
AN ALGORITHMIC
THEORY OF BRAIN
NETWORKS

Nancy Lynch, MIT EECS
Simons Institute
April 17, 2018

Joint work with
Cameron Musco (MIT) and
Merav Parter (Weizmann)

Distributed Algorithms
• My Theory of Distributed Systems research group works

on distributed algorithms, concerned with communication
in wired and wireless networks, network organization,
distributed data management, consensus,…

• Also general concurrent systems theory,
concerned with modeling systems and
proving general theorems about how they
can be constructed and proved correct.

• Many kinds of biological systems behave
like distributed algorithms…

Biological Distributed Algorithms
• Many kinds of biological systems behave

like distributed algorithms, e.g.:
•  Cells in developing organisms organize

themselves into meaningful patterns.
•  Insect colonies cooperate to solve problems of

cooperative exploration, task allocation,
consensus.

•  Neurons cooperate to implement focus, learning,
memory.

•  They have special characteristics:
•  Use simple chemical “messages”.
•  Components have simple “state”, follow

simple rules.
•  Flexible, robust, adaptive.

Biological Distributed Algorithms

Biological Distributed Algorithms
Q: How can distributed algorithms help in
understanding the behavior of biological
systems?

Q: How can understanding biological
systems help in building better distributed
network algorithms?

Some of our Results
•  Insect colony behavior:

•  Cooperative foraging (resource discovery)
•  Task allocation
•  Nest relocation (consensus)
•  Density estimation

• May lead to the discovery of new kinds of
distributed algorithms: flexible, robust,
adaptive.

Some of our Results
• Brain network operation

•  Winner-Take-All (leader election)
•  Similarity Detection
•  Neural coding

Our Work on Brain Algorithms
• Goal: Understand how computation is performed in biological

neural networks, in terms of distributed algorithms.
• Biological features we consider: Spiking neurons, noisy firing

thresholds, excitation and inhibition, restricted connectivity,
synapse weights, synchronization.

• So far, we have focused on fixed, designed
networks, rather than on how they are learned.

• Sample problems: Select one neuron from a
set of firing neurons, test similarity of input
patterns, neural coding, data compression,,…

• Basic abstract computational primitives, rather
than complex real-world problems.

Guiding Questions
• How do the various biologically-inspired model features affect

the solvability of particular problems? The costs of solving
them? The design of algorithms?

•  Is there interesting new theory beyond that for other well-
studied models of computation, such as deterministic threshold
circuits, Boltzmann machines, distributed graph networks?

• Can this theory say anything interesting about
computation in real neural networks?

• E.g., clarify the role of noise and randomness;
clarify the role of inhibition and excitation;
identify recurring patterns,…

• Our starting point: Work by Maass et al. on
theory of Spiking Neural Networks.

This talk
1.  Introduction √
2.  Our model: Stochastic Spiking Neural Networks
3.  Winner-Take-All algorithms and lower bounds
4.  Similarity Testing and Indexing
5.  Composing Stochastic Spiking Neural Networks
6.  Discussion

2. Stochastic Spiking Neural Networks
•  ​𝑣↑𝑡 =1 if and only if neuron 𝑣 spikes at time 𝑡.

•  𝑝𝑜𝑡(𝑣,𝑡)= ​Σ↓𝑢  ​𝑢↑𝑡−1  𝑤(𝑢,𝑣) – 𝑏(𝑣)

•  Pr​[​𝑣↑𝑡 =1] = 1/(1+ ​𝑒↑−𝑝𝑜𝑡(𝑣,𝑡) )

𝑣𝑡 = 1 𝑣t+1 = 1t+1 = 1 𝑣t+2 = 0t+2 = 0 𝑣t+3 = 1t+3 = 1

𝑢1

𝑣

… 𝑢2 𝑢3

𝑤(𝑢1,𝑣)

1
𝑝(𝑣,𝑡)

𝑝𝑜𝑡(𝑣,𝑡)

1/2

Stochastic Spiking Neural Networks
• All neurons are strictly inhibitory or strictly excitatory, i.e.,

𝑤(𝑢,𝑣)≥ 0 for all 𝑣 or 𝑤(𝑢,𝑣)≤ 0 for all 𝑣.

• We ignore many other biological features: Refractory
period, spike propagation delay, history, noise on
synapses,…

• Some can be simulated in our model.

+

𝑢

+

𝑢

-
--

+

Neural Network Model
• A weighted directed graph, nodes represent neurons, edges

represent synapses, weights indicate synaptic strength.
• Regard 𝑤𝑒𝑖𝑔ℎ𝑡 = 0 as absence of edge, 𝑤𝑒𝑖𝑔ℎ𝑡 > 0 as

excitatory, 𝑤𝑒𝑖𝑔ℎ𝑡 < 0 as inhibitory.
𝑢 𝑣

Neural Network Model

• Neurons are either input neurons X, output neurons Y, or
auxiliary neurons A.

•  Input and output neurons must be excitatory.
• Auxiliary neurons may be either excitatory or inhibitory.

​
𝑦↓
1 

​
𝑦↓
2 

​
𝑦↓
3 
…

​
𝑦↓
𝑚 

​
𝑥↓
1 

…
​

𝑎↓
1 

​
𝑥↓
2 

​
𝑥↓
3 

​
𝑥↓
𝑛 

​
𝑎↓
2 

​
𝑎↓
𝑙 

Network Dynamics
• Configuration 𝐶: Assigns a firing state,

0 or 1, to each neuron, where 𝐶(𝑢) = 1
means it’s firing and = 0 means it’s not.

• Execution 𝛼= ​𝐶↑0 , ​𝐶↑1 , ​𝐶↑2 ,…, a sequence of configurations.
•  ​𝑢↑𝑡 = ​𝐶↑𝑡 (𝑢) denotes the firing state of neuron 𝑢 at time 𝑡.
•  Input firing patterns may be arbitrary.
•  Initial firing patterns for non-input (auxiliary and output)

neurons are part of the network definition.
•  For every infinite input execution, the network produces a

probability distribution on infinite executions, by applying the
stochastic firing dynamics for all non-input neurons at all
rounds.

Computational Problems in our Model
•  𝑛 input neurons 𝑋, each always firing or always not firing.
• 𝑚 output neurons 𝑌.
•  Target function 𝑓: ​{0,1}↑𝑛  → ​{0,1}↑𝑚  (possibly multi-valued).

Auxiliary

​
𝑥↓
1 

​
𝑥↓
2 

​
𝑥↓
3 
…

​
𝑥↓
𝑛 

0 1 1 0

Input

​
𝑦↓
1 

​
𝑦↓
2 

… 𝑦𝑚 Output

• Goal: Design a compact
network that rapidly
converges to some output
firing pattern 𝑌 ∈ 𝑓(𝑋), with
high probability.

Computational Problems in our Model
•  𝑛 input neurons 𝑋, each always firing or always not firing.
• 𝑚 output neurons 𝑌.
•  Target function 𝑓: ​{0,1}↑𝑛  → ​{0,1}↑𝑚  (possibly multi-valued).

• Complexity Measures:
•  Static measures, like number

of neurons, number of auxiliary
neurons, maximum weight
used,...

•  Time (number of rounds to
convergence).

Auxiliary

​
𝑥↓
1 

​
𝑥↓
2 

​
𝑥↓
3 
…

​
𝑥↓
𝑛 

0 1 1 0

Input

​
𝑦↓
1 

​
𝑦↓
2 

… 𝑦𝑚 Output

This talk
1.  Introduction √
2.  Stochastic SNNs √
3.  Winner-Take-All algorithms and lower bounds
4.  Similarity Testing and Indexing
5.  Composing Stochastic SNNs
6.  Discussion

3. The Winner-Take-All Problem
• Nancy Lynch, Cameron Musco, Merav Parter.

Computational Tradeoffs in Biological Neural Networks:
Self-Stabilizing Winner-Take-All Networks. ITCS 2017.

WTA Circuit

​𝑥↓1  …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

Winner-Take-All: 𝑊𝑇𝐴(𝑛,​𝑡↓𝑐 , ​𝑡↓𝑠 , δ)
•  𝑛 fixed inputs, each either always firing or always not firing.
•  𝑛 corresponding outputs.
• Starting from any state, with probability ≥1 − δ, the network:

•  Converges, within a short time ​𝑡↓𝑐 , to a single firing output, which
corresponds to a firing input, and then

•  Remains stable for a long time ​𝑡↓𝑠 .

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

WTA Circuit

• A neural leader election problem,
studied in computational
neuroscience.

• Used in perceptual attention,
learning,…

• Powerful “nonlinear” primitive
[Maass ‘99].

Simple Solution with Two Inhibitors
• Stability inhibitor ​𝑎↓𝑠 :

•  Fires with high probability whenever one or more outputs fire.
•  Prevents outputs that didn’t fire at time 𝑡 from firing at time 𝑡+1.

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐𝑏=.5

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 =1.5

• Convergence inhibitor ​
𝑎↓𝑐 :
•  Fires with high probability

whenever two or more
outputs fire.

•  Causes any output that fires
at time 𝑡 to fire at time 𝑡+1
with probability
approximately ½.

Simple Solution with Two Inhibitors
•  Idea: Roughly half of the currently-firing outputs stop firing at

each step.
• So with constant probability, there is some time ​𝑡↓𝑐  ≤ ​log�𝑛 

such that exactly one output fires at time 𝑡.

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐𝑏=.5

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 =1.5

• Moreover, after time ​𝑡↓c ,
with high probability, this
selected output continues
to fire for a long time ​𝑡↓𝑠 .

• Meanwhile, only inhibitor ​
𝑎↓𝑠  fires, preventing all
other outputs from firing.

Simple Solution with Two Inhibitors
• Output neuron bias (threshold) = 3.
• Weights of (input, output) edges = 3.
• Weights of output self-loops = 2.
• Weights of (output,

inhibitor) edges = 1.
• Weights of (inhibitor,

output) edges = −1.

𝑏=3

3

2

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐
𝑏=.5

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 =1.5

1
-1

Include a Weighting Factor γ
• Multiply all weights and biases by a weighting factor γ,

which must be sufficiently large with respect to 𝑛 and
stability time ​𝑡↓𝑠 .

2γ

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐𝑏=.5γ

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 =1.5γ

γ

𝑏=3γ

3γ

−γ

• We can increase the
stability time ​𝑡↓𝑠  by
increasing γ;
specifically, a linear
increase in γ yields
an exponential
increase in ​𝑡↓𝑠 .

• Convergence time ​𝑡↓𝑐 
is 𝑂(​log�𝑛). 

Our Main Theorem
•  Theorem 1: Assume γ ≥ 𝑐 log ​(�𝑛 ​𝑡↓𝑠  /δ). Then starting from

any state, with probability ≥1 − δ, the network converges,
within time ​𝑡↓𝑐 ≈𝑐​log�𝑛 ​log�(​1/𝛿 ) , to a single firing output
corresponding to a firing input, and remains stable for time ​
𝑡↓𝑠 .

• Also:
•  Expected time result.
•  More than two inhibitors

can be used to give
faster convergence.

•  Can’t solve the problem
much faster with two
inhibitors.

•  Can’t solve it at all with
one inhibitor.

2γ

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐𝑏=.5γ

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 =1.5γ

γ

𝑏=3γ

3γ

−γ

Proof of Correctness
• We must show that, with high probability:

•  (Convergence) System soon reaches a “valid WTA” configuration.
•  (Stability) Once it reaches such a configuration, it stays there for a

long time.

• Similar properties are commonly proved for distributed
algorithms; our proofs follow a style inspired by analysis of
distributed algorithms:
•  Stability properties are proved using invariants.
•  Convergence properties proved by showing

progress through a series of milestones.

• Except now we want high probability
statements rather than absolute
statements.

Stability Proof
• Lemma 2 (Stability): Consider a
“valid WTA” configuration 𝐶, in which: …

…

•  Exactly one output, corresponding to a firing input, is firing,
•  ​𝑎↓𝑠  is firing, and
•  ​𝑎↓𝑐  is not firing.
Then WHP, the next configuration is identical to 𝐶.

• Corollary 3: This situation persists for a long time (WHP):
 𝐶,𝐶,𝐶,…
• Duration ​𝑡↓𝑠  is exponential in the weighting factor 𝛾.

Stability Proof
• Follows typical style of invariant proofs.
• Uses a series of lemmas saying what is
guaranteed (WHP) by each single
transition.

…

…

• Namely, consider a configuration 𝐶, leading
(probabilistically) to a new configuration 𝐶′. Then (WHP):
•  No output corresponding to a non-firing input fires in 𝐶′.
•  If ​𝑎↓𝑠  is the only inhibitor that fires in 𝐶, then the same outputs

fire in 𝐶′ as in 𝐶.
•  If there is exactly one firing output in 𝐶 then ​𝑎↓𝑠  fires in 𝐶’ and ​𝑎↓𝑐 

does not.

Convergence Proof
• Harder…Describes multi-step behavior.
• Analogous to progress properties,

which are generally proved by
progressing through a sequence of
“milestones”.

• Now most of these steps happen WHP.

reset

all other
configurations

valid
WTA

near-
validn-WTA 2-WTA

good configurations

≤ 2 steps

…

Convergence Proof
•  The arrow from near-valid to valid WTA is not

WHP, just with some constant probability:
•  Could skip from ≥ 2 outputs firing to 0.
•  Race condition in shutting down ​𝑎↓𝑐 .

•  To get high probability, the network might
have to reset and try again, several times.

reset

all other
configurations

valid
WTA

near-
validn-WTA 2-WTA

good configurations

≤ 2 steps

…

Convergence Proof
•  Lemma 4 (Convergence): From any configuration 𝐶, the

probability of reaching a valid WTA configuration within time
≈ 𝑐 log​𝑛 is ≥ 1/18.

•  Theorem 1: If γ ≥ 𝑐 log​
(�𝑛 ​𝑡↓𝑠  /δ), then the
network solves 𝑊𝑇𝐴(𝑛, ​
𝑡↓𝑐 , ​𝑡↓𝑠 , δ) , with ​𝑡↓𝑐 ≈𝑐​
log�𝑛 ​log�(​1/𝛿 ) .

2γ

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑧𝑠 𝑧𝑐𝑏=.5γ

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 =1.5γ

γ

𝑏=3γ

3γ

−γ

Faster Solution with More Inhibitors
• Uses one stability inhibitor, plus 𝑘 convergence inhibitors,

with exponentially-growing biases.
•  These extra inhibitors

speed up convergence
when there are many
firing outputs:
•  Higher-bias inhibitors

trigger when more outputs
fire.

•  Many firing inhibitors serve
to decrease the output
neurons’ probability of
continuing to fire.

𝑦1 𝑦2 𝑦3 𝑦𝑛

𝑎1 𝑎2 𝑎𝑘+1

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

…

•  Theorem 5: Assume γ ≥ 𝑐 log ​(�𝑛 ​𝑡↓𝑠  /δ). Then from any
state, with prob ≥1 − δ, the network converges, within

Faster Solution with More Inhibitors

time ​𝑡↓𝑐 ≈𝑐 𝑘​​log↑​1/k   n log�(​
1/𝛿 ) , to a single firing
output corresponding to a
firing input, and remains
stable for time ​𝑡↓𝑠 .

𝑦1 𝑦2 𝑦3 𝑦𝑛

𝑎1 𝑎2 𝑎𝑘+1

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

…

Lower Bounds
• Based on a slightly restricted version of the model:

•  Inputs connect to no outputs except their own.
•  Outputs do not connect to each other.
•  Auxiliary neurons are all inhibitors.

•  These conditions are satisfied by our algorithms.

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑎1 𝑎2 𝑎
𝑚

• Proofs depend on locality
arguments as commonly
used in distributed
computing theory.

Lower Bounds
•  Theorem 6: No SNN with just one auxiliary neuron can solve

WTA with stability time ​𝑡↓𝑠 ≫ convergence time ​𝑡↓𝑐 .
• Proof idea: Assume a WTA network with one inhibitor 𝑎.
• Claim 1: If 𝑎 is not firing, then any output with a firing input will

fire (with good probability); this is needed to ensure that at
least one output will fire by the required convergence time ​𝑡↓𝑐 .

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑎

• Claim 2: If 𝑎 is firing, then any
output that was firing will stop
firing (with good probability);
this is needed to ensure that at
most one output is firing by ​𝑡↓𝑐 .

•  This combination makes it hard
to maintain stability.

Lower Bounds
• Theorem 7: No SNN with two auxiliary neurons can
improve on the convergence-time bound in our two-
neuron solution by more than a factor of 𝑂(log​log​𝑛).

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑎1 𝑎2

•  Idea: Fast convergence
requires a lot of inhibition
when many outputs fire.

• This required inhibition is
too high when a few
outputs fire.

Discussion

•  Inhibition:
•  In our networks, inhibitors are used to achieve two goals:

stability and convergence.
•  Inhibition is often viewed as a stability mechanism in the brain;

in our networks, it also helps to drive computation toward
convergence.

• Randomness:
•  Randomness is a source of noise that can introduce

inaccuracies and slow down computation.
•  But it can also be a powerful computational resource.
•  Here, randomness is used to break symmetry among output

neurons.

…

…

This talk
1.  Introduction √
2.  Stochastic SNNs √
3.  Winner-Take-All algorithms and lower bounds √
4.  Similarity Testing and Indexing
5.  Composing Stochastic SNNs
6.  Discussion

4. Similarity Testing and Indexing
• Nancy Lynch, Cameron Musco, Merav Parter. Neuro-

RAM Unit with Applications to Similarity Testing and
Compression in Spiking Neural Networks. DISC 2017.

?

0 1 0 10 1 0 1

𝑋1 𝑋2

​
𝑥↓
2,
1 

​
𝑥↓
2,
2 

​
𝑥↓
2,
3 

​
𝑥↓
2,
𝑛 

…
​

𝑥↓
1,
1 

​
𝑥↓
1.
2 

​
𝑥↓
1,
3 

​
𝑥↓
1,
𝑛 

Similarity Testing

𝑦

…

Similarity Testing
• Similarity testing problem: Given two input firing patterns ​𝑋↓1 

and ​𝑋↓2 , distinguish the case where ​𝑋↓1 = ​𝑋↓2  from the
case where they are far from being equal, e.g., 𝑑(​𝑋↓1 , ​𝑋↓2 )
≥ ϵ 𝑛.

• After convergence, the output neuron should fire
continuously if the inputs are equal, and not fire if they are far
from equal.

• A natural sub-problem
for pattern recognition
and other tasks.

?

0 1 0 10 1 0 1
𝑋1 𝑋2​

𝑥
↓
2
,
1 

​
𝑥
↓
2
,
2 

​
𝑥
↓
2
,
3 

​
𝑥
↓
2
,
𝑛 

…
​

𝑥
↓
1
,
1 

​
𝑥
↓
1
.
2 

​
𝑥
↓
1
,
3 

​
𝑥
↓
1
,
𝑛 

Similarity Testing

𝑦

…

ɛ

Algorithm Idea
• Simple (non-neural) sublinear time algorithm: Sample 𝑂(log​

𝑛 / ϵ) random positions and check whether ​𝑋↓1  and ​𝑋↓2 
match at those positions.

•  If ​𝑋↓1 = ​𝑋↓2 , then ​𝑆↓1 = ​𝑆↓2 . If 𝑑(​𝑋↓1 , ​𝑋↓2 ) ≥ ϵ 𝑛, then
with high probability, ​𝑆↓1 ≠ ​𝑆↓2 .

0 1 0 1

…
0 1 0 1

…

𝑋1 𝑋2

​
𝑠↓
1,
1 

​
𝑠↓
1,
2 

​
𝑠↓
2,
1 

​
𝑠↓
2,
2 

=
?

random sample

… 𝑠2,𝑙𝑜𝑔𝑛ɛ …

​
𝑥↓
1,
1 

​
𝑥↓
1.
2 

​
𝑥↓
1,
3 

​
𝑥↓
1,
𝑛 

​
𝑥↓
2,
1 

​
𝑥↓
2,
2 

​
𝑥↓
2,
3 

​
𝑥↓
2,
𝑚 

𝑠1,𝑙𝑜𝑔𝑛

Implementing the Algorithm in an SNN
• Equality check between ​𝑆↓1  and ​𝑆↓2  is straightforward.
•  For sampling random positions, we use an Indexing Module

(Neuro-RAM): given an index encoded by the firing pattern
of a set of neurons, select the appropriate value of ​𝑋↓1  or ​
𝑋↓2 . • After convergence,
the output neuron
should fire
continuously if and
only if 𝑋(𝑍) is firing.

• Simulates an
excitatory connection
from 𝑋(𝑍) to 𝑦.

𝑥1 𝑥3 𝑥𝑛𝑥2 … 𝑧2 𝑧𝑙𝑜𝑔
𝑛

𝑧1 …

0 1 0 1
𝑋

1 1 0
𝑍

Indexing Network
(Neuro-RAM)

𝑦

​𝑋↓2  ​𝑋↓1 

0 1 1 0 0 1 1
…

​𝑁𝑅↓1,1  = ​𝑁𝑅↓2,1 

​𝑍↓1 

​𝑁𝑅↓1,𝑘  ​𝑁𝑅↓2,𝑘  =
​𝑍↓𝑘 

𝑘=𝑂(log​𝑛 / ϵ)
random
neurons

⋀ …

Similarity Testing with Neuro-RAM

1

1

1

1

0

Indexing Problem (Neuro-RAM)
•  Indexing might not seem very “neural”.
• Some neural motivation: Uses information contained in a

small set of neurons (the index) to access information from
a much larger data store.

•  This seems to be an
important primitive for
other applications
besides similarity
testing.

• E.g., a smell, or sight,
or a word triggering a
memory.

𝑥1 𝑥3 𝑥𝑛𝑥2 … 𝑧2 𝑧𝑙𝑜𝑔
𝑛

𝑧1 …

0 1 0 1
𝑋

1 1 0
𝑍

Indexing Network
(Neuro-RAM)

𝑦

Main Algorithmic Result for Indexing
•  Theorem 1: For any 𝑡 ≤√�𝑛 , there is an SNN solving the

indexing problem with 𝑂(𝑛/𝑡) auxiliary neurons that
converges by time 𝑡 (WHP).

𝑥1 𝑥3 𝑥𝑛𝑥2 … 𝑧2 𝑧𝑙𝑜𝑔
𝑛

𝑧1 …

0 1 0 1
𝑋

1 1 0
𝑍

𝑦

𝑑2 ​
𝑑↓{𝑛
/𝑡} 

𝑑1 …

• Corollary: A
sublinear-sized
circuit for the
similarity testing
problem: 𝑂(​√�𝑛 ​
log�𝑛 /𝜖 ) auxiliary
neurons, running in
time 𝑂(√�𝑛 ).

Implementation of Neuro-RAM Module
• Example: 𝑂(√�𝑛 ) auxiliary neurons implementing Neuro-

RAM in 𝑂(√�𝑛 ) rounds.
• Divide 𝑛 input neurons 𝑋 into √�𝑛  buckets.
• Divide log 𝑛 index neurons 𝑍 into two halves.

• Step 1: Select a bucket ​𝑋↓𝑖  using first half of 𝑍.
• Step 2: Select the desired index inside the bucket ​𝑋↓𝑖 

using the last half of 𝑍.
• Various forms of trickiness involved in encoding and

decoding, not very neural.

Our Main Results for Indexing

Theorem 1 (Upper Bound):
For any 𝑡 ≤√�𝑛 , there is an SNN solving the
indexing problem with 𝑂(𝑛/𝑡) auxiliary neurons that
converges by time 𝑡 time WHP.

Theorem 2 (Lower Bound):
Any circuit that solves the indexing problem and
converges by 𝑡 time WHP, requires Ω(​𝑛/𝑡​ log↑2 𝑛 )
auxiliary neurons.

Lower Bound for Indexing
•  This lower bound shows that our two-inhibitor network’s

convergence time cannot be improved by more than a ​​
log↑2 �𝑛  factor.

• We also get a stronger lower bound for Feed-Forward SNNs.
•  This separates FF SNNs from FF circuits composed of

sigmoidal gates with real-valued outputs; these can
implement indexing with 𝑂(√�𝑛 ) neurons, in 𝑂(√�𝑛 ) time.

Proof of Lower Bound for Indexing
• Step 1: Transform an SNN for Indexing to an equivalent

Feed-Forward SNN:

• Step 2: Convert the FF SNN to a probability distribution on

deterministic circuits.
• Step 3: Identify a single circuit, and prove a lower bound

for the circuit using a VC-dimension argument.

…

• Step 1: Transform an SNN for Indexing to an equivalent
Feed-Forward SNN.

• Step 2: Convert the FF SNN to a probability distribution on
deterministic circuits:

• Step 3: Identify a single circuit, and prove a lower bound
for the circuit using a VC-dimension argument.

…

…

Proof of Lower Bound for Indexing

• Step 1: Transform an SNN for Indexing to an equivalent
Feed-Forward SNN.

• Step 2: Convert the FF SNN to a probability distribution on
deterministic circuits.

• Step 3: Identify a single circuit, and prove a lower bound
for the circuit using a VC-dimension argument:

…

Proof of Lower Bound for Indexing

Our Main Results for Indexing

Theorem 1 (Upper Bound):
For any 𝑡 ≤√�𝑛 , there is an SNN solving the
indexing problem with 𝑂(𝑛/𝑡) auxiliary neurons that
converges by time 𝑡 time WHP.

Theorem 2 (Lower Bound):
Any circuit that solves the indexing problem and
converges by 𝑡 time WHP, requires Ω(​𝑛/𝑡​ log↑2 𝑛 )
auxiliary neurons.

Our Main Results for Applications

Theorem 3 (Similarity Testing):
There is an SNN with 𝑂(√�𝑛  𝑙𝑜𝑔 𝑛/𝜖) auxiliary neurons
that solves ϵ-approx. equality in time 𝑂(√�𝑛 ).

Theorem 4 (Compression):
There is an SNN that implements random projection
from dimension 𝐷 to 𝑑, using 𝑂(​𝐷/𝑑 ) Neuro-RAM
modules each with 𝑂(√�𝐷 ) neurons, in time 𝑂(√�𝐷 ).

Discussion
• Randomness:

•  Here used for random sampling.
•  Useful in the brain for

compression, abstraction, and
comparison.

​
𝑋
↓
2 

​
𝑋
↓
1 

0 1 1 0 0 1 1
…

​𝑁𝑅↓1,1  = ​𝑁𝑅↓2,1 
​
𝑍
↓
1 

​𝑁𝑅↓1,𝑘  ​𝑁𝑅↓2,𝑘  =
​
𝑍
↓
𝑘 

⋀…

1

1
1

1

0

•  Indexing:
•  A “subroutine” that can be used in random-sampling networks.
•  Indexing can be implemented with a compact spiking network, but the

network seems too complicated for a biological implementation. Are
there other, more bio-like, indexing schemes?

•  Alternative approaches to random sampling might involve methods like
Johnson-Lindenstrauss projection (multiplication by a random matrix),
where randomness is used in the design of the network.

This talk
1.  Introduction √
2.  Stochastic SNNs √
3.  Winner-Take-All algorithms and lower bounds √
4.  Similarity Testing and Indexing √
5.  Composing Stochastic SNNs
6.  Discussion

5. Composing Spiking Neural Networks
• Nancy Lynch, Cameron Musco. A Compositional Model for

Spiking Neural Networks. In progress
• Combine networks that solve simple problems into larger

networks that solve more complex problems.

• Example:
Compose several
Neuro-RAM
modules (and
logical gates) to
solve Similarity
Detection:

​
𝑋↓
2 

​
𝑋↓
1  0 1 1 0 0 1 1

…

​𝑁𝑅↓1,1  = ​𝑁𝑅↓2,1 
​
𝑍↓
1 

​𝑁𝑅↓1,𝑘  ​𝑁𝑅↓2,𝑘  =
​
𝑍↓
𝑘 

⋀ …
1

1
1

1

0

• Attention network: Processes a sequence of inputs and

focuses attention on the “relevant” ones.
• Uses WTA and Filter modules:

Composing Spiking Neural Networks

WTA

​
𝑥↓
1 

𝑦1

​
𝑦↓
1 

​
𝑥↓
3 

​
𝑥↓
2 

​
𝑦↓
2 

​
𝑦↓
1 

Filter

​
𝑤
↓3 

​
𝑤
↓2 

​
𝑤
↓1 

​
𝑧↓
3 

​
𝑧↓
2 

​
𝑧↓
1 

•  Layered composition

Composing Spiking Neural Networks
• Composition with feedback

Layer 2

​
𝑧↓
3 

​
𝑧↓
2 

​
𝑧↓
1 

Layer 1

​
𝑥↓
3 

​
𝑥↓
2 

​
𝑥↓
1 

​
𝑦↓
2 

​
𝑦↓
1 

​
𝑥↓
3 

​
𝑦↓
2 

Network 1

​
𝑥↓
2 

​
𝑥↓
1 

​
𝑦↓
1 

Network 2

​
𝑧↓
3 

​
𝑧↓
2 

​
𝑧↓
1 

•  Following paradigms of Concurrency Theory, we are
developing math foundations for composing SNNs.

• Define the external behavior of a network: a mapping from
infinite sequences of input firing patterns to distributions on
infinite sequences of output firing patterns.

Composing Spiking Neural Networks

• Define a problem to be solved by networks:
a mapping from infinite sequences of input
firing patterns to sets of distributions on
infinite sequences of output firing patterns.

• Composition of networks ​𝒩↓1  ∘ ​𝒩↓2 .
• Composition of problems, ​𝒫↓1  ∘ ​𝒫↓2 .
•  Theorem: If ​𝒩↓1  solves ​𝒫↓1  and ​𝒩↓2 

solves ​𝒫↓2  then ​𝒩↓1  ∘ ​𝒩↓2  solves ​𝒫↓1  ∘ ​
𝒫↓2 .

6. Discussion
• Goal: Understand how computation is

performed in biological neural networks, in
terms of distributed algorithms.

• Progress so far:
•  Biologically-inspired Stochastic Spiking Neural

Network model.
•  Winner-Take-All, networks and lower bounds.
•  Similarity Testing and Compression, networks

and lower bounds.
•  Indexing (NeoroRAM) sub-network.

•  Issues: Role of inhibition, randomness, indexing,…
•  Interesting technical results, may say something about

biology.

Future Work
• Model:

•  Other biological features: Refractory period, cell memory, less
synchrony, changing synapse weights,…

•  Theoretical variations: Other activation functions besides sigmoid,
memory, firing rates,…

•  Comparative power of different models
•  Composition, levels of abstraction

• Algorithms:
•  WTA, sampling, indexing, and many other primitives

•  Fault-tolerance
• Changing networks, learning
• Role of randomness in neural computation
• Building neural solutions for complex problems from

solutions for simpler problems.

Future Work: The Model
• Consider other biologically-relevant features: Refractory

period, cell memory, less synchrony, changing synapse
weights,…

•  Theoretical variations:
•  Consider other activation functions besides the sigmoid.
•  Consider more elaborate state than just firing status; firing rates.
•  Learning

• Comparative power of different models
• Compositional theory
•  Levels of abstraction

𝑣𝑡 = 1 𝑣t+1 = 1t+1 = 1 𝑣t+2 = 0t+2 = 0 𝑣t+3 = 1t+3 = 1

1
𝑝(𝑣,𝑡)

𝑝𝑜𝑡(𝑣,𝑡)

1/2

Inspired by distributed algorithms
and concurrency theory

Future Work: Algorithms
•  Winner-Take-All:

•  𝑘−WTA, electing 𝑘 instead of just 1 output.
•  WTA with non-binary or varying inputs, selecting the strongest input, or

the input with the highest firing rate.
•  Applications of WTA to solve other problems (attention, learning, neural

coding…)
•  Random sampling, indexing:

•  Simpler indexing circuits, more general lower bounds.
•  Applications of random sampling in solving other neural problems

(estimating firing activity, estimating differences between firing
patterns, exploring memories,…)

•  Other primitives:
•  Other binary vector problems, computing functions, synchronization

problems,…
•  Network designs, lower bounds, computational tradeoffs.

More Future Work
•  Network changes and learning:

•  Hebbian-style modification of weights
•  Define model, study problems (memory formation, concept association,

renaming and sparse coding, classification,…)
•  Do network mechanisms like ours arise via learning or are they

preprogrammed? Or a combination?
•  The role of randomness in neural computation:

•  Symmetry-breaking, similarity testing, compression,…
•  In general, where/how does randomness help?

•  Connections with linear algebra
•  Fault-tolerance
•  Building solutions of complex problems from solutions for simple

problems (compositional theory for computation in SNNs).

Thanks!

