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Perturbations in Machine Learning

What is This Talk About?

Data
randomness−→ Perturbed Data

optimization−→ Prediction Function
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Perturbations in Machine Learning

Bagging

Data
Bootstrap−→ Bootstrapped Data

Training−→ Decision Tree

In bagging, many trees are trained and their predictions averaged at
test time
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Perturbations in Machine Learning

Dropout

Data
Add noise to features−→ Noisy Data

Optimization−→ Prediction Function

Blankout noise: For any feature, keep it (rescaling it by 1/p) with
probability p, make it zero otherwise

For GLMs, blankout noise is same as dropout noise
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Perturbations in Machine Learning

Perturb and Optimize

Recent approach – still under active development!

Assume that some underlying optimization problem is tractable

Achieve regularization by perturbing the data

Data
randomness−→ Perturbed Data

optimization−→ Prediction Function
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Perturbations in Machine Learning

Snapshot of Current State-of-the-art

NIPS workshops on Perturbations, Optimization, and Statistics in
2012, 2013 and 2014

Perturbations, Optimization, and Statistics, Tamir Hazan, George
Papandreou, and Daniel Tarlow, eds., MIT Press, 2016
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Perturbations in Machine Learning

The Gumbel Lemma

Consider a finite space {1, . . . ,N}
Given θi , want to draw i ∈ [N] with probability ∝ e−θi

Let Zi be iid draws from (min-stable) Gumbel with density

f (z) = exp(−(−z + ez))

Minimizing the perturbed values θ̃i = θi + Zi generates the correct
probability distribution!

That is,

P
(

argmin
i

(θi + Zi ) = i0

)
=

e−θi0∑
i e
−θi
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Perturbations in Machine Learning

The Gumbel Lemma (max version)

We want to draw i ∈ [n] with probability ∝ eθi

Let Zi be iid draws from (max-stable) Gumbel with density

f (z) = exp(−(z + e−z))

Maximizing the perturbed values θ̃i = θi + Zi generates the correct
probability distribution!

That is,

P
(

argmax
i

(θi + Zi ) = i0

)
=

eθi0∑
i e
θi
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Perturbations in Online Learning

Online Learning: A Simple Case

Assume losses are bounded in [0, 1]

At time t = 1, . . . ,T
Learner plays it ∈ {1, . . . ,N}
Nature plays `t ∈ [0, 1]N

Learner suffers `t,it

Performance of learning algorithm is measured by regret:

T∑
t=1

`t,it −
N

min
i=1

T∑
t=1

`t,i
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Perturbations in Online Learning

Hannan’s Theorem

A learning algorithm is Hannan consistent if its regret is o(T )

Hannan was the first to propose a Hannan consistent algorithm when
the learner has finitely many options
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Perturbations in Online Learning

Don’t Just Follow the Leader!

ERM is a good learning algorithm in the iid setting

Thus it might be tempting to study the following algorithm

it =
N

argmin
i=1

t−1∑
s=1

`s,i

This is called follow the leader (FTL) (aka fictitious play)

Counterexample showing linear regret even with N = 2

0.5 0 1 0 1 . . .
0 1 0 1 0 . . .

14 / 32



Perturbations in Online Learning

Follow the Perturbed Leader!

Hannan’s idea was to stabilize FTL by adding random perturbations

it =
N

argmin
i=1

t−1∑
s=1

`s,i +
Zi

η

This is called follow the perturbed leader (FTPL) (aka stochastic
fictitious play)

Hannan chose Zi ’s to be independent draws from the uniform
distribution over [0, 1]

Doing and tuning η gives optimal O(
√
T ) dependence on T

However, dependence on N isn’t optimal
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Perturbations in Online Learning

Exponential Weights Algorithm (EWA)

EWA maintains weights wt,i

Weights are initialized to 1 (i.e., ∀i , w0,i = 1)

Draws it with probability ∝ wt−1,i

Updates wt,i = wt−1,i · exp(−η`t,i )
EWA achieves O(

√
T logN) regret which is optimal
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Perturbations in Online Learning

EWA as FTPL

Recall FTPL

it =
N

argmin
i=1

t−1∑
s=1

`s,i +
Zi

η

Turns out we can recover EWA by drawing Zi from the Gumbel
distribution!

Follows from Gumbel lemma: we will draw i proportional to

exp
(
−η
∑t−1

s=1 `s,i

)
EWA weight wt−1,i = exp

(
−η
∑t−1

s=1 `s,i

)
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Perturbations in Online Learning

EWA as FTRL

Let pt denotes the algorithm’s probability distribution over the N
choices

Follow the regularized leader (FTRL) is defined as:

pt = argmin
p

t−1∑
s=1

p>`s +
R(p)

η

R is a regularizer enforcing stability of updates

Choose R(p) = −Ent(p) =
∑

i pi log pi also yields EWA!
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Perturbations in Online Learning

Relationship between FTPL and FTRL

We know FTPL with Gumbel perturbation = FTRL with negative
entropy regularization

Is there a deeper connection between FTPL and FTRL?

Yes! By thinking of them as smoothings of non-smooth functions.

For a given FTPL, can I find an R to get an equivalent FTRL?

Yes! R can be found via Fenchel duality

For a given FTRL, can I find a perturbation to get an equivalent
FTPL?

Not always!

19 / 32



Perturbations in Online Learning

Relationship between FTPL and FTRL

We know FTPL with Gumbel perturbation = FTRL with negative
entropy regularization

Is there a deeper connection between FTPL and FTRL?
Yes! By thinking of them as smoothings of non-smooth functions.

For a given FTPL, can I find an R to get an equivalent FTRL?
Yes! R can be found via Fenchel duality

For a given FTRL, can I find a perturbation to get an equivalent
FTPL?
Not always!

19 / 32



Perturbations in Online Learning

Smoothing by Adding Regularization

Consider the non-smooth function

Φ(G ) = max
i

Gi = max
p

p>G

Adding a strictly convex regularizer R ensures smoothness:

R?(G ) = max
p

p>G − R(p)

In particular when R(p) = −Ent(p), we get

R?(G ) = log
∑
i

eGi , [∇R?(G )]i =
eGi∑
i e

Gi

which is smooth
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Perturbations in Online Learning

Smoothing by Adding Perturbations

Consider the non-smooth function

Φ(G ) = max
i

Gi = max
p

p>G

Add perturbations Z = (Z1, . . . ,ZN)>:

Φ̃(G ) = E [φ(G + Z )]

Φ̃ will be smooth, e.g., if Zi ’s are iid from a distribution with a “nice”
density

By duality, there is some function Φ̃? such that:

Φ̃(G ) = max
p

p>G − Φ̃?(p)

which is the implicit regularizer being used
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Rademacher Perturbations
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Rademacher Perturbations

Follow the Sampled Leader

Recall FTL:

N
argmax

i=1

t−1∑
s=1

`s,i

Consider the Rademacher (εs is ±1 each with prob. 0.5) perturbation

t−1∑
s=1

εs`s,i

FTPL with this perturbation:

N
argmin

i=1

t−1∑
s=1

(1 + εs)`s,i =
N

argmin
i=1

t−1∑
s:εs=+1

`s,i

is playing FTL on a subsample of the past!

This algorithm is also known as sampled fictitious play
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Rademacher Perturbations

Hannan Consistency of FTSL

Theorem (Li & Tewari, 2016)

FTSL with Bernoulli sampling = FTPL with Rademacher perturbations is
Hannan consistent.

Just like Hannan’s original algorithm, ours achieves optimal
dependence on T but not on N

There are no tuning parameters!

Computational advantage for large sets of learner’s choices: only need
FTL blackbox

24 / 32



Rademacher Perturbations

Why Does FTL Fail?

Recall FTL counterexample: major reason for bad behavior is
instability

Consider the time indexed process Lt,1 − Lt,2 corresponding to the
cumulative losses of the two choices

`t,1 0.5 0 1 0 1 . . .
`t,2 0 1 0 1 0 . . .

Lt,1 0.5 0.5 1.5 1.5 2.5 . . .
Lt,2 0 1 1 2 2 . . .

Lt,2 − Lt,1 −0.5 0.5 −0.5 0.5 −0.5 . . .

This process crosses zero Ω(T ) times
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Rademacher Perturbations

Why does FTSL work?

Theorem (Littlewood-Offord 1943, Erdös, 1945)

Let x1, . . . , xT be such that |xi | ≥ 1. For any given radius ∆ > 0, the
small ball probability satisfies

sup
B

P (ε1x1 + . . .+ εT xT ∈ B) ≤ C · b∆c+ 1√
T

where B ranges over all intervals of length 2∆ and C < 3 is a universal
constant.

Consider the perturbed losses ˜̀
t,i = (1 + εt)`t,i

And the corresponding cumulative sums L̃t,i =
∑t

s=1
˜̀
s,i

The process L̃t,2 − L̃t,1 does not cross zero too many times

In fact, in expectation, it crosses zero only O(
√
T ) times
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Differential Privacy

Differential Privacy (DP)

Suppose X and X ′ are two datasets that are “close”

A is some randomized algorithm that operates on datasets

A is (ε, δ)-differentially private iff

P [A(X ) ∈ S ] ≤ eεP
[
A(X ′) ∈ S

]
+ δ

for any subset S of the range of A
At its heart, DP is a stability notion

Common DP mechanisms: add Laplace or Gaussian perturbations
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Differential Privacy

Post Processing Immunity

Suppose A is (ε, δ)-DP

Let f be an arbitrary function

Then f ◦ A is (ε, δ)-DP

Data
DP mechanism−→ Perturbed Data

optimization−→ Processed Data

DP techniques give us powerful tools to reason about the pipeline
above

We can systematically derive FTPL regret bounds (including new
ones!) using this idea
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Differential Privacy

Summary

Regularization via random perturbations: feed randomly perturbed
data into optimization routine

In online learning, FTPL-FTRL can viewed as two different ways to
smooth a non-smooth function

For experts problem, Rademacher perturbations lead to a Hannan
consistent algorithm

Differential privacy offers a lens to examine the stability of FTPL
algorithms
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Differential Privacy

Thank You!
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Differential Privacy
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