Streaming Algorithms for Matchings in Low Arboricity Graphs

Sofya Vorotnikova
University of Massachusetts Amherst

Joint work with Andrew McGregor
Representing Data as a Graph
Example: Social Network
Representing Data as a Graph
Example: Social Network
Representing Data as a Graph
Example: Social Network

List of edges incident to a vertex
Representing Data as a Graph
Example: Social Network

users can friend and unfriend others

edges of the graph get added and deleted

Updates are not grouped by user/vertex — arbitrary order
Representing Data as a Graph
Example: Social Network

Simpler model: arbitrary order, but only adding edges
Streaming Model(s)

- Vertex set is fixed
- Start with no edges
- Edge updates arrive in a sequence
- One pass
Streaming Model(s)

- Vertex set is fixed
- Start with no edges
- Edge updates arrive in a sequence
- One pass

<table>
<thead>
<tr>
<th></th>
<th>insertions</th>
<th>deletions</th>
<th>arbitrary order</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>![check]</td>
<td>![check]</td>
<td>![check]</td>
</tr>
<tr>
<td>insert-only</td>
<td>![check]</td>
<td>![x]</td>
<td>![check]</td>
</tr>
<tr>
<td>adjacency-list</td>
<td>![check]</td>
<td>![x]</td>
<td>![x]</td>
</tr>
</tbody>
</table>

edges incident to the same vertex arrive together; see every edge twice
Streaming Model: Objectives

- Compute some function of the graph defined by the stream
 - maximum matching, connectivity, number of triangles, etc
- Minimize amount of space: cannot store the entire graph
- Fast update time is generally encouraged
- Solution extraction (postprocessing) time can be large
Why Streaming?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Streaming Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph is too large to be stored in main memory</td>
<td>sequential reading from external memory device</td>
</tr>
<tr>
<td>graph is distributed across multiple machines</td>
<td>edge-by-edge is an extreme version of batch-by-batch</td>
</tr>
<tr>
<td>graph is changing over time</td>
<td>store/update the summary of data</td>
</tr>
</tbody>
</table>
Why Streaming?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Streaming Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph is too large to be stored in main memory</td>
<td>sequential reading from external memory device</td>
</tr>
<tr>
<td>graph is distributed across multiple machines</td>
<td>edge-by-edge is an extreme version of batch-by-batch</td>
</tr>
<tr>
<td>graph is changing over time</td>
<td>store/update the summary of data</td>
</tr>
</tbody>
</table>

restricted model +

general problems =

techniques that extend to other models and can be used in a variety of real-life applications
What Can Be Done in Graph Streams?

Sampling!
- Sample edges uniformly
- Sample edges non-uniformly
- Sample vertices, then collect incident edges

Other things:
- Compute degrees of vertices or other quantities depending on degrees
- Using stream ordering as part of the algorithm
How Can It Be Done?

Sampling a random edge (uniformly)

- Insertions only: reservoir sampling
 - for e_i, the i-th edge in the stream, replace currently stored edge with e_i with probability $1/i$

- Insertions and deletions: L_0-sampling
 - fails with probability δ
 - uses space $O(\log^2 n \log \delta^{-1})$

For sampling vertices use hash functions
Problem: Maximum Matching

- Department event
- Each grad student can bring a “plus one”
Problem: Maximum Matching

- Department event
- Each grad student can bring a “plus one”
- Want to maximize the number of pairs
Problem: Maximum Matching

- Department event
- Each grad student can bring a "plus one"
- Want to maximize the number of pairs

List of pairs is then a **matching**.
Approximating Size of Maximum Matching

Matching is a set of edges that don’t share endpoints.

In insert-only stream can run greedy algorithm to obtain *maximal* matching, which is a 2-approximation of *maximum* matching.

Maximum matching can be as large as $n/2$.

By approximating the **size** of the matching without finding the matching itself, we can use smaller space.
Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α.

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.
We concentrate on the class of graphs of arboricity α.

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.

No dense subgraphs \iff low arboricity.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.
Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α.

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.

No dense subgraphs \Leftrightarrow low arboricity.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.

In dynamic stream, intermediate graphs can have high arboricity.
<table>
<thead>
<tr>
<th></th>
<th>space</th>
<th>approx factor</th>
<th>work</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>$\tilde{O}(\alpha n^{4/5})$</td>
<td>$(5\alpha + 9)(1 + \epsilon)$</td>
<td>CCEHMMV16</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(\alpha n^{4/5})$</td>
<td>$(\alpha + 2)(1 + \epsilon)$</td>
<td>MV16</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(\alpha^{10/3}n^{2/3})$</td>
<td>$(22.5\alpha + 6)(1 + \epsilon)$</td>
<td>CJMM17*</td>
</tr>
<tr>
<td></td>
<td>$\Omega(\sqrt{n}/\alpha^{2.5})$</td>
<td>$O(\alpha)$</td>
<td>AKL17</td>
</tr>
<tr>
<td>insert-only</td>
<td>$\tilde{O}(\alpha n^{2/3})$</td>
<td>$(5\alpha + 9)(1 + \epsilon)$</td>
<td>EHLMO15</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(\alpha n^{2/3})$</td>
<td>$(\alpha + 2)(1 + \epsilon)$</td>
<td>MV16</td>
</tr>
<tr>
<td></td>
<td>$O(\alpha \epsilon^{-3} \log^2 n)$</td>
<td>$(22.5\alpha + 6)(1 + \epsilon)$</td>
<td>CJMM17</td>
</tr>
<tr>
<td></td>
<td>$O(\epsilon^{-2} \log n)$</td>
<td>$(\alpha + 2)(1 + \epsilon)$</td>
<td>MV18</td>
</tr>
<tr>
<td>adj</td>
<td>$O(1)$</td>
<td>$\alpha + 2$</td>
<td>MV16</td>
</tr>
</tbody>
</table>

*Restriction: $O(\alpha n)$ deletions.

Space is specified in words. An edge or a counter $= \text{one word.}$
Approach

All our results have the following two parts:

- **Structural result**: define Σ that is an \((\alpha + 2)\) approximation of $\text{match}(G)$

- **Algorithm**: \((1 + \epsilon)\) approximation of Σ in streaming (exact computation in adjacency list stream)
Approach

All our results have the following two parts:

- **Structural result**: define Σ that is an $(\alpha + 2)$ approximation of $\text{match}(G)$

- **Algorithm**: $(1 + \epsilon)$ approximation of Σ in streaming (exact computation in adjacency list stream)

Dynamic: Σ_{dyn}

- $(1 + \epsilon)$-approximation in $\tilde{O}(\alpha n^{4/5})$ space
- Also gives $\tilde{O}(\alpha n^{2/3})$ space algorithm in insert-only streams

Insert-only: Σ_{ins}

- $(1 + \epsilon)$-approximation in $O(\epsilon^{-2} \log n)$ space

Adjacency list: Σ_{adj}

- Exact computation in $O(1)$ space
Structural Results
Structural Results: Definitions

$V^H =$ heavy vertices of degree $\geq \alpha + 2$

$E^H =$ heavy edges with 2 heavy endpoints

$V^L =$ light vertices

$E^L =$ light edges
Structural Results: Definitions: Σ_{adj}

\[\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \]
Structural Results: Definitions: Σ_{dyn}

$$x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Definitions: Σ_{dyn}

$$x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Definitions: Σ_{dyn}

$$x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Definitions: \(\Sigma_{\text{dyn}} \)

\[
x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right)
\]

\[
\Sigma_{\text{dyn}} = (\alpha + 1) \sum_e x_e
\]
Structural Results: Σ_{dyn} and Σ_{adj}

$$\text{match}(G) \leq |E^L| + |V^H|$$

$$\leq |E^L| + |V^H|(\alpha + 1) - |E^H| = \Sigma_{\text{adj}}$$

since $|E^H| \leq \alpha|V^H|$

$$\leq (\alpha + 1) \sum_{e} x_e = \Sigma_{\text{dyn}}$$

$\leq (\alpha + 2) \text{match}(G)$

Lemma 1

Lemma 2
Structural Results: Σ_{dyn} and Σ_{adj}

Lemma 1:

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \leq (\alpha + 1) \sum_{e} x_e = \Sigma_{dyn}$$

- Split $\sum_{e} x_e$ into 3 sums for $e \in E^L$, $e \in E^H$, and $e \notin E^L, E^H$
- Bound x_e in each case
Structural Results: Σ_{dyn} and Σ_{adj}

Lemma 1:

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \leq (\alpha + 1) \sum_{e} x_e = \Sigma_{dyn}$$

- Split $\sum_{e} x_e$ into 3 sums for $e \in E^L$, $e \in E^H$, and $e \not\in E^L, E^H$
- Bound x_e in each case

Lemma 2:

$$\Sigma_{dyn} = (\alpha + 1) \sum_{e} x_e \leq (\alpha + 2) \text{match}(G)$$

- $\{x_e\}_{e \in E}$ is a fractional matching with max weight $1/(\alpha + 1)$
- Use Edmond’s thm to relate $\sum_{e} x_e$ to $\text{match}(G)$
Structural Results: Definitions: Σ_{ins}

Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.
Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

$\alpha = 3$
Structural Results: Definitions: Σ_{ins}

Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

\[\alpha = 3 \]
\[e \in E_\alpha \]
Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

\[\alpha = 3 \]
Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

$\alpha = 3$

$e \notin E_\alpha$

E_α depends on stream ordering
Lemma 3

\[\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G) \]
Lemma 3

\[\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G) \]

Let \(G_t \) be the graph defined by the first \(t \) edges in the stream.

Let \(E^t_\alpha \) be \(E_\alpha(G_t) \). Then

\[\text{match}(G_t) \leq |E^t_\alpha| \leq (\alpha + 2) \text{match}(G_t) \]
Lemma 3

\[\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G) \]

Let \(G_t \) be the graph defined by the first \(t \) edges in the stream.
Let \(E^t_\alpha \) be \(E_\alpha(G_t) \). Then

\[\text{match}(G_t) \leq |E^t_\alpha| \leq (\alpha + 2) \text{match}(G_t) \]

Let \(\Sigma_{ins} = \max_t |E^t_\alpha| = |E^T_\alpha| \).

Since \(\text{match}(G_t) \) is non-decreasing function of \(t \),

\[\text{match}(G) \leq |E_\alpha| \leq \Sigma_{ins} = |E^T_\alpha| \leq (\alpha+2) \text{match}(G_T) \leq (\alpha+2) \text{match}(G) \]
Structural Results: Σ_{ins}: Lemma 3

Upper bound:

$$|E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

- Let
 $$y_e = \begin{cases}
 1/(\alpha + 1) & \text{if } e \in E_\alpha \\
 0 & \text{otherwise}
 \end{cases}$$

- $\{y_e\}_{e \in E}$ is a fractional matching with max weight $1/(\alpha + 1)$
- $\sum_e y_e = |E_\alpha|/(\alpha + 1)$
- Use Edmond's thm to relate $\sum_e y_e$ to $\text{match}(G)$
Upper bound:

\[|E_\alpha| \leq (\alpha + 2) \text{match}(G) \]

- Let
 \[y_e = \begin{cases}
 1/(\alpha + 1) & \text{if } e \in E_\alpha \\
 0 & \text{otherwise}
 \end{cases} \]

- \(\{y_e\}_{e \in E} \) is a fractional matching with max weight 1/(\alpha + 1)

- \(\sum_e y_e = |E_\alpha|/(\alpha + 1) \)

- Use Edmond’s thm to relate \(\sum_e y_e \) to \text{match}(G)

Lower bound:

\[|E_\alpha| \geq \text{match}(G) \]

- Count light edges and edges on heavy vertices in \(E_\alpha \) to show
 \[|E_\alpha| \geq |E^L| + |V^H| \geq \text{match}(G) \]
Algorithms
Algorithms: Dynamic Stream

\[\Sigma_{dyn} = (1 + \alpha) \sum_{e} x_e = (1 + \alpha) \sum_{e} \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right) \]

In parallel:

If matching is small: \(\leq n^{2/5} \)
- Use algorithm for bounded size matchings [CCEHMMV16]: \(\tilde{O}(n^{4/5}) \) space

If matching is large: \(> n^{2/5} \)
- Estimate \(\Sigma_{dyn} \) by computing \(x_e \) for a particular set of edges
- Accurate since matching and thus \(\Sigma_{dyn} \) are large

Note: In insert-only streams, can use greedy algorithm for approximating small matching. Reduces total space to \(\tilde{O} \left(\alpha n^{2/3} \right) \).
$$\Sigma_{dyn} = (1 + \alpha) \sum_e x_e = (1 + \alpha) \sum_e \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right)$$

In parallel:

If matching is small: \(\leq n^{2/5} \)
- Use algorithm for bounded size matchings [CCEHMMV16]: \(\tilde{O}(n^{4/5}) \) space

If matching is large: \(> n^{2/5} \)
- Estimate \(\Sigma_{dyn} \) by computing \(x_e \) for a particular set of edges
- Accurate since matching and thus \(\Sigma_{dyn} \) are large

Note: In insert-only streams, can use greedy algorithm for approximating small matching. Reduces total space to \(\tilde{O}(\alpha n^{2/3}) \).
Algorithms: Dynamic Stream

\[\Sigma_{dyn} = (1 + \alpha) \sum_e x_e = (1 + \alpha) \sum_e \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right) \]

Estimating \(\Sigma_{dyn} \)

- Sample a set of vertices \(T \) with probability \(p = \widetilde{\Theta}(1/n^{1/5}) \)
 - \(|T| = \widetilde{\Theta}(n^{4/5}) \)
- Compute degrees of vertices in \(T \)
- Let \(E_T \) be edges with both endpoints in \(T \)
 - \(|E_T| = \tilde{O}(\alpha n^{4/5}) \) at the end of the stream
 - \(|E_T| \) can be larger in the middle of the stream
- Sample \(\min(|E_T|, \tilde{\Theta}(\alpha n^{4/5})) \) edges in \(E_T \)
- Use \((\alpha + 1)/p \cdot \sum_{e \in E_T} x_e \) as estimate
Algorithms: Insert-only Stream

\[\sum_{ins} = \max_t |E^t_\alpha| \]

where \(E^t_\alpha \) is the set of edges \(uv \), s.t. the number of edges incident to \(u \) or \(v \) between arrival of \(uv \) and time \(t \) is at most \(\alpha \).

Idea: keep a sample of edges in \(E^t_\alpha \) by sampling with probability that allows us to

- keep an accurate approximation of \(|E^t_\alpha| \)
- use small amount of space
Algorithms: Insert-only Stream

\[\Sigma_{ins} = \max_t |E^t_\alpha| \]

where \(E^t_\alpha \) is the set of edges \(uv \), s.t. the number of edges incident to \(u \) or \(v \) between arrival of \(uv \) and time \(t \) is at most \(\alpha \).

1. Set \(p \leftarrow 1 \)
2. Start sampling each edge with probability \(p \)
3. If \(e \) is sampled:
 - store \(e \)
 - store counters for degrees of endpoints in the rest of the stream
 - if later we detect \(e \not\in E^t_\alpha \), it is deleted
4. If the number of stored edges > \(40\epsilon^{-2} \log n \)
 - \(p \leftarrow p/2 \)
 - delete every edge currently stored with probability \(1/2 \)
5. Return \(\max_t \frac{\# \text{ samples at time } t}{p \text{ at time } t} \)
Algorithms: Insert-only Stream

\[\Sigma_{ins} = \max_t |E^t_\alpha| \]

where \(E^t_\alpha \) is the set of edges \(uv \), s.t. the number of edges incident to \(u \) or \(v \) between arrival of \(uv \) and time \(t \) is at most \(\alpha \).

Let \(k \) be s.t. \((20\epsilon^{-2} \log n)2^{k-1} \leq \Sigma_{ins} < (20\epsilon^{-2} \log n)2^k\).

We show that whp:

1. If sampling probability is high enough (\(\geq 1/2^k \)),
 can compute \(|E^t_\alpha| \pm \epsilon \Sigma_{ins} \) for all \(t \).
 From Chernoff and union bounds.

2. We do not switch to probability that is too low (\(< 1/2^k \)),
 since the \# edges sampled wp \(1/2^k \) does not exceed
 \((1 + \epsilon)\Sigma_{ins}/2^k < (1 + \epsilon)(20\epsilon^{-2} \log n) \leq 40\epsilon^{-2} \log n\).
Algorithms: Adjacency List Stream

\[\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \]

Treat adjacency stream as a degree sequence of the graph. \(|V^H|\) can be computed easily.

\[|E^L| - |E^H| = |E| - \sum_{h \in V^H} d(h) \]

which is also easy to compute.
Conclusion

Summary:
• There are quantities that provide good approximation of the size of maximum matching in graphs of arboricity α.
• Computing those quantities can be done efficiently.

Open questions:
• Better than $\alpha + 2$ approximation.
• Closing the gap between upper and lower bounds for dynamic streams.
Thank you for your attention!