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LSNNs: Networks of spiking neurons with  

long short-term memory  

 

 
 



Why is it difficult to produce recurrent neural networks 

with brain-like components and network dynamics 

that exhibit powerful computing capabilities?  

 

Research in Machine Learning has shown that artificial recurrent neural 

networks can be computationally very powerful, see e.g.  

• Graves,...,  Hinton. Speech recognition with deep recurrent neural networks. IEEE 

conference  2013 

• Wu, ...., Dean. Google's Neural Machine Translation System: Bridging the Gap between 

Human and Machine Translation. 2016 

 

But their ANNs employ special modules for working memory:  

LSTM (Long Short-Term Memory) units. 

 

 

In contrast,  it has been quite hard to demonstrate interesting computational 

properties of recurrently connected networks of spiking neurons (SNNs) . 



 LSTM units 

 

Introduced by (Hochreiter and Schmidhuber, 1997). 

 

LSTM units endow ANNs with the capability to store  

and update information, without disturbance  

by the inherent dynamics of  a recurrent neural 

network. 

 

The value ct  in the memory cell of an LSTM units  

remains unchanged (i.e., the identity function is  

applied to its content), unless the input gate is  

opened to let new values flow into it.  

 

 

Think of adding registers from a digital computer to a neural network, but with 

trained (rather than programmed) rules for writing into the register or reading 

from it. 

 

 

 



LSTM units support  

backpropagation through time (BPTT) 

for training a recurrent network 

When one applies BPTT to a recurrent neural network, one unrolls the network of hidden 

units into a deep feedforward network: the network of hidden units is cloned for each time 

step s, and all its recurrent connections are replaced by feedforward connections from the 

clone for step s into the one for step s+1: 

When one computes the derivative of the error at 

the output, one has to propagate the error back 

through all these cloned layers. 

 

On a backward path of length D, powers of its 

weights of order D arise. 

 

This leads to exploding or vanishing gradients. 

 

 

This defect is avoided by a neuron that has a 

recurrent connection to itself with weight 1  

(see the memory cell of an LSTM unit). 



Adapting spiking neurons endow SNNs  

with a similar long short-term memory 

Typical input/output behavior of  

adapting neurons: 

 

 

 

 

 

 

 

 

 

 

                                  Diversity of adapting neurons in the human neocortex  

                                     according to the Brain Atlas of the Allens Institute 

 

 

 

 

 

 

 

 



Adapting neurons can easily be modelled by  

LIF-neurons with an adaptive firing threshold 

 

We assume that the firing threshold 𝐵𝑗 of a leaky integrate-and-fire (LIF) neuron 

j contains a time-varying component  𝑏𝑗(t) that is temporarily increased by each 

of its spikes 𝑧𝑗 𝑡  : 

 

 

𝑏𝑗 𝑡 + 1 = 𝛼𝑗𝑏𝑗 𝑡 + 1 − 𝛼𝑗 𝑧𝑗 𝑡  

 

 

 

 

𝐵𝑗 𝑡 = 𝑏𝑗
0 + 𝛽𝑏𝑗 𝑡  



Backpropagation through time (BPTT) 

works very well for adaptive spiking neurons 

Back propagating gradients through discontinuous firing events of a spiking neurons: 

 

• The firing of a neuron is formalized through a binary step function H applied to the 

scaled membrane voltage v(t) (v crosses the threshold at 0 and resting potential is -1) 

• The gradients are propagated through step functions with a pseudo-derivative 

       similarly as in (Courbariaux et al., 2016)  (Esser et al., 2016): 

  

 

 

 

 

 

 

• BPTT propagates well through an adaptive firing threshold, since no spike is involved.  

 

• Furthermore: since adaptive neurons fire less often, they cause fewer artefacts of 

BPTT.  

 

 

v 



We arrive in this way at a simple variation of the SNN model: 

LSNNs     
(„L“ indicates the stretch version of the model) 

LSNNs contain both adaptive neurons A and regularly firing 

neurons R (= standard LIF neurons).  

 

Outputs Y are provided by linear or softmax readout neurons. 

 

The architecture of LSNNs matters, e.g. complete or random 

connectivity does not provide the computational power of LSTM 

units to SNNs 

 

Sparse architectures with larger computational power emerge 

when one combines weight optimization through BPTT with a 

biologically inspired rewiring heuristics, as proposed in 

Kappel et al, eNeuro 2018,  Bellec at al., ICLR 2018 

(see preceding talk by Robert Legenstein) 

 

 

 

 



A glimpse at the computational power of LSNNs 

 

 A standard test of temporal integration capability: sequential MNIST  

(the pixels of each handwritten digit are presented sequentially, here one pixel every ms) 

 

 

 

 

 

 

 

 

LSNNs achieve for this task a similar  

performance as LSTM networks: 



Basic setup of Learning-to-Learn (L2L) 

 

 



Motivation for investigating L2L for SNNs 

• Virtually all existing demos of learning in SNNs are arguably biologically 

unrealistic,since they start with a tabula rasa network, that has no „innate  

knowledge“ from evolution, and no transfer knowledge from previously 

learned tasks. 

 

• Brains are able to learn many things from single or few examples („one-

shot learning“), and we need to achieve this also for SNNs 

 

• Josh Tenenbaum et al. have pointed out that the capability to extract and 

use abstract knowledge is essential for that 

 

• An unrelated motivation: We need to see more SNNs that can carry out 

powerful computations, e.g., control some stepwise behaviour.  

 

• L2L had so far not been applied to SNNs 

 

 

 

 



Instead of a single learning task, we define  a 

family F of many learning tasks   

(F is in general infinitely large). 

 

Specify a set of hyperparameters (hp‘s) 𝚯 of the  

NN N in the inner loop.  

Define  --for any values 𝚯 of the hp‘s--  the fitness f(C) of N in learning task C from F. The 

hp‘s Θ  remain fixed while N learns the task C (in the „inner loop“). 

 

One optimizes the hp‘s 𝚯  through some „outer loop“ optimization (BPTT. ES, ...)  so that N 

has high fitness f(C) for  randomly drawn tasks C from F.  

Note: When we use BPTT for the outer loop, we use in addition the errors of N on the task 

C, but accumulate backpropagated errors over several tasks C before applying them. 

 

Essential difference to the standard evaluation of  learning in ML:  

Testing is not carried out for new examples from the same learning task, but for new  

examples from a new learning task from the same family F. 

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... & 

Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763. 

 

 

 

 

 

 

 L2L framework in modern ML 



Define F as the set of learning tasks which the SNN should be able to learn very 

fast. 

 

One can choose hp’s Θ arbitrarily: Covenient choice: Let them control all aspects 

of the SNN and its learning about which one is not sure, such as 

• time constants and other parameters of neuron and synapses 

• some or all of the synaptic weights and connections of N 

• plasticity rules and their parameters. 

 

 

 

I will show  two demos for the case where all synaptic connections and 

weights of N were hp’s, and hence determined by the outer loop (so that they 

could not be used for learning a particular task from F), like in the talk of Matt 

Botvinick. 

 

 

 One can apply this L2L approach  

just as well to  

SNNs N in the inner loop 



Choice of demos 

 

 

I focus on benchmark challenges that were previously proposed  for  L2L 

applied to non-spiking recurrent ANNs (LSTM networks), for RL and 

supervised learning: 

 

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... & Botvinick, 

M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763 

 

Wang, J.X, ...., Botvinick, M. (2018) Prefrontal cortex as a meta-reinforcement learning system; 

biorxiv (Nature Neuroscience, in press) 

 

Hochreiter, S., Younger, A. S., & Conwell, P. R. Learning to learn using gradient descent. 

ICANN 2001.   

 

. 

 



Learning to learn from rewards („Meta-RL“) 

 

 

 

 

 

 

• The fitness f(C) reflects here the the sum of  rewards accumulated for task C. We use the 

advantage actor-critic algorithm (policy gradient) in combination with deep learning (BPTT), 

like in (Mnih et al., 2016). 

 

• N gets as input the current state, and the action and reward for the preceding step 

 

• N needs to store in its dynamics the action/reward history while learning a task C, and 

produce a policy. 

 

• The weight vector W of the LSNN encodes  the RL-algorithm (!)  which it applies.  



Learning to learn navigation in a maze 

Family F of tasks:  Each 

task is a 4 x 5 maze with a 

goal in a random corner. The 

agent starts at a random 

position and gets 100 steps 

to collect rewards. 

 

Rewards: 1 for reaching 

goal (afterwards agent gets 

reset to a random location) 

-0.1 for all other moves  

 

 

 





The weights and connections 

of the resulting LSNN 

encoded a clever exploration 

strategy, and the capability to 

efficiently exploit the 

knowledge gained through 

exploration. 

 

 

It is very difficult to build a 

SNN by hand that can control 

any nontrivial sequential 

behavior. 



Relation to the work of Botvinick et al 

• We have also verified (see our arxiv paper) that transfer learning can be 

demonstrated for SNNs in a similar manner as in their work with LSTM 

networks 

 

• Whereas it is not clear how the activity in LSTM networks can be related to 

neural activity in the brain, the implementation with excitatory and inhibitory 

neurons of LSNNs provides a clear link to experimental data to neural 

recordings from the brain. 

 



Learning to learn from a teacher 

 



In this demo the challenge for the LSNN is to find a learning 

algorithm that has the functionality of backprop (BP) 
 

• Let the  family F consist of all functions G that can be represented by a 2 layer ANN 

(„target network“) with sigmoidal neurons and weights from [-1, 1]: 

 

 

 

 

 

 

 

• The LSNN is fed with a new sample to classify < 𝑥1, 𝑥2 > and the target output  𝐺 𝑥1′, 𝑥2′  

for the input <𝑥1′, 𝑥2′ >  at the preceding sample (hence this is supervised learning).   

 

• If it wants, the SNN can store the preceding input  <𝑥1′, 𝑥2′ > and  compute the error and 

the error gradient after the next trial (similar to backprop). 

 

• But it does not have to do that.  The SNN can choose any learning algorithm that 

can be performed within its dynamics. 

 

• Note that in principle, all learning rules are defined by smooth functions, and can 

therefore be approximated by  NNs. 

  

The LSNN learns to represent a 

family of  ANNs on demand 



A typical learning episode for a new function G  

defined by a random 2-layer target network  
(after fixing all parameters of the LSNN through the outer loop of L2L) 

The LSNN learns in this episode to reproduce the input/output behaviour of G 

after about 15 trials: 



The emergent learning algorithm in LSNNs for 2-layer ANNs 

appears to differ from BP: is has Bayesian features 

• We selected 4 target networks that appeared quite often during training in the 
outer loop  

 

 

 

 

• During testing, when the synaptic weights were fixed, these 4 target networks 
were learned faster, in spite of the fact that new network inputs were drawn 
randomly:  

 

 

 

 

 

 

• Hence the learning algorithm that was encoded by the synaptic connections and 
weights of the LSNN had a Bayesian feature. 

 

 

 

 

 



Summary  

• The integration of  adapting neurons into SNNs enables us to port at least some of the 

powerful computing and learning capabilities of recurrent LSTM networks into spiking 

neural networks 

 

• Deep Learning becomes (for now) an essential tool for producing computationally 

powerful LSNNs 

 

• The resulting LSNNs compute with spike patterns, rather than rates. Hence they provide 

new paradigms for coding and computing with spikes. 

 

• We have shown that the Meta-RL approach of Botvinick et al can be ported from LSTM 

networks into networks of excitatory and inhibitory neurons, thereby supporting a 

biological interpretation 

 

• We have shown that SNNs that are able to learn from a teacher with seeminly new 

learning algorithms, implemented through local rules in the LSNN.  

 

• Reverse engineering of the resulting LSNNs and their new learning properties becomes 

a nontrivial but very interesting new research topic. 

 

 

 

 

 


