Urban dashboardistics

Damon Wischik Dept. of Computer Science and Technology

Wardrop modelled route choice by drivers in a traffic network.

Braess discovered paradoxical outcomes (which can be overcome by setting appropriate tolls).

Towards a multimodal Wardrop equilibrium model: Let's consider three main agents, each with their own objectives.

USERS

- can choose mode of transport
- want low price, low travel time, etc.
- prompt, cheap deliveries

RIDESHARE FLEET

- can choose its pricing model
- needs to rebalance its fleet

and assorted other fleets,

DELIVERY FLEETS

in competition

wants profit

CITY

- wants to maximize total utility over all users
- provides public transport, and sets prices
- wants universal service
- responsible for environmental externalities etc.

many uncoordinated individuals

a few large operators, with direct user contact and real-time backends

REGULATORY POWER

1. A fleet operator, if it's a dominant player, can avoid Braess's paradox by internalizing the cost of congestion.

10. WE SUPPORT THAT AUTONOMOUS VEHICLES (AVS) IN DENSE URBAN AREAS SHOULD BE OPERATED ONLY IN SHARED FLEETS.

Due to the transformational potential of autonomous vehicle technology, it is critical that all AVs are part of shared fleets, well-regulated, and zero emission. Shared fleets can provide more affordable access to all, maximize public safety and emissions benefits, ensure that maintenance and software upgrades are managed by professionals, and actualize the promise of reductions in vehicles, parking, and congestion, in line with broader policy trends to reduce the use of personal cars in dense urban areas.

2. Fleets have the effect of *coupling* parts of the transport network in new ways. This might lead to paradoxical behaviour.

USERS	RIDESHARE FLEET	CITY			
 can choose mode of transport 	 can set origin-based 'surge' 	 sets public transit fares 			
 wants lowest price 	multipliers				
	 needs to rebalance the fleet 				
	 has to balance cost and 				
	revenue				
demand road rail B	Let c_{ij} be the base cost of a road t Let μ_i be the surge multiplier at lo Let $\alpha_{ij} = \alpha_{ij}(\mu_i)$ be the demand f [measured in trips per unit time, and d	Trip from i to j , and f_{ij} the rail fare ocation i , so passenger pays $\mu_i c_{ij}$ for rideshare trips lepending on c and f]			
	The fleet picks rebalancing rates β_{ij} such that for all i , $\sum_j (\alpha_{ij} + \beta_{ij}) =$ and adjusts μ to achieve budget balance: $\sum_{i,j} (\alpha_{ij} + \beta_{ij})c_{ij} = \sum_{i,j} \alpha_{ij} \mu_i c_{ij}$				

2. Fleets have the effect of *coupling* parts of the transport network in new ways. This might lead to paradoxical behaviour.

If the city reduces the rail fare $A \rightarrow B$

- some A→B passengers will shift to rail
- the fleet operator still wants to get cars to B, maybe via C
- it might as well discount rides C→B
- this takes C→B passengers off rail
- there might even be a net decrease in rail trips [Sid's paradox]

3. Cooperate with fleets, so that we don't use streets as parking lots.

3. Cooperate with fleets, so that we don't use streets as parking lots.

- The city simulates a virtual road network whose capacity is 95% of what's really there, and measures congestion
- Fleet operators agree to set routes and prices according to virtual congestion
- The city sends real-time virtual congestion signals, and the fleets send enough data that the city can verify compliance
- The streets are kept free-flowing
- In return, the fleets are permitted special access to restricted zones

Can't this all be done with congestion charges?

Singapore's Electronic Road Pricing

DIGRESSION

The full story of Internet congestion control theory

Lawrence Berkeley National Lab

"In October of '86, the Internet had the first of what became a series of `congestion collapses'. During this period, the data throughput from LBL to UC Berkeley (sites separated by 400 yards and two IMP hops) dropped from 32 Kbps to 40 bps. We were fascinated by this sudden factor-of-thousand drop in bandwidth and embarked on an investigation of why things had gotten so bad. In particular, we wondered if the 4.3BSD (Berkeley UNIX) TCP was misbehaving or if it could be tuned to work better under abysmal network conditions."

Van Jacobson, "Congestion avoidance and control", 1988

Jacobson's TCP algorithm

if (seqno > _last_acked) { if (!_in_fast_recovery) { _last_acked = seqno; $_dupacks = 0;$ inflate_window(); send_packets(now); _last_sent_time = now; return; else _cwnd=0; send_packets(now); _dupacks++; if (_dupacks!=3) { send_packets(now); return; } retransmit_packet(now); }

1974 Packet-switched Internet invented (Kahn, Cerf)

- 1986 congestion collapse
- 1988 TCP congestion control designed (Jacobson)
- 1998 mathematical model (Kelly)
- 2002 control theory solved (Vinnicombe)
- 2011 standardization of TCP-friendly multipath (Handley)
- 2013 Apple's Siri is using multipath TCP

Kelly's model for Internet congestion control

 x_r = transmission rate of user / route r $U_r(x_r)$ = utility associated with user r y_j = total rate on link $j = \sum_r A_{jr} x_r$ C_j = capacity of link j

Consider the optimization problem

maximize	\sum_r
over	x_r
such that	<i>y</i> =

 $\begin{array}{l} & _{r} U_{r}(x_{r}) \\ & \geq 0, \ y_{j} \geq 0 \\ & = Ax \ \text{and} \ y \leq C \end{array} \end{array}$

Kelly's model for Internet congestion control

 x_r = transmission rate of user / route r $U_r(x_r)$ = utility associated with user r y_j = total rate on link $j = \sum_r A_{jr} x_r$ C_j = capacity of link j

Consider the optimization problem:

maxi	mize
over	
such	that

$$\sum_{r} U_{r}(x_{r})$$

$$x_{r} \ge 0, \ y_{j} \ge 0$$

$$y = Ax \text{ and } y \le C$$

embodies the utility function implicit in Jacobson's TCP, including the round trip time for route r, *RTT*_r

A dynamical system for a relaxed version:

$$\frac{dx_r(t)}{dt} = \frac{1}{\operatorname{RTT}_r^2} - p_r(t) \frac{x_r(t)^2}{2}$$

$$p_r(t) = \sum_j A_{jr} \left(1 - \frac{c_j}{y_j(t)}\right)^+$$

a cost / dual variable incurred by the flow on each congested link it uses, corresponding to packet drop rate

Kelly's model for Internet congestion control

A		• Off	 »	Book	Dam	on Wise	chik	Ā			×	
	File	Home	rt Draw Pag	ge Layout	Formula	as Data	Review	View	Help	Tell m	ie L	Ŕ
A9)	•	× v	fx								*
	А		В		С			D				
1	С	3										
2	RTT	0.1										
3												
4	t	x		р			dx/dt					
5	0	0.1		=MAX(1-	-B\$1/B	5,0)	=1/B\$2	2^2-C5	*B5^2/2			
6	0.01	=B5+D5	*(A6-A5)									
7												
8		Cheet1	\bigcirc									•
	P	Sheet i	(+)			:						
Rea	ady						—		-	-+	100%	

embodies the utility function implicit in Jacobson's TCP, including the round trip time for route r, RTT_r

A dynamical system for a relaxed version:

$$\frac{dx_{r}(t)}{dt} = \frac{1}{\text{RTT}_{r}^{2}} - p_{r}(t)\frac{x_{r}(t)^{2}}{2}$$

$$p_{r}(t) = \sum_{j} A_{jr} \left(1 - \frac{c_{j}}{y_{j}(t)}\right)^{+}$$

a cost / dual variable incurred by the flow on each congested link it uses, corresponding to packet drop rate

The congestion control algorithm extends naturally to multipath settings.

Each end system balances its traffic on the paths it has available, and the overall result is complete resource pooling (when there is sufficient diversity of paths).

Three flows share four resources, as though the network were made up of a single resource.

Mark Handley et al. implemented MPTCP, and ensured it played nicely with middleboxes in the Internet.

Christoph Paasch, Apple IETF meeting in Prague 2017

MPTCP at Apple

• Implemented since iOS 7 for Siri

User-feedback (Time-to-First-Word) 20% faster in the 95th percentile

5x reduction of network failures

— but Apple discarded the multipath congestion controller, and simply sends each packet on both interfaces!

All models are wrong, but some are useful.

George Box, 1978

What makes a model useful?

		Off - ·	Book Damo	n Wisc	hik 囨 — 🗆		
F	File H	ome Insert Draw Pag	ge Layout Formulas	Data	Review View Help Q T	ell me 🛛 🗠	1
A 9		• : × 🗸	fx			~	-
	А	В	С		D	-	•
1	С	3					
2	RTT	0.1					
3							
4	t	x	р		dx/dt		
5	0	0.1	=MAX(1-B\$1/B5,	0)	=1/B\$2^2-C5*B5^2/2		
6	0.01	=B5+D5*(A6-A5)					
7							
8						<u> </u>	•
•	Þ	Sheet1 (+)			•	•	
Rea	dy				□	+ 100%	

A data dashboard should be a platform for exploring, testing new scenarios, optimizing policies, and investigating hypotheses.

5 0

6 0.01

0.1

Sheet1

=B5+D5*(A6-A5)

Good design comes from understanding robustly the space of control problems: their data signals, and their data processing operations

> 3 0.1

0.1

Sheet1

=B5+D5*(A6-A5)

dx/dt

=MAX(1-B\$1/B5,0)

=1/B\$2^2-C5*B5^2/2

2 RTT

5 0

City dashboards we've prototyped:

- GUI interface for modifying trace data, to test out new scenarios
- Novelty: see simulation output in the same environment as your original datasets
- Downside: too clunky to explore the scenario space

City dashboards we've prototyped:

- Like Excel pivot tables, but including set-valued columns / factorized database queries
- Novelty: break down a simulator into functional expressions on data, e.g. =TSP(\$B\$3)
- Downside: a confusing way to express simulations

🔍 🔍 🖉 👶 Urba	an Engines ×		Damon					
	calhost:8001/explore/	Urban Engines ×						
Draw Reg		← → C 🕒	localhost:8001/explore/				Q☆ =	
+ Chart	t settings	🔥 urban en				Explore Repor	ts 🛧 🗜	
	main selection deliveries on 12 - 18 Oct 2015 Filter by -	Draw Ret Tabl	le / ries on 12 - 18 Oct 2015 /			2	Deliveries My Traces	
	values show deliveries	da	ate	individual drivers	show deliveries	= TSP([show deliveries])		
	= TSP([show deliveries]) Add variable -	20	015-10-11	¤(2)		3		
	row variables date individual drivers Add variable	20	015-10-11	¤(4)				
1 km 3000 ft		20	015-10-16	¤(2)	the second se	T.		
Adc 📾 Adc		20	015-10-13	¤(6)		T		

The Alan Turing Institute in London is hiring! We want a postdoc for two years, to join 3 faculty, 1 PhD, 1 software engineer

explore user+fleet+city interaction
 → dashboard design → regulatory policy discussion

study traffic signal control, using reinforcement learning → integrate ML with data dashboards

