Provable Real-Time Learning with applications to Robotics

Murad Tukan Dan Feldman

Robotics & Big Data Lab
How to find a battleship

- A "sea" of M squares which contains (at some unknown location) a "battleship" of K squares.
- Both the sea and the battleship are rectangular shape.
- Find the battleship by probing at least one of its squares.
Path Planning in the Dark

• In control space we know start & destination configurations
• Can only ask Boolean queries regarding feasible positions
• As in Battleships (game), Piano Mover,
• or Drones in a crowded supermarket
Big Data

- **Volume**: huge amount n of data points
- **Variety**: high dimensional d space
- **Velocity**: data arrive in real-time

Need to support:
- Streaming (one pass, logarithmic memory)
- Distributed data (on cloud)
- Simple computations (embarrassingly parallel)
- No assumption on order of points
Big Data Computation model

- = Streaming + Parallel computation
- Input: infinite stream of vectors
- \(n = \) vectors seen so far
- \(\sim \log n \) memory
- \(M \) processors
- \(\sim \log (n)/M \) insertion time per point (Embarrassingly parallel)
Focus on optimization summarization

Data

Core-set

Less:
- CPU Time
- Dev. Time
- Memory
- Energy
- Comm.
- $$$, ...
Example Coresets

- Deep Learning [F, Tukan, Kener, To appear]
- Graph Summarization [F, Sedat, Rus, ICML’17]
- Mixture of Gaussians [F, Krause, etc JMLR’17]
- LSA/PCA/SVD [F, Rus, and Volkob, NIPS’16]
- k-Means [F, Barger, SDM’16]
- Non-Negative Matrix Factorization [F, Tassa, KDD15]
- Robots Localization [F, Cindy, Rus, ICRA’15]
- Robots Coverage [F, Gil, Rus, ICRA’13]
- Segmentation [F, Rosman, Rus, Volkob, NIPS’14]
-
- k-Line Means [F, Fiat, Sharir, FOCS’06]
Naïve Uniform Sampling

\[x_i \in \mathbb{R}^d \]
Naïve Uniform Sampling

Sample a set U of m points uniformly

$= x_i \in \mathbb{R}^d$

Small cluster is missed

← High variance
Simplest coreset definition

Let
- P be a set, called *point set*
- X be a set, called *query set*
- $\text{cost}(P, x)$: maps every query $x \in X$ into a non-negative number

For a given $\epsilon > 0$, the set $C \subseteq P$ is a *coreset* if for every $x \in X$ we have

$$\text{cost}(P, x) \sim \text{cost}(C, x)$$

up to $(1 \pm \epsilon)$ approximation factor
From Big Data to Small Data

Suppose that we can compute such a corset C of size $\frac{1}{\epsilon}$ for every set P of n points

- in time n^3,
- off-line, non-parallel, non-streaming algorithm
Read the first $\frac{2}{\epsilon}$ streaming points and reduce them into $\frac{1}{\epsilon}$ weighted points in time $\left(\frac{2}{\epsilon}\right)^5$

$1 + \epsilon$ corset for P_1
Read the next $\frac{2}{\epsilon}$ streaming point and reduce them into $\frac{1}{\epsilon}$ weighted points in time $\left(\frac{2}{\epsilon}\right)^5$.
Merge the pair of ϵ-coresets into an ϵ-corset of $\frac{2}{\epsilon}$ weighted points

$1 + \epsilon$-corset for $P_1 \cup P_2$
Delete the pair of original coresets from memory

$1 + \epsilon$-corset for $P_1 \cup P_2$
Reduce the $\frac{2}{\epsilon}$ weighted points into $\frac{1}{\epsilon}$ weighted points by constructing their coreset

$1 + \epsilon$-corset for $P_1 \cup P_2$
Reduce the $\frac{2}{\epsilon}$ weighted points into $\frac{1}{\epsilon}$ weighted points by constructing their coreset

$1 + \epsilon$-corset for $P_1 \cup P_2$

$1 + \epsilon$-corset for $P_1 \cup P_2$ = $(1 + \epsilon)^2$-corset for $P_1 \cup P_2$
$(1 + \epsilon)^2$-corset for $P_1 \cup P_2$

$(1 + \epsilon)$-corset for P_3
\((1 + \epsilon)^2\)-corset for \(P_1 \cup P_2\)
\((1 + \epsilon)^2\)-corset for \(P_1 \cup P_2\)

\((1 + \epsilon)\)-corset for \(P_3 \cup P_4\)
$(1 + \epsilon)^2$-corset for $P_1 \cup P_2$

$(1 + \epsilon)^2$-corset for $P_3 \cup P_4$
$(1 + \epsilon)^2$-coreset for $P_1 \cup P_2 \cup P_3 \cup P_4$
$(1 + \epsilon)^3$-coreset for $P_1 \cup P_2 \cup P_3 \cup P_4$
Parallel Computation
Parallel Computation
Parallel Computation

Run off-line algorithm on corset using single computer
Parallel+ Streaming Computation
Coresets for convex optimization

- A generic framework for learning kernel
 - E.g: Logistic regression,
 - PCA/SVD with outliers,
 - Numerous kernels in Machine learning

Main tool:
 - generic-SVD via coreset for John Ellipsoid

- Relation to obstacle detection and path planning
Related Work

• Clarkson (SODA’2005)
 – Approximation for L_1 regression using weak coreset (only for off-line optimization)
• A. Dasgupta, P. Drineas, B. Harb, R. Kumar, M. Mahoney (SODA’2008)
 Weak coreset for L_p regression
• LaValle & Kuffmer, RRT trees (1998)
 Heuristics for path planning using sampling
Theorem [Feldman, Langberg, STOC’11]

Suppose that

\[\text{cost}(P, x) := \sum_{p \in P} w(p)k(p, x) \]

where \(k : P \times X \to [0, \infty) \).

A sample \(C \subseteq P \) from the distribution

\[\text{sensitivity}(p) = \max_{x \in X} \frac{k(p, x)}{\sum_{p', k(p', x)} \cdot \sum_{p} \text{sensitibity}(p)} \]

is a coreset if \(|C| \sim \frac{\text{dimension of } X}{\varepsilon} \cdot \sum_{p} \text{sensitibity}(p) \)
Importance Weights

$Sensitivity(p)$

Sampling distribution

$\frac{1}{Sensitivity(p)}$

Weights
Sensitivity for convex optimization

- We want to minimize/estimate

\[f(x) \sim \text{cost}(P, x) = \sum_{p \in P} k(p, x) \]

over \(x \in X = \mathbb{R}^d \),

where \(f \) is convex
Query space as a convex shape

- Example: \[k(p, x) = |px|^2 \]
 \[f(x) = ||Px||^2, \]

Every unit vector \(x \) is mapped to \(x \cdot f(x) \)
Query space as a convex shape

Example: \(k(p, x) = |px|^2 \)

\[
f(x) = ||Px||^2,
\]

Every unit vector \(x \)
is mapped to \(x \cdot f(x) \)

The result is the Ellipsoid

\[
X_f = \{ x \in \mathbb{R}^d \mid f(x) \leq 1 \} = \{ x \in \mathbb{R}^d \mid ||DV^T x|| \leq 1 \}
\]

where \(P = UDVT \) is the SVD of \(A \), and we have an exact “coreset”

\[
||Px|| = ||UDVT x|| = ||DV^T x||
\]
\[
\frac{k(p,x)}{f(x)} = \frac{|px|^2}{||Px||^2} = \frac{px}{||Px||} \cdot \frac{px}{||Px||} = \frac{uDV^T x}{||UDV^T x||} \cdot \frac{uDV^T x}{||UDV^T x||} \\
= \frac{uDV^T x}{||DV^T x||} \cdot \frac{uDV^T x}{||DV^T x||} \leq \frac{||u||^2}{||DV^T x||^2}
\]

\[
\sum_{i=1}^{n} ||u_i||^2 = ||U||_F^2 = d
\]
The general case

- Example: \(k(p, x) = |px| \)
 \[
 f(x) = \|Px\|_1
 \]

- Every unit vector \(x \) is mapped to \(x \cdot f(x) \)
- The result is a convex shape

\[
X_f = \{ x \in \mathbb{R}^d \mid f(x) \leq 1 \}
= \{ x \in \mathbb{R}^d \mid \|Ax\|_1 \leq 1 \}
\]

Complexity > \(n^d > n \)
Theorem (John’s Ellipsoid)

- Every convex body contains an ellipsoid \(\frac{E}{d} \) such that \(E \) contains it.
- For a \(E \in \mathbb{R}^{d \times d} \) and every \(x \in \mathbb{R}^d \):
 \[f(x) \sim ||Ex|| = ||DV^T x|| \]
- We define \(P = UDV^T \) as the \(f \)-SVD of \(P \)
- Cons: (i) only \(d \)-approximation
 (ii) not subset of input point set \(P \)
From Sensitivity Lens

\[
\frac{k(p,x)}{f(x)} = \frac{|px|}{||Px||_1} = \frac{|px|}{||UDVTx||_1} \approx \frac{|uDV^T x|}{||DVTx||_2} \leq ||u||_1
\]

\[
\sum_{i=1}^{n} ||u_i||_1 = ?
\]
Sensitivity for convex optimization

- We want to minimize/answer

\[
f(x) \sim \sum_{p \in P} k(p, x)
\]

- \(k(p, x) \sim g(|px|) \)

- \(a \cdot k(p, x) \sim k(p, a \cdot x) \)

- Otherwise, we use level sets for \(X_f \)
Main Theorem [F., Tukan]

The sensitivity of a point $p \in P$ is at most

$$\max_x \frac{k(p, x)}{f(x)} \leq \sum_{i=1}^{d} k(p, E^{-1}e_i)$$

and the total sensitivity (\simsize of coreset):

$$\sum_{p \in P} s(p) \in d^{O(1)}$$
Proof Sketch - sensitivity

\[\frac{k(p, x)}{f(x)} \sim \frac{k(p, x)}{||Ex||} \sim k \left(p, \frac{x}{||Ex||} \right) = k(uE, E^{-1}y) \]

\[\sim g(|uy|) \leq g(|u|_2) \leq g(|u|_1) \]

\[= g \left(\sum_{i=1}^{d} |ue_i| \right) \sim \sum_{i=1}^{d} g(|ue_i|) \]

\[\sim \sum_{i=1}^{d} k(uE, E^{-1}e_i) = \sum_{i=1}^{d} k(p, E^{-1}e_i) \]
Proof Sketch – total sensitivity

\[\sum_{p \in P} \sum_{i=1}^{d} k(p, E^{-1}e_i) = \sum_{i=1}^{d} \sum_{p \in P} k(p, E^{-1}e_i) \]

\[= \sum_{i=1}^{d} f(E^{-1}e_i) \sim \sum_{i=1}^{d} ||E \cdot E^{-1}e_i|| \sim \]

\[\sum_{i=1}^{d} ||e_i|| = d \]
How do we compute the ellipsoid E?

$X_f = \{ x \in \mathbb{R}^d \mid f(x) \leq 1 \}$

$f(x) \sim \|Ex\| = \|DV^Tx\|$
Path Planning in the Dark

• In control space we know start & destination configurations

• Can only ask boolean queries regarding feasible positions

• As in Battleships (game)
Path Planning in the Dark

• We want minimum number of queries for maximum approximation error
• Existing algorithms have no guarantee for optimality
• Approximation by convex polygons
Path Planning
(a) Epsilon grid sampling; First iteration

(b) Epsilon grid sampling; Second iteration

(c) d^{2d} approximation to John Ellipsoid

(d) Applying "Epsilon Star" on the transform space

(e) $1 + \epsilon$ approximation to the real convex bodies
Our Algorithm

RRT
Open Problems

• More Coresets
 - Deep learning, Decision trees, Sparse data
 - Robotics: Optimal 3D Navigation and Mapping

• Private Coresets, [STOC’11, with Fiat et al.]

• Homomorphic Encryption Coresets
 [with A. Akavia, H. Shaul]

• Generic software library for robotics & big data
 - Coresets on Demand on the cloud

• Sensor Fusion (GPS+Video+Audio+Text+..)
Input: d-dimensional signal P over time
Coreset for k-means

[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for k-means can be computed by choosing points from the distribution:

$$\text{sensitivity}(p) = \frac{\text{dist}(p,q^*)}{\sum_{p', \text{dist}(p',q^*)} + \frac{1}{n_p}}$$

$q^* = k$-means of P

$n_p = \text{number of points in the cluster of } p$

$|C| = \frac{k \cdot d}{\epsilon^2}$
Coreset for k-means can be computed by choosing points from the distribution:

$$\text{sensitivity}(p) = \frac{\text{dist}(p, q^*)}{\sum_{p'} \text{dist}(p', q^*)} + \frac{1}{n_p}$$

$q^* = k$-means of P
Or approximation [SoCg07, Feldma, Sharir, Fiat]

$n_p = \text{number of points in the cluster of } p$

$|C| = \frac{k \cdot d}{\varepsilon^2}$
Coreset for k-means

[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for k-means can be computed by choosing points from the distribution:

$$\text{sensitivity}(p) = \frac{\text{dist}(p,q^*)}{\sum_{p'} \text{dist}(p',q^*)} + \frac{1}{n_p}$$

$q^* = k$-means of P
Or approximation [SoCg07, Feldma, Sharir, Fiat]

$n_p = \text{number of points in the cluster of } p$

$$|C| = \frac{k \cdot \frac{d}{\varepsilon^2}}{\varepsilon^2} \cdot \frac{k \cdot \left(\frac{k}{\varepsilon}\right)}{\varepsilon^2}$$
[SODA’13, Feldman, Schmidt, ..]
Coreset for \(k \)-means can be computed by choosing points from the distribution:

\[
\text{sensitivity}(p) = \frac{\text{dist}(p,q^*)}{\sum_{p'} \text{dist}(p',q^*)} + \frac{1}{n_p}
\]

\(q^* = k \)-means of \(P \)

\(n_p = \) number of points in the cluster of \(p \)

\(|C| = \frac{k \cdot d}{\varepsilon^2} \)
Coreset for \(k \)-means can be computed by choosing points from the distribution:

\[
\text{sensitivity}(p) = \frac{\text{dist}(p, q^*)}{\sum_{p'} \text{dist}(p', q^*)} + \frac{1}{n_p}
\]

\(q^* = k \)-means of \(P \)
Or approximation [SoCg07, Feldma, Sharir, Fiat]

\(n_p = \) number of points in the cluster of \(p \)

\(|C| = \frac{k \cdot d}{\epsilon^2} \)
Coreset for \(k \)-means can be computed by choosing points from the distribution:

\[
\text{sensitivity}(p) = \frac{\text{dist}(p, q^*)}{\sum_{p'} \text{dist}(p', q^*)} + \frac{1}{n_p}
\]

\(q^* = k \)-means of \(P \) Or approximation \([\text{SoCG'07, Feldma, Sharir, Fiat}]\)

\(n_p = \text{number of points in the cluster of } p \)

\(|C| = \frac{k \cdot d}{\epsilon^2} \)
Coreset for k-means

[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for k-means can be computed by choosing points from the distribution:

$$
\text{sensitivity}(p) = \frac{\text{dist}(p,q^*)}{\sum_{p'} \text{dist}(p',q^*)} + \frac{1}{n_p}
$$

$q^* = k$-means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

$n_p = \text{number of points in the cluster of } p$

$$
|C| = \frac{k \cdot d}{\epsilon^2} \frac{k \cdot \left(\frac{k}{\epsilon}\right)}{\epsilon^2}
$$ [SODA’13, Feldman, Schmidt, ..]
The chicken-and-egg problem

1. We need approximation to compute the coreset
2. We compute coreset to get a fast approximation to a problem

Lee-ways:
 I. Bi-criteria approximation
 II. Heuristics
 III. polynomial time reduced to linear time by the merge-reduce tree
k — Segment Queries

Input: d-dimensional signal P over time

Query: k segments over time

k-Piecewise linear function f over t
k — Segment Queries

Input: d-dimensional signal P over time

Query: k segments over time

Output: Sum of squared distances from P

$$\text{cost}(P, f) = \sum_{t} \| f(t) - p_t \|^2$$
Observation:
No small coreset $C \subset P$ exists for k-segment queries
Input P: n points on the x-axis
Input P: n points on the x-axis

Coreset C: all points except one
Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one
Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(P, f) > 0

Cost(C, f) = 0
Input \mathbf{P}: n points on the x-axis

Coreset \mathbf{C}: all points except one

Query \mathbf{f}: covers all except this one

$\text{Cost}(\mathbf{P}, \mathbf{f}) > 0$

$\text{Cost}(\mathbf{C}, \mathbf{f}) = 0$

Unbounded factor approximation
For every point p:

$$\text{Sensitivity}(p) = \max_{q \in Q} \frac{\text{dist}(p,q)}{\sum_{p', \text{dist}(p',q)}} = 1$$

Total sensitivities: n
Observation:
Points on a segment can be stored by the two indexes of their end-points
Observation:
Points on a segment can be stored by the two indexes of their end-points and the slope of the segment.
Observation:
Points on a segment can be stored by the two indexes of their end-points and the slope of the segment.
Definition: Coreset

A weighted set $C \subseteq P$ such that for every k-segment f:

$$\text{cost}(P, f) \sim \text{cost}_w(C, f)$$

$$\sum_t \|f(t) - pt\| \sim \sum_{pt \in C} w(pt) \cdot \|f(t) - pt\|$$
Surprising Applications

1. (1-epsilon) approximations: Heuristics work better on coresets

2. Running constant factor on epsilon-coresets helps

3. Coreset for one problem is good for a lot of unrelated problems

4. Coreset for O(1) points
Implementation

• The worst case and sloppy (constant) analysis is not so relevant

• In Theory:
a random sample of size $1/\epsilon$ yields $(1 + \epsilon)$ approximation with probability at least $1 - \delta$.

In Practice:
Sample s points, output the approximation ϵ and its distribution

• Never implement the algorithm as explained in the paper.
Coreset for k-means

[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for k-means can be computed by choosing points from the distribution:

$$\text{sensitivity}(p) = \frac{\text{dist}(p,q^*)}{\sum_{p'} \text{dist}(p',q^*)} + \frac{1}{n_p}$$

$q^* = k$-means of P

$n_p = \text{number of points in the cluster of } p$

$|C| = \frac{k \cdot d}{\epsilon^2}$
Coreset for k-means

[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for k-means can be computed by choosing points from the distribution:

$$\text{sensitivity}(p) = \frac{\text{dist}(p, q^*)}{\sum_{p'} \text{dist}(p', q^*)} + \frac{1}{n_p}$$

$q^* = k$-means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

$n_p = \text{number of points in the cluster of } p$

$|C| = \frac{k \cdot d}{\epsilon^2}$
Coreset for \(k \)-means can be computed by choosing points from the distribution:

\[
\text{sensitivity}(p) = \frac{\text{dist}(p, q^*)}{\sum_{p'} \text{dist}(p', q^*)} + \frac{1}{n_p}
\]

\(q^* = k \)-means of \(P \) \hspace{1cm} \text{Or approximation} \ [\text{SoCG07, Feldma, Sharir, Fiat}]

\(n_p = \text{number of points in the cluster of } p \)

\(|C| = \frac{k \cdot d}{\epsilon^2}\)
Coreset for k-means

[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for k-means can be computed by choosing points from the distribution:

$$\text{sensitivity}(p) = \frac{\text{dist}(p,q^*)}{\sum_{p'} \text{dist}(p',q^*)} + \frac{1}{n_p}$$

q^* = k-means of P
Or approximation [SoCg07, Feldma, Sharir, Fiat]

n_p = number of points in the cluster of p

$$|C| = \frac{k \cdot d}{\varepsilon^2} \cdot \frac{k \cdot \left(\frac{k}{\varepsilon}\right)}{\varepsilon^2}$$

[SODA’13, Feldman, Schmidt, ..]
Coreset for Enclosing Balls $P \subseteq \mathbb{R}$

The farthest point from every query $q \in \mathbb{R}$ is a red point.
Coreset for Enclosing Balls $P \subseteq \mathbb{R}$

The fathest point from every query $q \in \mathbb{R}^d$

is a red point
Coreset for Enclosing Balls $P \subseteq \mathbb{R}^d$

The farthest point from every query $q \in \mathbb{R}^d$ is a red point

$\mathbf{C} := f_{c_1; c_2} g$ is a coreset for P