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Plan

• On the benefits of using data to design 
similarity search data structures 

• Why it took so long to get it to work        
(provably, for general high-dimensional 
pointsets)

• And why this makes realtime computation 
more difficult



Problem 1: Approximate Near 
Neighbor 

• Given: a set P of n points in a d-dimensional 
space* and parameters c and r

• Build a data structure which, for any query q:
– If there is pÎP s.t. ||q-p|| ≤ r, 
– Then return p’ÎP s.t ||q-p’|| ≤ cr

• Why approximate ?
– Exact algorithm with n1-β query time and 

polynomial preprocessing would violate certain 
complexity-theoretic conjecture (SETH)

– Reflected in empirical performance, a.k.a., curse 
of dimensionality 

– Approximate algorithms are typically faster, in 
theory and practice
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*We assume Euclidean distance in this talk



Problem 2: Approximate Metric 
Compression

• Given: a set P of n points in a d-dimensional 
space

• Compress it into as few bits as possible
• Estimate pairwise distances within 1+ε

0110100110010110

• Exact representation: O(ndB)
– B=bits of precision; we assume B=O(log n)

• Random projection: O(n log(n)/ε2 B) = O(n log(n)2/ε2) 



What do these problems have in 
common ?

• Until recently, the fastest provable 
approaches in high d constructed 
data structures that were 
essentially oblivious* to the data
– Random projection 
– Locality-Sensitive Hashing

• Benefits: provable, easy to maintain
– E.g., for distributed data, no need to 

coordinate between nodes
• Drawbacks: Less efficient

*Formally, the memory cells accessed to answered queries depend on query q but not on P



The “idea”

• Why is the answer not obvious ?
• It is often possible to get a data structure that works 

well when the data has some structure (clusters, low-
dimensional subspace, i.i.d. from some distribution,etc)

• The tricky part is what to do when the data does not 
have that structure, or any structure in particular

What if the data 
structure depended 

on …the data ?



The actual idea

• Every point-set has some 
structure that can be 
exploited algorithmically

• Details depend on the 
context/problem, but at a 
high level:
– Either there is dense 

cluster of small radius, or
– Points are “spread” out



Problem 1: 
Approximate Near Neighbor



Basic Data Adaptive Method
P=input pointset, r=radius, c=approximation
Preprocessing:
1. As long as there is a ball Bi of radius O(cr) 

containing T points in P
– P=P-Bi
– i=i+1

2. Build the basic NN data structure on P 

3. For each ball Bi build a specialized data 
structure for Bi ∩P

Query procedure:
1. Query the main data structure
2. Query all data structures for

balls that are “close” to the query 

No dense clusters – better performance

Diameter bounded by O(cr) – better performance



• Theory (c-approximation):

• Practice:

– Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt 

(NIPS’15)

– FALCONN (Razenshteyn-Schmidt) 

• Cross-polytope LSH, plus multi-probe, fast random 

projections,…

Results

Algorithm Query Time Index Space
Data-oblivious LSH(…FOCS’06) dn1/c^2 n1+1/c^2

Andoni, Indyk, Nguyen, 

Razenshteyn, SODA’14

dn0.87/c^2 +o(1/c^3) n1+0.87/c^2 +o(1/c^3)

Andoni-Razenshteyn, STOC’15 dn1/(2c^2-1) n1+1/(2c^2-1)

Andoni et al, SODA’17 tradeoff



ANN-Benchmarks (third party)



ANN-Benchmarks (third party)

Aumuller, Bernhardsson, Faithfull, SISAP’17



Problem 2: 
Metric compression



Metric compression

Approach Bound Reference Note
No compression ! "# log "
Random projection ! " log' "

('
Johnson-Lindenstrauss
1984

Hierarchical clustering ! " log " log ⁄1 (
('

Indyk-Wagner,
SODA’17

Near-optimal

Hierarchical clustering++ ! " log "
('

Indyk-Wagner, 2018 Optimal

Quad tree with pruning " log " (log ⁄1 ( + log log ")
('

Indyk-Razenshteyn-
Wagner, NIPS’17

Practical



Intuition
(multilevel vector quantization)

• Either there is dense cluster 
of small radius
– Store cluster center and 

displacements from it 
• Or points are “spread”

– Only few distance scales to 
worry about

– " #$% &
'( bits per point per 

scale



Quad tree

• Quad tree in !"
• Can be seen as a 

binary expansion in 
each dimension

• Need Θ(log () levels
• Θ (+ log ( =
Θ - ./01 -

21 bits total –
no improvement yet



Pruning

• Compress paths of degree-2 nodes 
of length > Λ

• Leave only the first Λ edges
• Decompress the remainder into 

zeros
• The total size is

$ %&Λ = $ % Λ ⋅ log %
,-

• Set Λ = $ log log % + log ⁄1 ,



Experiments: baselines

• We compare the new algorithm 
(QuadSketch) with two baselines:
– Grid-based compression (round every 

coordinate)
– Product Quantization (PQ) [Jegou, Douze, 

Schmid 2009]
• Good in practice (and popular)
• No theoretical guarantees (for arbitrary data sets)



PQ: !-means
• A way to cluster a dataset
• Find ! centers "#, "$, …, "%
• Minimize ∑' (' − "*+ $

$, where
– "*' is the center closest to ('

• NP-hard, good approximation 
algorithms

• Can be used as a sketch
– Replace points by their centers 

(log ! bits)
• Estimate: "/ − "0 $
• Problem: too many centers



PQ: blocks

• Introduced in Jegou-Douze-
Schmid’09

• Partition a vector in ! blocks

• Project a dataset on each block, and 
find "-means in each

• Sketch of ! log " bits ("& landmarks 
as opposed to ")

• Estimation:
– One-time cost '()")
– Plus '(!) per point

• We add the same trick to Quadsketch

! blocks



Experiments: protocol and 
datasets

• We look at:
– 1-NN accuracy
– Distortion of 1-NN

• Datasets:
– SIFT1M (1M points, 128 dimensions)
–MNIST (60K points, 784 dimensions)
– Taxi (9K points, 48 dimensions)
– Diagonal (synthetic, 10K points, 128 

dimensions)



Results: SIFT1M



Results: MNIST



Results: Taxi



Results: Diagonal



Conclusions
• Data helps designing data structures 

(duh…)
• ..provably, for general high-dimensional 

pointsets
• Code:

– FALCONN:
https://github.com/FALCONN-LIB/FALCONN
– Quadsketch: 
https://github.com/talwagner/quadsketch

• Open problem: make these data 
structures dynamic (a.k.a. “real-time”)

https://github.com/talwagner/quadsketch

