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Quick recap

> Large discrete-time randomly mating Wright-Fisher population —
continuous-time coalescent process for the genealogy of a sample
of size n drawn at present

» Continuous-time Markov chain with transitions from k ancestral
lineages to k — 1 at rate (/2()

» Mutations can be superimposed on the genealogical tree to gen-
erate allelic types in the sample
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Quick recap

> Large discrete-time randomly mating Wright-Fisher population —
continuous-time coalescent process for the genealogy of a sample
of size n drawn at present

» Continuous-time Markov chain with transitions from k ancestral
lineages to k — 1 at rate (’2‘)

» Mutations can be superimposed on the genealogical tree to gen-
erate allelic types in the sample

But ...

» What if the population size is changing or has a more complicated
structure?

» How to extend these models to more than one genomic posi-
tion/locus?
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What might you do with all this theory?

v

Generative model for sequence data that captures the most im-
portant biological mechanisms

v

Infer biological parameters of the population: mutation rates,
genome-wide recombination maps

v

Infer demographic structure of the population

v

Regions of the genome under selective pressure

)
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Demographic structure



Demography — example

(Henn et al., 2012)
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Importance of modelling demography

v

Demographic processes influence genetic variation

v

Population stratification can confound association studies

v

Correct null model

» Forensics

v

Historical interest
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Wright-Fisher model with variable population size

» Randomly mating population of size N(t) in generation t

» t =0 is present, t increasing in the past

O O N(t+1)

N(t)

» At generation t, N(t) offspring generated, each picks a parent
among N(t + 1) parents independently and uniformly

6
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Coalescent with variable population size

v

Take N(t) to co at same rate for each t

» Choose rescaling parameter N for time such that
_ o NNt
ne) = Jim =%
N(t)—oo

exists and is positive for all t > 0

v

Sample of size n randomly drawn at time 0

v

Each pair of lineages coalescences according to exponential dis-
tribution with time-variable rate ﬁ
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Coalescent with variable population size

Let T, x be the waiting time while there are k ancestral lineages
for a sample of size n drawn at time O.
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Coalescent with variable population size

> CDF of Tpp,

S A R L B PR
Tna< )= 565 p( /on(x)d>d

» {Ts;}]—, are independent random variables when n(t) = con-
stant, but this is not true in general

» CDF of T, has a more complicated form for general k due to
the varying population size

» But the CDF of T, conditional on Z}’:kﬂ T, is simply,

- e (3)
P(Thx <t ZTW-:H):/ 2

exp | — ’ (12() x | dT
2 G p( |, o) ¢



Wright-Fisher model with structure

v

g subpopulations (aka demes), with Wright-Fisher random mat-
ing in each deme

v

Population size N, in deme «

v

Occasionally demes exchange individuals (migrations)

> Per-generation probability an offspring in deme « has parent in
deme 3 given by c,g
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Structured coalescent

v

Take N, to oo at same rate for each «

v

Let N'=3"_ N, be the rescaling parameter for time

v

Sample n = (n,)o drawn at time 0

1
No /N

, where m,g =

v

Each pair of lineages in deme « coalesces at rate

Mmag

v

Migration of lineages from deme « to 3 at rate
2./\/Cag
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Structured coalescent

» Suppose we have two demes labelled o and S
» State of the Markov chain at time t given by n(t) = (n.(t), ns(t))

» Transitions out of state n = (nq, ng)

(no — 1, np) at rate ("”‘) Nal/N
Ne,ng — 1) at rate () NB/N

(
(na —1,ng+1) atrate 22322
(M0

ngMpa

+1,n3—1) at rate =

(na, ng) —
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Structured coalescent

Example genealogy for 2 demes and sample n = (5,5) at time 0
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Measure of population structure

> pw(0) = probability that two individuals sampled from the same
deme are IBD

» pp(0) = probability that two individuals sampled from different
demes are IBD
pw =E[e 7], p,=E[e "]
where T, (resp. Tp) are the time to coalescence for two individ-
uals sampled from the same (resp. different) deme
» Structure in the population summarized by Fst, defined as
., 2ul0) —p(0)
1-p(0)
where p(6) is the probability of IBD when two individuals are
sampled at random (across all demes)
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Measure of population structure

» 0 < Fst <1, Fst = 0 when no substructure, FsT = 1 when
populations isolated

» For small 0,

E[Tw]

E[T]"

where T is the time to coalescence for two individuals sampled
at random (across all demes)

FST?—U]_—

» For human population, some studies estimate Fs7 = 0.12.
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Simple example — symmetric island model

» Suppose we have g demes of equal size

Migration from any deme o to 3 is given by m,3 = -5

g—1
Let /2 be the mutation rate

v

v

v

Conditioning on the most recent genealogical event, can write
recurrences for p,,(0) and pp(0)

0+ m

pul0) = 1+01+m+ 1+;n+mpb(9)
pol0) = "LE L p () MEZDAEZL) )

0+ m

16
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General population structure
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Recombination
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Recombination

Recombination is a major evolutionary mechanism responsible for
generating genetic variation in sexual organisms
» Humans are diploid organisms

> We have two copies of every chromosome — a maternal and a
paternal copy. These are called homologous chromosomes

> In the synthesis phase of meiosis, each chromosome gets dupli-
cated so that it is comprised of two identical sister chromatids
joined at the centromere
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Recombination

During the subsequent prophase | stage of meiosis, homologous
chromosomes come into contact and DNA is exchanged between
chromatids on homologous chromosomes.
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Recombination

At the end of meiosis, 4 haploid daughter cells are produced. Some
of these daughter cells have different haplotypes from either of the
parental haplotypes.
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Importance of recombination

» Creates new genetic variation by mixing alleles between different
haplotypes

> Breaks down genealogical correlation between two positions on
the same chromosome

» Implications for many computational problems in population ge-
netics, including
» Phasing genotype data into haplotype data
» Imputing missing data
» Disease-association mapping
> Inferring local ancestry of admixed populations
» Detecting signatures of natural selection



Wright-Fisher model with recombination

» Consider a population of N individuals at two loci

» For each offspring individual, with probability r, there is recom-
bination between the loci and a parent is chosen for each locus
independently and uniformly at random

» With probability 1 — r, an individual chooses the same parent
uniformly at random for both loci
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Coalescent with recombination — desiderata

» Suppose we have two loci A and B separated by recombination
rate p/2

» We want a continuous-time process to model the genealogical
structures at both loci

» Marginally, the genealogy at each locus must be given by the
coalescent process we saw earlier

» If there was no recombination (p = 0), genealogies at both loci
should be identical

» If there was free recombination (p = c0), genealogies at both loci
should be independent

> In general, the genealogies at both loci will be correlated due to
non-trivial recombination
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Ancestral recombination graph

Sample of size 4 at two loci. Example joint genealogy at loci A
and B
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Ancestral recombination graph
Sample of size 4 at two loci. Marginal genealogy at locus A
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Ancestral recombination graph

Sample of size 4 at two loci.  Marginal genealogy at locus B
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Coalescent with recombination

> r per-generation per-individual probability of recombination be-
tween A and B

» Population-scaled recombination rate p = 2Nr

» The configuration at time t in the ancestral process Markov chain
will be specified by n(t) = (a(t), b(t), c(t), d(t))

» a(t) (resp. b(t)) is the number of ancestors at time t that con-

tribute genetic material to the original sample at locus A (resp.
locus B) only

» ¢(t) is the number of ancestors at time t that contribute genetic
material to the original sample at both locus A and locus B

» d(t) is the number of ancestors at time t that do not contribute
any genetic material to the original sample
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Coalescent with recombination

Suppose the current sample configuration is (a, b, ¢, d)
There are 10 kinds of coalescence events:

(a,b,c,d) — (a,b,c—1,d)
Rate: (3)

(a,b,¢,d) = (a—1,b,¢,d)
Rate: (3)

(a,b,e,d) — (a,b—1,¢,d)
Rate: (b)

2
(a,b,c,d) — (a,b,c,d—1)

Rate: ()

(a,b,e,d) — (a,b,c,d — 1)
Rate: bd

I

(a,b,e,d) = (a—1,b—1,c+1,d)
Rate: ab

(ayb,e,d) — (a —1,b,¢,d)

Rate: ac

(a,b,c,d) — (a,b—1,¢,d)
Rate: be

(a,b,¢,d) — (a,b,c,d—1)
Rate: ad

(a,b,e,d) — (a,b,c,d —1)
Rate: cd

I
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Coalescent with recombination

There are 4 kinds of recombination events:

(a,b,¢,d) = (a+1,b+1,c—1,d) (a,b,c,d) = (a,b,c,d+ 1)
Rate: ¥ Rate: %
(a,b,c,d) = (a,b,c,d + 1) (a,b,c,d) = (a,b,c,d + 1)
Rate: %” Rate: ¥
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Coalescent with recombination

» Summarizing the transitions out of state (a, b, ¢, d)

((a,b,c—l,d)
(a—1,b—1,c+1,d)
(a—1,b,c,d)
(a,b,c,d) = < (a,b—1,c,d)
(a,b,c,d —1)
(a+1,b+1,c—1,d)
((a,b,c,d +1)
» Absorbing states {(0,0,1,d) | d > 0}

» Can impose mutations on the genealogy at each locus as usual

at rate (5)
at rate ab
at rate (5) + ac
at rate ([2’) + bc

at rate (a+ b+ c)d + (g)

at rate £

at rate (2+2rd)e
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Coalescent with recombination — reduced representation

» The fourth component of the state representation (the ‘d’ compo-
nent) need not be tracked since these ancestors do not contribute
any genetic material to the original sample, and hence have no

influence

> Let the reduced state be (a, b,c). The transitions out of this

state are

(
(
(a,b,c) = ¢ (a—1,b,0¢)
(
(

» Absorbing state is (0,0,1)

at rate (5)
at rate ab
at rate (5) + ac
at rate (12’) + bc

at rate %
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Ancestral recombination graph
Example joint genealogy at loci A and B
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Coalescent with recombination

» The coalescent process at just locus A is embedded in the coa-
lescent with recombination for loci A and B

» For state (a, b, ¢), there are a+c ancestors that contribute genetic
material at locus A

» Transitions out of states in S, = {(a, b,c) | a+ ¢ = m} are
(2.b,¢) {(a, b,c—1) atrate (5)

2
(a—1,b,c) atrate (3)+ ac
» Total rate of transitions out of Sy, is (5) + (5) +ac = (75), which

agrees with the transition rates of the coalescent process at locus
A
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Computational challenges due to recombination

» The two-locus model can be extended to multiple loci with dif-
ferent recombination rates between them

» For K loci, the state space of the Markov chain would have 2K —1
components for the number of ancestors that contribute genetic
material to the sample at different subsets of the K loci

» State space size O((n+ 2K)(2K—1))

» Even simulating data under these models can be expensive for
large K and large p

» Computing probability of an observed sample under this model is
prohibitive in practice even for K = 2, two alleles per locus and
a sample size of a few hundred haplotypes
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What about natural selection?

v

Easy to incorporate an allelic advantage in the discrete Wright-
Fisher model

v

Can construct a continuous time coalescent model

v

Genealogical structure — ancestral selection graph

v

However, easier to develop a forwards-in-time continuum model
(coming up)
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