Data-dependent methods for
similarity search in high
dimensions

Piotr Indyk
MIT

Plan

* On the benefits of using data to design
similarity search data structures

* Why it took so long to get it to work
(provably, for general high-dimensional
pointsets)

* And why this makes realtime computation
more difficult

Problem 1: Approximate Near
Neighbor

Given: a set P of n points in a d-dimensional ®
space™ and parameters c and r

Build a data structure which, for any query q:
— Ifthereis peP s.t. ||g-p|| =,

— Thenreturn p’eP s.t||g-p’|| = cr o
Why approximate ?
— Exact algorithm with n'-* query time and C

polynomial preprocessing would violate certain O
complexity-theoretic conjecture (SETH)

— Reflected in empirical performance, a.k.a., curse
of dimensionality

— Approximate algorithms are typically faster, in
theory and practice

*We assume Euclidean distance in this talk

Problem 2: Approximate Metric
Compression

* Given: a set P of n points in a d-dimensional
space

 Compress it into as few bits as possible
» Estimate pairwise distances within 1+¢

o , === 0110100110010110 | === @& o

« Exact representation: O(ndB)
— B=bits of precision; we assume B=0O(log n)
« Random projection: O(n log(n)/e?B) = O(n log(n)?/€?)

What do these problems have in
common ?

 Until recently, the fastest provable
approaches in high d constructed
data structures that were
essentially oblivious™ to the data /

—————=

— Random projection
— Locality-Sensitive Hashing
« Benefits: provable, easy to maintain

— E.qg., for distributed data, no need to O ®
coordinate between nodes O °

 Drawbacks: Less efficient l

[®a ® ®

*Formally, the memory cells accessed to answered queries depend on query q but not on P

The “idea”

What if the data
structure depended
on ...the data ?

 Why is the answer not obvious ?

|t is often possible to get a data structure that works
well when the data has some structure (clusters, low-
dimensional subspace, i.i.d. from some distribution,etc)

* The tricky part is what to do when the data does not
have that structure, or any structure in particular

The actual idea

* Every point-set has some
structure that can be
exploited algorithmically

* Details depend on the
context/problem, but at a
high level:

— Either there is dense
cluster of small radius, or

— Points are “spread” out

Problem 1:
Approximate Near Neighbor

Basic Data Adaptive Method

P=input pointset, r=radius, c=approximation

Preprocessing: ®
1. Aslong as there is a ball B; of radius O(cr) o
containing T points in P PY
-~ PP, — °
— =i+

2. Build the basic NN data structure on P
No dense clusters — better performance

3. For each ball B, build a specialized data
structure for B, NP

Diameter bounded by O(cr) — better perfqrmance ®

Query procedure:
1. Query the main data structure
2. Query all data structures for
balls that are “close” to the query

Results

* Theory (c-approximation):

Algorithm Query Time Index Space
Data-oblivious LSH(...FOCS’06) dn'/¢* nt+1/et2
Andonl, Indyk’ Nguyen’ dn087/CA2 +0(1/c"3) n1+087/CA2 +0(1/c"3)
Razenshteyn, SODA'14
Andoni-Razenshteyn, STOC’15 dn'/(2¢"2-1) n1+1/(2c"2-1)
Andoni et al, SODA'17 tradeoff
* Practice:

— Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt

(NIPS’15)

— FALCONN (Razenshteyn-Schmidt)

* Cross-polytope LSH, plus multi-probe, fast random
projections,...

ANN-Benchmarks (third party)

Info

ANN-Benchmarks is a benchmarking environment for approximate nearest neighbor algorithms search. This website contains the current
benchmarking results. Please visit http://github.com/maumueller/ann-benchmarks/ to get an overview over evaluated data sets and algorithms. Make
a pull request on Github to add your own code or improvements to the benchmarking system.

Benchmarking Results

Results are split by distance measure and dataset. In the bottom, you can find an overview of an algorithm's performance on all datasets. Each
dataset is annoted by (k = ...), the number of nearest neighbors an algorithm was supposed to return. The plot shown depicts Recall (the fraction of
true nearest neighbors found, on average over all queries) against Queries per second. Clicking on a plot reveils detailled interactive plots, including
approximate recall, index size, and build time.

Machine Details

All experiments were run in Docker containers on Amazon EC2 c4.2xlarge instances that are equipped with Intel Xeon E5-2666v3 processors (4 cores
available, 2.90 GHz, 25.6MB Cache) and 15 GB of RAM running Amazon Linux. For each parameter setting and dataset, the algorithm was given thirty
minutes to build the index and answer the queries.

Raw Data & Configuration

Please find the raw experimental data here (13 GB). The query set is available queries-sisap.tar (7.5 GB) as well. The algorithms used the following
parameter choices in the experiments: k = 10 and k=100.

Updates

¢ 18-10-2017: Included FAISS-IVF

Contact

ANN-Benchmarks has been developed by Martin Aumueller (maau@itu.dk), Erik Bernhardsson (mail@erikbern.com), and Alec Faitfull (alef@itu.dk).
Please use Github to submit your implementation or improvements.

ANN-Benchmarks (third party)

QPS (1/s)

104

10*

107

10}

=] —e— Annoy
B | 10tk - —=—BallTree
1 |—e— FaISS
10° £ 4 |—— FALCONN
-] —+— FLANN
- 1 10%g 4 |-+- HNSW
g 3 --a-RPForest
10! E = --—- SWGraph
N 7 10°F 5 —e— Annoy
8 R 8 E —=—BallTree
- . B] —e— FAISS
= 4 10%E 3§ | —+— FALCONN
g | g 1 |—— FLANN
) 1 102} q |- HS
; | g E —--m-- KGraph
.] - 1 -+- MPLSH
10' £ = -—+—- SWGraph
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall

Fig. 4. Recall-QPS (1/s) tradeoff - up and to the right is better. Top: GLOVE,
bottom: SIFT; left: 10-NN, right: 100-NN.

Aumuller, Bernhardsson, Faithfull, SISAP’17

Problem 2:
Metric compression

Metric compression

Approach
No compression
Random projection

Hierarchical clustering

Hierarchical clustering++

Quad tree with pruning

Bound

(

O(ndlogn)

nlog?n
()
£

nlognlogl/es
0< g g/)

£2
nlogn
o(~)
£

nlogn (log1/e + loglogn)

c2

)

Reference

Johnson-Lindenstrauss
1984

Indyk-Wagner,
SODA17

Indyk-Wagner, 2018

Indyk-Razenshteyn-
Wagner, NIPS’17

Note

Near-optimal

Optimal

Practical

Intuition

(multilevel vector quantization)

 Either there is dense cluster *

of small radius

— Store cluster center and
displacements from it

* Or points are “spread”

— Only few distance scales to
worry about

-0 (log ") bits per point per

82
scale

Quad tree

Quad tree in R¢

Can be seen as a
binary expansion in
each dimension
Need O(logn) levels
O(ndlogn) =

© (" log” ") bits total —

82
no improvement yet

Pruning

Compress paths of degree-2 nodes
of length > A

Leave only the first A edges

Decompress the remainder into
Zeros

The total size is
0(ndA) = 0(.
£
Set A = O(loglogn + log(1/¢))

nA-logn)

Experiments: baselines

* We compare the new algorithm
(QuadSketch) with two baselines:

— Grid-based compression (round every
coordinate)

— Product Quantization (PQ) [Jegou, Douze,
Schmid 2009]
« Good in practice (and popular)
* No theoretical guarantees (for arbitrary data sets)

PQ: k-means

A way to cluster a dataset
Find k& centers ¢, ¢,, ..., ¢}

] " u 2
Minimize Zini - CuiHZ’ where
— ¢, Is the center closest to p;

NP-hard, good approximation
algorithms

Can be used as a sketch

— Replace points by their centers
(log k bits)

Estimate: ch — CSHZ
Problem: too many centers

PQ: blocks

Introduced in Jegou-Douze- B blocks
Schmid’'09 C— 1T 1T 1

Partition a vector in B blocks

Project a dataset on each block, and
find k-means in each

Sketch of B log k bits (k” landmarks
as opposed to k)

Estimation:
— One-time cost O(dk)
— Plus O(B) per point

We add the same trick to Quadsketch

Experiments: protocol and

datasets

 We look at:

— 1-NN accuracy
— Distortion of 1-NN

» Datasets:
— SIFT1M (1M points, 128 dimensions)
— MNIST (60K points, 784 dimensions)
— Taxi (9K points, 48 dimensions)

— Diagonal (synthetic, 10K points, 128
dimensions)

Accuracy
o o o -
b @ » ©°

o
o

Results: SIFT1M

o
I

1 ><10+0_
-1
C’|x10
Q
A £1x1072-
. ot 73
Method | .21x10"7 Method b
-* Grid , - Grid et
- PQ 1x1077 « pQ
- = QS . =QS ‘e
|] | | | | | 1x10 71 | | | | | |) |
2 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 10

Accuracy

o
N

o
o

Results: MNIST

o
o

e
~

Method
e Grid
- PQ

Distortion

7 8 9

Method
e Grid
- PQ

Accuracy
o o o -
R o o o

o
o

Results: Taxi

o
D

ot

Method
- Grid
Y pQ

7 8 9 10

‘F“‘—A.-:;'_{-.___,-.‘—’.‘:__\
Method
- Grid
APQ
0 1 2 3 4 5 6 7 8 9 10

Accuracy

Results: Diagonal

CEEEE TRCREEE TRERCE

Method
- Grid
—-_ pQ

Conclusions

Data helps designing data structures
(duh...)

..provably, for general high-dimensional
pointsets

Code:

— FALCONN:
https://github.com/FALCONN-LIB/FALCONN

— Quadsketch:
https://qithub.com/talwagner/quadsketch

Open problem: make these data
structures dynamic (a.k.a. “real-time”)

https://github.com/talwagner/quadsketch

