from which the serial migration
began. If the source population for the
expansion suffered a severe bottleneck
that reduced its genetic diversity, we should
see a poorer linear fit to the decline of
heterozygosity with distance from Africa,
or erroneously assign a population with
higher genetic diversity as the source
population. It is this third assumption we
believe deserves additional consideration.

Human Origins in Africa
The African fossil record is consistent with
a gradual accumulation of anatomically
modern osteological features during 200
to 50 kya (34–37). By 195 to 160 kya, the
Omo and Herto skulls from Ethiopia
closely anticipate the form of contemporary
humans, although they tend to be more
robust overall. Multiple near-modern pop-
ulations were present across the African
continent at that time. This delay between
the origin of the modern anatomical form

and the successful expansion of humans
∼100,000 y later has been the subject of
intense paleoanthropological debate.
Genetic data can directly address the time
and rate of population growth in the
African ancestral population; however,
despite recent interest in this topic, cur-
rent analyses are extremely limited and
produce conflicting results.
Assuming a single step model of pop-

ulation growth and with full genome
sequence data from one western African
population (Yoruba), Gravel et al. (16)
estimated a doubling in effective pop-
ulation size from approximately 7,000 to
14,000 that occurred 150 kya. Their model,
however, did not separately account for
more recent episodes of western African
population growth that likely occur 30 to
40 kya and again at 5 kya (associated
with the adoption of agriculture and
subsequent expansion of Bantu-speaking
agriculturalists) (38–41). Allowing for
multiple episodes of population growth
in the model would likely reduce the time
of initial growth from 150 kya to a more
recent estimate. In stark contrast, recent
coalescent analysis of full genomic hap-
lotypes within Yoruban individuals (17)
estimates an effective population maxi-
mum occurring 50 to 150 kya, followed
by bottleneck from which they begin to
recover 40 kya. Two eastern African ge-
nomes from the Luhya and Maasai show
an identical signal to the Yoruba, sup-
porting a bottleneck model for all human
populations between approximately 60 to
30 kya, whereby African populations ex-
perience a modest bottleneck and non-

50-60Kya

15Kya

Source of founder effect

60-100Kya

45Kya

45Kya

Migration path

35-40Kya

Founder effect

Fig. 1. Ancient dispersal patterns of modern humans during the past 100,000 y. This map highlights demic events that began with a source population in
southern Africa 60 to 100 kya and conclude with the settlement of South America approximately 12 to 14 kya. Wide arrows indicate major founder events
during the demographic expansion into different continental regions. Colored arcs indicate the putative source for each of these founder events. Thin arrows
indicate potential migration paths. Many additional migrations occurred during the Holocene (11).

2 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.1212380109 Henn et al.

(Henn et al., 2012)
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Importance of modelling demography

I Demographic processes influence genetic variation

I Population stratification can confound association studies

I Correct null model

I Forensics

I Historical interest
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Wright-Fisher model with variable population size

I Randomly mating population of size N(t) in generation t

I t = 0 is present, t increasing in the past

N(t)

N(t + 1)

I At generation t, N(t) offspring generated, each picks a parent
among N(t + 1) parents independently and uniformly
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Coalescent with variable population size

I Take N(t) to ∞ at same rate for each t

I Choose rescaling parameter N for time such that

η(t) = lim
N→∞,
N(t)→∞

N(dN te)
N

exists and is positive for all t ≥ 0

I Sample of size n randomly drawn at time 0

I Each pair of lineages coalescences according to exponential dis-
tribution with time-variable rate 1

η(t)
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Coalescent with variable population size

Let Tn,k be the waiting time while there are k ancestral lineages
for a sample of size n drawn at time 0.

0

t

η(t)

1 2 3 4 5

T5,5

T5,4

T5,3

T5,2
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Coalescent with variable population size

I CDF of Tn,n,

P(Tn,n ≤ t) =

∫ t

0

(n
2

)

η(τ)
exp

(
−
∫ τ

0

(n
2

)

η(x)
dx

)
dτ

I {Tn,j}nj=2 are independent random variables when η(t) ≡ con-
stant, but this is not true in general

I CDF of Tn,k has a more complicated form for general k due to
the varying population size

I But the CDF of Tn,k conditional on
∑n

j=k+1 Tn,j is simply,

P(Tn,k ≤ t |
n∑

j=k+1

Tn,j = t ′) =

∫ t′+t

t′

(k
2

)

η(τ)
exp

(
−
∫ τ

t′

(k
2

)

η(x)
dx

)
dτ
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Wright-Fisher model with structure

I g subpopulations (aka demes), with Wright-Fisher random mat-
ing in each deme

Lecture 12: November 30 12-7

Figure 12.5: The two-dimensional stepping-stone model. Migration occurs only between adjacent
islands.

is chosen to move to deme β in each generation. Considering this flux backwards in time, we see
that the backwards migration parameters cαβ are related to fαβ by

cαβ =
Nβfβα

Nα
,

known as the backward migration fraction. For the symmetric island model, cαβ = fαβ = fβα.
(One might wonder what happens if we insist upon independence for the migration of individuals

in the population. An alternative formulation of the Wright-Fisher model with migration is as
follows. Suppose Nα individuals each migrate independently with probability fαβ to each deme
β. After migration, deme α now has size Nα + Xα, where Xα is the random number of net
migrants. These Nα +Xα individuals then have Nα offspring and die, to form the next generation.
Notohara (1990) showed that this converges to the same structured coalescent process as the simpler
deterministic formulation given above.)

12.4.1 Further extensions

We have focused on simple island models to illustrate the structured coalescent process. We briefly
mention further extensions to this model which attempt to capture more biologically realistic sce-
narios. Perhaps the biggest restriction is the lack of a spatial component relating the demes. Many
species exhibit isolation by distance—a correlation between pairwise genetic differences pairwise
geographic distances. It is implicit in simple models like the island model that the habitat limits
an individual’s ability to disperse. Isolation by distance suggests that one should also account for
the physical ability of an individual to disperse itself. As a compromise, one modification to the
simple island model is to consider a one- or two-dimensional array of islands, with non-zero mi-
gration occurring only between adjacent islands (Figure 12.5). More ambitiously, one might model
the spatial co-ordinate of individuals as diffusion processes in R: when two diffusions collide, the
individuals coalesce. Extending this to R2 is mathematically challenging, since non-trivial diffusion
processes do not collide in R2.

Finally, we can attempt to combine population substructure and migration with variable popu-
lation size to postulate non-equilibrium models of population history. Two geographically distinct
subpopulations exhibit limited migration until some time in the past when they split, and before
which all individuals mated randomly. A well-known example is the “out-of-Africa” expansion of
modern humans. A model for this history could also include recent population growth, a bottleneck
shortly after the split, and so on. A good example of a coalescent model incorporating many of
these features simultaneously is in Schaffner et al. (2005).

I Population size Nα in deme α

I Occasionally demes exchange individuals (migrations)

I Per-generation probability an offspring in deme α has parent in
deme β given by cαβ
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Structured coalescent

I Take Nα to ∞ at same rate for each α

I Let N =
∑

α Nα be the rescaling parameter for time

I Sample n = (nα)α drawn at time 0

I Each pair of lineages in deme α coalesces at rate 1
Nα/N

I Migration of lineages from deme α to β at rate
mαβ

2 , where mαβ =
2N cαβ
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Structured coalescent

I Suppose we have two demes labelled α and β

I State of the Markov chain at time t given by n(t) = (nα(t), nβ(t))

I Transitions out of state n = (nα, nβ)

(nα, nβ)→





(nα − 1, nβ) at rate
(nα
2

)
1

Nα/N
(nα, nβ − 1) at rate

(nβ
2

)
1

Nβ/N
(nα − 1, nβ + 1) at rate

nαmαβ

2

(nα + 1, nβ − 1) at rate
nβmβα

2
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Structured coalescent

Example genealogy for 2 demes and sample n = (5, 5) at time 0

Lecture 12: November 30 12-2

Figure 12.1: Two realizations of the structured coalescent for n = 10 sequences, five from each of
two subpopulations (distinguished by the dashed line).

populations, though this is the most obvious application. Another example is the maintenance of
functionally distinct alleles by balancing selection—selection to maintain variation in the popula-
tion at a particular locus. If we know the population allele frequencies of different allelic classes
then this corresponds to the different subpopulation sizes. “Migration” events between these alleles
are then governed by mutation and recombination. Linked neutral loci may also be modeled by this
structured coalescent, even if we are not interested in the selective forces directly. Other models
resulting in the structured coalescent include other types of selection such as background selection,
and self-fertilization.

Figure 12.1 illustrates two realizations of the structured coalescent process when g = 2. Unlike
variable population size, exchangeability is violated and so both branch lengths and topologies differ
from the usual unstructured (Kingman) coalescent. The left-hand genealogy in Figure 12.1 contains
only one migration event, and so might be more typical of very low migration rates. The branches
while there exist only two ancestors can be very long while we wait for the necessary migration event.
Mutations on these branches leave a very pronounced signature in the site frequency spectrum for
the whole population; we therefore observe an excess of variants at intermediate frequency.

12.2 Ancestral process for the structured coalescent

The ancestral process for the unstructured coalescent was a death process on the natural numbers.
The ancestral process for the structured coalescent applies to vectors of the form a = (a1, . . . , ag)
where ai describes the number of lineages in subpopulation i. Transition rates can be obtained by
similar arguments to the unstructured case, and we merely state the main results.

Define mα =
�

β �=α mαβ . Then the ancestral process for the structured coalescent converges to
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Measure of population structure

I pw (θ) = probability that two individuals sampled from the same
deme are IBD

I pb(θ) = probability that two individuals sampled from different
demes are IBD

pw = E[e−θTw ], pb = E[e−θTb ]

where Tw (resp. Tb) are the time to coalescence for two individ-
uals sampled from the same (resp. different) deme

I Structure in the population summarized by FST , defined as

FST =
pw (θ)− p(θ)

1− p(θ)
,

where p(θ) is the probability of IBD when two individuals are
sampled at random (across all demes)
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Measure of population structure

I 0 ≤ FST ≤ 1, FST = 0 when no substructure, FST = 1 when
populations isolated

I For small θ,

FST ≈ 1− E[Tw ]

E[T ]
,

where T is the time to coalescence for two individuals sampled
at random (across all demes)

I For human population, some studies estimate FST = 0.12.
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Simple example – symmetric island model
Lecture 12: October 4 12-4

Figure 12.2: The symmetric island model. Subpopulation sizes are all equal, as are migration
rates between any two islands.

The system (12.3–12.4) becomes

E[Tw] =
1

m + 1
+

m

m + 1
E[Tb],

E[Tb] =
1

m
+

1

g − 1
E[Tw] +

g − 2

g − 1
E[Tb],

which can be solved to obtain

E[Tw] = g, E[Tb] = g +
g − 1

m
. (12.5)

Equations (12.5) deserves several remarks.

1. Time to coalescence depends on the number of subpopulations (and is proportional to the
total population size gN).

2. E[Tw] ≤ E[Tb], with equality as m → ∞.

3. E[Tw] is independent of the migration parameter m. This at-first-sight surprising invariance
result is sometimes called Strobeck (1987)’s theorem. An intuition is as follows. The time to
coalescence is shorter when there is less migration to take the two lineages apart, and there is
less migration with decreasing m. On the other hand, if there is a migration event the time to
coalescence is subsequently shorter when there is more migration—so that the two lineages
can be brought back into the same subpopulation. It turns out that these effects on E[Tw]
completely cancel out. More generally, this invariance result holds whenever the migration
model is isotropic, that is, we have the same pattern of migration for all subpopulations.
Formally, we may define population structure to be isotropic if for all α, β, ∃σ ∈ Sg such that
σ(α) = β and mγδ = mσ(γ)σ(δ), for each γ, δ (Strobeck, 1987). Isotropy is a special case of
conservative migration (see below).

4. Higher order moments do depend on m. For example,

Var[Tw] = g2 + 2
(g − 1)2

m
,

Var[Tb] = g2 + 2
(g − 1)2

m
+

(g − 1)2

m2
.

The mean and variance of Tw and Tb as a function of m is plotted in Figure 12.3 in the case
g = 10.

I Suppose we have g demes of equal size

I Migration from any deme α to β is given by mαβ = m
g−1

I Let θ/2 be the mutation rate

I Conditioning on the most recent genealogical event, can write
recurrences for pw (θ) and pb(θ)

pw (θ) =
1

1 + θ + m
+

m

1 + θ + m
pb(θ)

pb(θ) =
m/(g − 1)

θ + m
pw (θ) +

m(g − 2)/(g − 1)

θ + m
pb(θ).
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General population structure
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Recombination
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Recombination

Recombination is a major evolutionary mechanism responsible for
generating genetic variation in sexual organisms

I Humans are diploid organisms

I We have two copies of every chromosome — a maternal and a
paternal copy. These are called homologous chromosomes

I In the synthesis phase of meiosis, each chromosome gets dupli-
cated so that it is comprised of two identical sister chromatids
joined at the centromere
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Recombination

During the subsequent prophase I stage of meiosis, homologous
chromosomes come into contact and DNA is exchanged between
chromatids on homologous chromosomes.

−→
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Recombination

At the end of meiosis, 4 haploid daughter cells are produced. Some
of these daughter cells have different haplotypes from either of the
parental haplotypes.
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Importance of recombination

I Creates new genetic variation by mixing alleles between different
haplotypes

I Breaks down genealogical correlation between two positions on
the same chromosome

I Implications for many computational problems in population ge-
netics, including

I Phasing genotype data into haplotype data
I Imputing missing data
I Disease-association mapping
I Inferring local ancestry of admixed populations
I Detecting signatures of natural selection
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Wright-Fisher model with recombination

I Consider a population of N individuals at two loci

I For each offspring individual, with probability r , there is recom-
bination between the loci and a parent is chosen for each locus
independently and uniformly at random

I With probability 1 − r , an individual chooses the same parent
uniformly at random for both loci
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Coalescent with recombination – desiderata

I Suppose we have two loci A and B separated by recombination
rate ρ/2

I We want a continuous-time process to model the genealogical
structures at both loci

I Marginally, the genealogy at each locus must be given by the
coalescent process we saw earlier

I If there was no recombination (ρ = 0), genealogies at both loci
should be identical

I If there was free recombination (ρ =∞), genealogies at both loci
should be independent

I In general, the genealogies at both loci will be correlated due to
non-trivial recombination
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Ancestral recombination graph
Sample of size 4 at two loci. Example joint genealogy at loci A
and B
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Ancestral recombination graph
Sample of size 4 at two loci. Marginal genealogy at locus A
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Ancestral recombination graph
Sample of size 4 at two loci. Marginal genealogy at locus B

25 / 34



Coalescent with recombination

I r per-generation per-individual probability of recombination be-
tween A and B

I Population-scaled recombination rate ρ = 2Nr

I The configuration at time t in the ancestral process Markov chain
will be specified by n(t) = (a(t), b(t), c(t), d(t))

I a(t) (resp. b(t)) is the number of ancestors at time t that con-
tribute genetic material to the original sample at locus A (resp.
locus B) only

I c(t) is the number of ancestors at time t that contribute genetic
material to the original sample at both locus A and locus B

I d(t) is the number of ancestors at time t that do not contribute
any genetic material to the original sample
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Coalescent with recombination

Suppose the current sample configuration is (a, b, c , d)
There are 10 kinds of coalescence events:

Lecture 17: October 20 17-4

for B(G), C(G), and D(G). The unreduced Markov chain for G is:
�
Ut =

�
NA(t), NB(t), NC(t), ND(t)

�
, t ≥ 0

�

Some remarks.

1. NA(t) +NB(t) +NC(t) +ND(t) = A
(ρ)
n (t), the genealogical ancestral process, i.e., the number

of genealogical ancestors at time t of a sample of size n.

2. NA(t) + NC(t) is the marginal ancestral process of Locus A.

3. NB(t) + NC(t) is the marginal ancestral process of Locus B.

4. We have a closed-form formula for P(CA
n (t) = α), where Cn(t) is the marginal n-coalescent and

α ∈ P[n], but we lack a closed-form formula for the joint distribution for two loci P(CA
n (t) =

α, CB
n (t) = β), where α, β ∈ P[n], except when ρ = 0 or ρ = ∞. When ρ = 0, the two loci are

never separated and

P(CA
n (t) = α, CB

n (t) = β) =

�
P(CA

n (t) = α) if α = β,

0 otherwise.
(17.5)

When ρ = ∞, the two loci are completely independent and

P(CA
n (t) = α, CB

n (t) = β) = P(CA
n (t) = α)P(CB

n (t) = β). (17.6)

We can obtain the transition rates for Ut by enumerating the various kinds of coalescent and re-
combination events. There are ten kinds of coalescent events.

(a, b, c, d) → (a, b, c − 1, d)

Rate:
�

c
2

�
(a, b, c, d) → (a− 1, b− 1, c + 1, d)

Rate: ab

(a, b, c, d) → (a − 1, b, c, d)

Rate:
�
a
2

�
(a, b, c, d) → (a − 1, b, c, d)

Rate: ac

(a, b, c, d) → (a, b − 1, c, d)

Rate:
�

b
2

�
(a, b, c, d) → (a, b − 1, c, d)

Rate: bc

(a, b, c, d) → (a, b, c, d − 1)

Rate:
�
d
2

�
(a, b, c, d) → (a, b, c, d − 1)

Rate: ad

(a, b, c, d) → (a, b, c, d − 1)

Rate: bd

(a, b, c, d) → (a, b, c, d − 1)

Rate: cd

There are four kinds of recombinations events.

(a, b, c, d) → (a + 1, b + 1, c− 1, d)

Rate: cρ
2

(a, b, c, d) → (a, b, c, d + 1)

Rate: aρ
2

(a, b, c, d) → (a, b, c, d + 1)

Rate: bρ
2

(a, b, c, d) → (a, b, c, d + 1)

Rate: cρ
2
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Coalescent with recombination

There are 4 kinds of recombination events:

Lecture 17: October 20 17-4

for B(G), C(G), and D(G). The unreduced Markov chain for G is:
�
Ut =

�
NA(t), NB(t), NC(t), ND(t)

�
, t ≥ 0

�

Some remarks.

1. NA(t) +NB(t) +NC(t) +ND(t) = A
(ρ)
n (t), the genealogical ancestral process, i.e., the number

of genealogical ancestors at time t of a sample of size n.

2. NA(t) + NC(t) is the marginal ancestral process of Locus A.

3. NB(t) + NC(t) is the marginal ancestral process of Locus B.

4. We have a closed-form formula for P(CA
n (t) = α), where Cn(t) is the marginal n-coalescent and

α ∈ P[n], but we lack a closed-form formula for the joint distribution for two loci P(CA
n (t) =

α, CB
n (t) = β), where α, β ∈ P[n], except when ρ = 0 or ρ = ∞. When ρ = 0, the two loci are

never separated and

P(CA
n (t) = α, CB

n (t) = β) =

�
P(CA

n (t) = α) if α = β,

0 otherwise.
(17.5)

When ρ = ∞, the two loci are completely independent and

P(CA
n (t) = α, CB

n (t) = β) = P(CA
n (t) = α)P(CB

n (t) = β). (17.6)

We can obtain the transition rates for Ut by enumerating the various kinds of coalescent and re-
combination events. There are ten kinds of coalescent events.

(a, b, c, d) → (a, b, c − 1, d)

Rate:
�

c
2

�
(a, b, c, d) → (a− 1, b− 1, c + 1, d)

Rate: ab

(a, b, c, d) → (a − 1, b, c, d)

Rate:
�
a
2

�
(a, b, c, d) → (a − 1, b, c, d)

Rate: ac

(a, b, c, d) → (a, b − 1, c, d)

Rate:
�

b
2

�
(a, b, c, d) → (a, b − 1, c, d)

Rate: bc

(a, b, c, d) → (a, b, c, d − 1)

Rate:
�
d
2

�
(a, b, c, d) → (a, b, c, d − 1)

Rate: ad

(a, b, c, d) → (a, b, c, d − 1)

Rate: bd

(a, b, c, d) → (a, b, c, d − 1)

Rate: cd

There are four kinds of recombinations events.

(a, b, c, d) → (a + 1, b + 1, c− 1, d)

Rate: cρ
2

(a, b, c, d) → (a, b, c, d + 1)

Rate: aρ
2

(a, b, c, d) → (a, b, c, d + 1)

Rate: bρ
2

(a, b, c, d) → (a, b, c, d + 1)

Rate: cρ
2
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Coalescent with recombination

I Summarizing the transitions out of state (a, b, c , d)

(a, b, c , d)→





(a, b, c − 1, d) at rate
(c
2

)

(a− 1, b − 1, c + 1, d) at rate ab

(a− 1, b, c , d) at rate
(a
2

)
+ ac

(a, b − 1, c , d) at rate
(b
2

)
+ bc

(a, b, c , d − 1) at rate (a + b + c)d +
(d
2

)

(a + 1, b + 1, c − 1, d) at rate cρ
2

(a, b, c , d + 1) at rate (a+b+d)ρ
2

I Absorbing states {(0, 0, 1, d) | d ≥ 0}
I Can impose mutations on the genealogy at each locus as usual
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Coalescent with recombination – reduced representation

I The fourth component of the state representation (the ‘d ’ compo-
nent) need not be tracked since these ancestors do not contribute
any genetic material to the original sample, and hence have no
influence

I Let the reduced state be (a, b, c). The transitions out of this
state are

(a, b, c)→





(a, b, c − 1) at rate
(c
2

)

(a− 1, b − 1, c + 1) at rate ab

(a− 1, b, c) at rate
(a
2

)
+ ac

(a, b − 1, c) at rate
(b
2

)
+ bc

(a + 1, b + 1, c − 1) at rate cρ
2

I Absorbing state is (0, 0, 1)
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Ancestral recombination graph
Example joint genealogy at loci A and B

(0, 0, 4)

(0, 0, 3)
(1, 1, 2)

(0, 1, 2)

(1, 2, 1)

(0, 1, 2)

(0, 1, 1)

(0, 0, 1)
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Coalescent with recombination

I The coalescent process at just locus A is embedded in the coa-
lescent with recombination for loci A and B

I For state (a, b, c), there are a+c ancestors that contribute genetic
material at locus A

I Transitions out of states in Sm = {(a, b, c) | a + c = m} are

(a, b, c)→
{

(a, b, c − 1) at rate
(c
2

)

(a− 1, b, c) at rate
(a
2

)
+ ac

I Total rate of transitions out of Sm is
(a
2

)
+
(c
2

)
+ ac =

(m
2

)
, which

agrees with the transition rates of the coalescent process at locus
A
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Computational challenges due to recombination

I The two-locus model can be extended to multiple loci with dif-
ferent recombination rates between them

I For K loci, the state space of the Markov chain would have 2K−1
components for the number of ancestors that contribute genetic
material to the sample at different subsets of the K loci

I State space size O((n + 2K )(2
K−1))

I Even simulating data under these models can be expensive for
large K and large ρ

I Computing probability of an observed sample under this model is
prohibitive in practice even for K = 2, two alleles per locus and
a sample size of a few hundred haplotypes
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What about natural selection?

I Easy to incorporate an allelic advantage in the discrete Wright-
Fisher model

I Can construct a continuous time coalescent model

I Genealogical structure – ancestral selection graph

I However, easier to develop a forwards-in-time continuum model
(coming up)
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