Google's AdWords Market: How Theory Influenced Practice

#### Vijay V. Vazirani

University of California, Irvine

Two major achievements of Google

#### 1). Search: That is robust to spam

## 2). Advertising: Business model



Vioxx Online, Description, Chemistry, Ingredients - Rofecoxib ...

#### Revolution in advertising

- Matching merchants with customers
   How can a merchant pitch ads in a targeted way to customers who are interested in his goods.
- Difficulty: How to find out needs/desires of customers in a super-efficient manner?
- Insight: A user's search queries reveals to Google a succinct window into her mind/needs

- Solution: Auction off queried keywords to advertisers!
- This converts a giant undefined matching problem into a gigantic auction!
- Google is world's biggest auction house: billions daily!

How to allocate keywords to advertisers?

- Advertisers bid for specific keywords
- Maximize Google's revenue efficient solution!

GREEDY: Display the ad of highest bidder
 Assume: only 1 ad is shown

 Charge bid, or second highest bid (Vickery auction)

This soln. was being used!



Vioxx Online, Description, Chemistry, Ingredients - Rofecoxib ...

Problem ...



#### Example:



#### Example:



#### Must incorporate budgets in solution

Large fraction of advertisers are budget-constrained

Budget distribution is heavy-tailed
 Must handle small budget advertisers adequately

Solution must be real time and particularly simple!

#### **Adwords Problem**

Mehta, Saberi, Vazirani & V, 2005:

Simple framework that captures essential features.

Will add bells and whistles later!

#### The Adwords Problem

N advertisers.

 $\Box \text{ Daily Budgets } \mathbf{B}_1, \mathbf{B}_2, \dots, \mathbf{B}_N = \$1$ 

□ Each advertiser provides bids for keywords he is interested in.



Online competitive analysis

Compare revenue of online algorithm with that of best offline allocation.

■ E.g., GREEDY has competitive ratio of ½.

## Algorithm

Will use agents'
Bid
Fraction of budget spent

"Correct" tradeoff between them given by a special function *f*



1 – 1/e competitive ratio, assuming bid << budget Simple, minipalistic solution!

## Impact

- Provided a general framework for thinking about budget constrained auctions for many Ad products
- Bid scaling used widely in industry for ad auctions and for display ads:
   Very fast: one operation per bid
   Low on memory: one number per bid
   No extra communication

#### New algorithmic work

Numerous models:
 Queries arrive in random order
 Queries are picked from a distribution
 Submodular constraints on allocations
 Use historical data about query arrival

## Solution has roots in "pure" theory, in particular, Matching Theory!













Any deterministic algorithm has competitive ratio of 1/2.

Karp, Vazirani & V., 1990:
 1 – 1/e factor randomized algorithm

#### **Optimal!**

Same as simple case of Adwords problem: All budgets \$1, all bids \$0/1.

## Online *b*-matching

Kalyanasundaram & Pruhs, 1996:
 1 - 1/e factor algorithm for *b*-matching:
 Daily budgets \$b, bids \$0/1, b>>1

**BALANCE:** Assign query to interested bidder who has spent least so far.

Optimal!

## Example: Balance

Bidder1 Bidder 2



 $B_1 = B_2 = $100$ 

**Balance** Algorithm

Queries: 100 Books then 100 CDs

Revenue<br/>\$1.50Bidder 1Bidder 2

# Where did this tradeoff function come from?



#### New proof of BALANCE

■ N bidders, \$1 each. Each bid is  $\$\epsilon$ .

• OPT: optimal offline, ALG: BALANCE

• OPT = N

• Will show: 
$$ALG \ge N\left(1 - \frac{1}{e}\right)$$

Idea: Upper bound no. of bidders who spent less!

Assume *k* large

**S**<sub>*i*</sub>: Bidders who spent 
$$\left[\frac{i-1}{k}, \frac{i}{k}\right)$$

• Let  $|S_i| = x_i$ . Will constrain  $x_1, x_1 + x_2, ...$ 





#### Partition revenue of ALG

# ■ \$ $\varepsilon \in layer i$ if bidder had $\left[\frac{i-1}{k}, \frac{i}{k}\right)$

when this money was spent.



 $S_2$   $S_1$ 

#### Partition revenue of ALG

■ \$
$$\varepsilon \in layer i$$
 if bidder had  $\left[\frac{i-1}{k}, \frac{i}{k}\right)$ 

when this money was spent.

BALANCE assigns next query to interested bidder who has spent least so far.

Layer  $1 \le \frac{N}{k}$ 

•First Constraint:  $|S_1| = x_1 \le layer 1 \le \frac{N}{k}$ 



Layer 2 
$$\leq \frac{N-x_1}{k}$$

Second Constraint:  $|S_1 \cup S_2| = x_1 + x_2 \le \frac{N}{k} + \frac{N - x_1}{k}$ 



#### Lower bound on ALG

LP(N): min 
$$\sum_{i} \frac{i}{k} x_i$$
  
s.t. constraints on  $x_1, x_2, \dots, x_k$ 

$$ALG \ge N\left(1 - \left(1 - \frac{1}{k}\right)^k\right) \ge N\left(1 - \frac{1}{e}\right)$$

#### Factor revealing LP

Jain, Mahdian, Markakis, Saberi & V., '03

- Family of LPs: LP(N) encodes problem of finding lower bound for instance of size N.
- Infimum of optimal solutions gives approximation factor

# Where did this tradeoff function come from?



Larger Theme

AdWords, Amazon, eBay, Yahoo!, Alibaba, Uber, Apple (iTunes), Airbnb, Cloud Computing ...

#### Markets on the Internet

 Numerous new algorithmic and game-theoretic issues raised.

Much scope for creative work that can have a huge impact!