AN ALGORITHMIC
THEORY OF BRAIN
NETWORKS

Nancy Lynch, MIT EECS
Simons Institute
April 17, 2018

Joint work with
Cameron Musco (MIT) and
Merav Parter (Weizmann)

B
Distributed Algorithms

- My Theory of Distributed Systems research group works
on distributed algorithms, concerned with communication
In wired and wireless networks, network organization,
distributed data management, consensus,...

- Also general concurrent systems theory,
concerned with modeling systems and
proving general theorems about how they
can be constructed and proved correct.

- Many kinds of biological systems behave
like distributed algorithms...

Biological Distributed Algorithms

- Many kinds of biological systems behave
like distributed algorithms, e.g.:

- Cells in developing organisms organize
themselves into meaningful patterns.

- Insect colonies cooperate to solve problems of
cooperative exploration, task allocation,
consensus.

- Neurons cooperate to implement focus, learning,
memory.

Biological Distributed Algorithms

- They have special characteristics:
- Use simple chemical “messages”.

- Components have simple “state”, follow
simple rules.

- Flexible, robust, adaptive.

Biological Distributed Algorithms

Q: How can distributed algorithms help in
understanding the behavior of biological
systems?

Q: How can understanding biological
systems help in building better distributed
network algorithms?

Some of our Results

- Insect colony behavior:
- Cooperative foraging (resource discovery)
- Task allocation
- Nest relocation (consensus)
- Density estimation

- May lead to the discovery of new kinds of
distributed algorithms: flexible, robust,
adaptive.

Some of our Results

- Brain network operation
- Winner-Take-All (leader election)
- Similarity Detection
- Neural coding

Our Work on Brain Algorithms

- Goal: Understand how computation is performed in biological
neural networks, in terms of distributed algorithms.

- Biological features we consider: Spiking neurons, noisy firing
thresholds, excitation and inhibition, restricted connectivity,
synapse weights, synchronization.

- So far, we have focused on fixed, designed
networks, rather than on how they are learned. &=

- Sample problems: Select one neuron from a
set of firing neurons, test similarity of input
patterns, neural coding, data compression,,...

- Basic abstract computational primitives, rather
than complex real-world problems.

Guiding Questions

- How do the various biologically-inspired model features affect
the solvability of particular problems? The costs of solving
them? The design of algorithms?

- Is there interesting new theory beyond that for other well-
studied models of computation, such as deterministic threshold
circuits, Boltzmann machines, distributed graph networks?

- Can this theory say anything interesting about
computation in real neural networks?

- E.qg., clarify the role of noise and randomness;
clarify the role of inhibition and excitation;
identify recurring patterns,...

 QOur starting point: Work by Maass et al. on
theory of Spiking Neural Networks.

This talk

Introduction
Our model: Stochastic Spiking Neural Networks
Winner-Take-All algorithms and lower bounds
Similarity Testing and Indexing

Composing Stochastic Spiking Neural Networks
Discussion '

2. Stochastic Spiking Neural Networks

- vTt=1if and only if neuron v spikes at time ¢

_

_

t+1 —

t+2 — t+3 —

u1 u2 u3
W(ul,x\\(/
/1IN

- pot(v,t)=Xlu ult—1 w(u,v) - H(v)

- PrloTe=1]=1/(14+el—pot(v,t))

p(v,0)

1/2

pot(v,t)

Stochastic Spiking Neural Networks

- All neurons are strictly inhibitory or strictly excitatory, i.e.,
w(u,v)= 0 for all vor w(w,v)< 0 for all v.

/N

- We ignore many other biological features: Refractory
period, spike propagation delay, history, noise on
synapses,...

- Some can be simulated in our model.

Neural Network Model

A weighted directed graph, nodes represent neurons, edges
represent synapses, weights indicate synaptic strength.

Regard weight = 0 as absence of edge, weight > 0 as
excitatory, weig/t < 0 as inhibitory.

SYNAPSE

Pre-synaptic

Post -synaptic -) ;.. »s Al
(*receiving") cell

D
Neural Network Model

- Neurons are either input neurons X, output neurons Y, or
auxiliary neurons A.

- Input and output neurons must be excitatory.
- Auxiliary neurons may be either excitatory or inhibitory.

Network Dynamics

- Configuration ¢ Assigns a firing state,
0 or 1, to each neuron, where ((u) =1
means it's firing and = 0 means it's not.

- Execution a=C10,C71,C72,..., a sequence of configurations.
- uTt =CTt () denotes the firing state of neuron « at time ¢
- Input firing patterns may be arbitrary.

- Initial firing patterns for non-input (auxiliary and output)
neurons are part of the network definition.

- For every infinite input execution, the network produces a
probability distribution on infinite executions, by applying the
stochastic firing dynamics for all non-input neurons at all
rounds.

Computational Problems in our Model

- n input neurons X, each always firing or always not firing.
- 7m output neurons Y.

- Target function /: {0,1}7n — {0,1}Tm (possibly multi-valued).
0 1 1 0

- Goal: Design a compact Input
network that rapidly \ (R /
converges to some output -
firing pattern ¥V € f(X), with S ff'i Auxiliary
high probability.

L b4

ym Qutput

Computational Problems in our Model

- n input neurons X, each always firing or always not firing.

- 7m output neurons Y.

- Target function /: {0,1}7n — {0,1}Tm (possibly multi-valued).

- Complexity Measures:

- Static measures, like number
of neurons, number of auxiliary
neurons, maximum weight
used,...

- Time (number of rounds to
convergence).

1 1 0
o Input
\ {4
¥ xﬂ 4 f¢ % Auxiliary

L b4

ym Qutput

This talk

Introduction
Stochastic SNNs +

Winner-Take-All algorithms and lower bounds
Similarity Testing and Indexing

Composing Stochastic SNNs

Discussion

3. The Winner-Take-All Problem

- Nancy Lynch, Cameron Musco, Merav Parter.
Computational Tradeoffs in Biological Neural Networks:
Self-Stabilizing Winner-Take-All Networks. ITCS 2017.

0 1 1 0
x2 I

~S N/
WTA Circuit

/]

Winner-Take-All: W7A(ntlc, tls,d)

- n fixed inputs, each either always firing or always not firing.
- n corresponding outputs.

- Starting from any state, with probability >1 — s, the network:

- Converges, within a short time #/c, to a single firing output, which
corresponds to a firing input, and then

- Remains stable for a long time zls. 0 1 1 0

- A neural leader election problem, = # 3 ... am

X2 X
studied in computational ~ N /Y

neuroscience. -
- Used in perceptual attention, WTA Circuit

learning,... / /4 f
71 Y2 V3 -

- Powerful “nonlinear” primitive

[Maass ‘99]. yn

S
Simple Solution with Two Inhibitors

- Stability inhibitor ais:
- Fires with high probability whenever one or more outputs fire.
- Prevents outputs that didn't fire at time #from firing at time #+1.

- Convergence inhibitor

0 1 1 0
alc:
. Fires with high probability aooom s
whenever two or more
outputs fire.
bH=.5 as ac pH=1.5

- Causes any output that fires

at time ¢ to fire at time #+1 ‘%
with probability

approximately 2.

Simple Solution with Two Inhibitors

- Idea: Roughly half of the currently-firing outputs stop firing at
each step.

- So with constant probability, there is some time ¢lc <loglin

such that exactly one output fires at time ¢«
. 0 1 1 0
- Moreover, after time zic,

with high probability, this 2 e &
selected output continues
to fire for a long time zis.

- Meanwhile, only inhibitor | “=> ¢ W
als fires, preventing all %
other outputs from firing.

V1 32 13 yn

Simple Solution with Two Inhibitors

- Output neuron bias (threshold) = 3.
- Weights of (input, output) edges = 3.
- Weights of output self-loops = 2.

- Weights of (output, 0 1 1 0
inhibitor) edges = 1. 2 2 B

- Weights of (inhibitor,

output) edges = —1.
Vz V V V

=3

Include a Weighting Factor y

- Multiply all weights and biases by a weighting factor vy,
which must be sufficiently large with respect to » and
stability time ¢/s.

- We can increase the

stability time #/s by ot .
Increasing vy; x1 X2 x3 I L
specifically, a linear

increase in y yields 3y [p=s5y b=15y

an exponential e
increase in ¢ls. (//v%
- Convergence time zic

IS O(logln). b=3y
Vy V V V

Our Main Theorem

- Theorem 1. Assume y = clog(0z t4s /§). Then starting from
any state, with probability >1 - §, the network converges,
within time zic~dognrlogd /s), 1o a single firing output
corresponding to a firing input, and remains stable for time

Afso: 0 1 1 0
- Expected time result. x1 2 X3 N 71

- More than two inhibitors
can be used to give

faster convergence. 3y [=5y ge =15y

- Can’t solve the problem
much faster with two
inhibitors.

- Can't solve it at all with 53,
Vy V V v

one inhibitor.

Proof of Correctness
- We must show that, with high probabillity:

- (Convergence) System soon reaches a “valid WTA” configuration.
- (Stability) Once it reaches such a configuration, it stays there for a
long time.

- Similar properties are commonly proved for distributed
algorithms; our proofs follow a style inspired by analysis of
distributed algorithms:

- Stability properties are proved using invariants.
- Convergence properties proved by showing
progress through a series of milestones.

- Except now we want high probability
statements rather than absolute
statements.

Stability Proof ()
- Lemma 2 (Stability): Consider a ‘//%

“valid WTA” configuration ¢, in which: v ¥V ¥

- Exactly one output, corresponding to a firing input, is firing,
- als is firing, and
- alc is not firing.

Then WHP, the next configuration is identical to .

- Corollary 3: This situation persists for a long time (WHP):
¢, GG,
- Duration z/s is exponential in the weighting factor .

Stability Proof

Follows typical style of invariant proofs.

Uses a series of lemmas sayingwhatis y y § ..¥
guaranteed (WHP) by each single
transition.

Namely, consider a configuration ¢, leading
(probabilistically) to a new configuration ¢'. Then (WHP):
No output corresponding to a non-firing input fires in .

If als is the only inhibitor that fires in ¢, then the same outputs
firein ¢ asin C

If there is exactly one firing output in Cthen als fires in ¢ and alc
does not.

L
Convergence Proof

- Harder...Describes multi-step behavior.

- Analogous to progress properties,
which are generally proved by

progressing through a sequence of
“milestones”.

- Now most of these steps happen WHP.

all other
configurations

< 2 steps

B
Convergence Proof

- The arrow from near-valid to valid WTA is not
WHP, just with some constant probability:

- Could skip from > 2 outputs firing to 0.
- Race condition in shutting down a!c.

- To get high probability, the network might
have to reset and try again, several times.

Convergence Proof

- Lemma 4 (Convergence): From any configuration £, the
probability of reaching a valid WTA configuration within time
= clognis = 1/18.

- Theorem 1: If y > clog 0 1 1 0
(On tls /8), then the

network solves W74 (n,
tic, tls,), with tic=c
logCnlogd(1/4). 3y [=5y b =15y

A4

//%\

\ly\l\l V

x1 X2 x3 .. An

bH=3y

D
Faster Solution with More Inhibitors

- Uses one stability inhibitor, plus £ convergence inhibitors,
with exponentially-growing biases.

- These extra inhibitors

speed up convergence 0 1 1 0
when there are many D 6 & e
firing outputs:
- Higher-bias inhibitors
’]Eir:gger when more outputs a1 0 21
- Many firing inhibitors serve %
to decrease the output
neurons’ probability of 7 2 P n

continuing to fire.

Faster Solution with More Inhibitors

- Theorem 5: Assume y = clog(n tis /6). Then from any
state, with prob >1 - §, the network converges, within

time #lc~cHogfl/k nlogd(

1/5), to a single firing 0 1 1 0
output corresponding to a 1 X2 3 e
firing input, and remains "
stable for time zis.

al a? ak+1
1 V2)3 yn

Lower Bounds

- Based on a slightly restricted version of the model:
- Inputs connect to no outputs except their own.
- Outputs do not connect to each other.
- Auxiliary neurons are all inhibitors.

- These conditions are satisfied by our algorithms.
0 1 1 0
- Proofs depend on locality 1 a2 B A
arguments as commonly
used in distributed ,
computing theory. m

Lower Bounds

Theorem 6: No SNN with just one auxiliary neuron can solve
WTA with stability time #/s>> convergence time zic.

Proof idea: Assume a WTA network with one inhibitor «.

Claim 1: If ais not firing, then any output with a firing input will
fire (with good probability); this is needed to ensure that at
least one output will fire by the required convergence time zic.

Claim 2: If ais firing, then any 0 1 1 0
output that was firing will stop ¥ 2 ¥3 ... an
firing (with good probability);

this is needed to ensure that at

most one output is firing by zic.

This combination makes it hard
to maintain stability. W 32 B .. ynm

Lower Bounds

- Theorem 7: No SNN with two auxiliary neurons can
iImprove on the convergence-time bound in our two-
neuron solution by more than a factor of 0(loglogz).

- ldea: Fast convergence

requires a lot of inhibition 0 1 1 0

when many outputs fire. 1 2 3 ..
- This required inhibition is

too high when a few a @2

outputs fire. m

Discussion

/,%

- Inhibition: N NN

- In our networks, inhibitors are used to achieve two goals:
stability and convergence.

- Inhibition is often viewed as a stability mechanism in the brain;
In our networks, it also helps to drive computation toward
convergence.

- Randomness:

- Randomness is a source of noise that can introduce
inaccuracies and slow down computation.

- But it can also be a powerful computational resource.

- Here, randomness is used to break symmetry among output
neurons.

This talk

Introduction
Stochastic SNNs +

Winner-Take-All algorithms and lower bounds
Similarity Testing and Indexing

Composing Stochastic SNNs

Discussion

4. Similarity Testing and Indexing

- Nancy Lynch, Cameron Musco, Merav Parter. Neuro-
RAM Unit with Applications to Similarity Testing and
Compression in Spiking Neural Networks. DISC 2017.

X1 X2
0 1 0 1 0 1 0 1

Similarity Testing |

. ¢

B
Similarity Testing

- Similarity testing problem: Given two input firing patterns X/1
and X{2 , distinguish the case where X{1 = X/2 from the
case where they are far from being equal, e.g., (X1, XJ2)
=> € .

- After convergence, the output neuron should fire
continuously if the inputs are equal, and not fire if theyware far

from equal. 0o 1 0 i o 1 0 i
- A natural sub-problem \ ,
for pattern recognition Similarity Testing |

and other tasks. 3

?

Algorithm Idea

- Simple (non-neural) sublinear time algorithm: Sample O(log

n / €) random positions and check whether XJ/1 and XJ2
match at those positions.

X1 X2

random sample

9
.. sLlogn — ... 52,logn

- If X1 = X2, then SY1 =542 . If d(XI1, X2)= € n, then
with high probability, SY1 # SY2.

B
Implementing the Algorithm in an SNN

- Equality check between $Y1 and $Y2 is straightforward.

- For sampling random positions, we use an Indexing Module
(Neuro-RAM): given an index encoded by the firing pattern
of a set of neurons, select the appropriate value of XJ1 or

° Kﬁ%r convergence, Z X
the output neuron 1 1 0 o 1 0 1
should fire A n Zog a e) (=

continuously if and \n,%
Or_“y T A(2) is firing. Indexing Network

- Simulates an (Neuro-RAM)
excitatory connection

from X(2) to y.

Similarity Testing with Neuro-RAM

X1 X2
k=0(logn / €) 0 1 1 0 0 1 1 1
random
neurons 1 1
NRI1,1 NRI2,1
0 | -
1 T | VR k NRI2,k
Lk \
1 \/

B
Indexing Problem (Neuro-RAM)

- Indexing might not seem very “neural”.

- Some neural motivation: Uses information contained in a
small set of neurons (the index) to access information from
a much larger data store.

- This seems to be an 7 X
important primitive for 0 0o 1 0 1
other applications

: T z1 z2 mz[og X1 x2 A3 an
besides similarity 7

testing. oo~

_ Indexing Network
- E.g., a smell, or sight, (Neuro-RAM)

or a word triggering a
memory.

Main Algorithmic Result for Indexing

- Theorem 1: For any #<v[n, there is an SNN solving the
iIndexing problem with 0(7/¢) auxiliary neurons that
converges by time z (WHP).

- Corollary: A
sublinear-sized z X
circuit for the 1 1 0 o 1 0 -
similarity testing 721 Z2 ... zlog ¥l 22 13 .. an

problem: o(vOn T

logn /€) auxiliary
neurons, running in d d2

o
time o(vOn). —

[t}

Implementation of Neuro-RAM Module

Example: O(vOn) auxiliary neurons implementing Neuro-
RAM in O(v[On) rounds.

Divide 7 input neurons Xinto vz buckets.
Divide log 7z index neurons Zinto two halves.

Step 1: Select a bucket XY/ using first half of 7.

Step 2: Select the desired index inside the bucket X{7
using the last half of ~.

Various forms of trickiness involved in encoding and
decoding, not very neural.

B
Our Main Results for Indexing

Theorem 1 (Upper Bound):

For any +<v», there is an SNN solving the
iIndexing problem with o7» auxiliary neurons that
converges by time time WHP.

Theorem 2 (Lower Bound):

Any circuit that solves the indexing problem and
converges by time WHP, requires a@/rlogr2 »)
auxiliary neurons.

B
Lower Bound for Indexing

- This lower bound shows that our two-inhibitor network’s
convergence time cannot be improved by more than a
log 72 [Jn factor.

- We also get a stronger lower bound for Feed-Forward SNNs.

- This separates FF SNNs from FF circuits composed of
sigmoidal gates with real-valued outputs; these can
implement indexing with O(vOn) neurons, in O(vOnr) time.

Proof of Lower Bound for Indexing

- Step 1: Transform an SNN for Indexing to an equivalent

Feed-Forward SNN:

0000 00
N
/1 & ¢ 0 O0.000
\é/ 0] 00:000
0

- Step 2: Convert the FF SNN to a probability distribution on
deterministic circuits.

- Step 3: ldentify a single circuit, and prove a lower bound
for the circuit using a VC-dimension argument.

Proof of Lower Bound for Indexing

- Step 1: Transform an SNN for Indexing to an equivalent
Feed-Forward SNN.

- Step 2: Convert the FF SNN to a probability distribution on
deterministic circuits:

0000 00

[OO0OO00 00 0000l [0J [0O0 00 (00
uOOOOO O|ioooool KA|0OO0OOOO Olooooo

000000 ¢ O[00000 O[00000] Qo000

Oooooo KN|OOOOO O 00000

000000 - - -
0

- Step 3: ldentify a single circuit, and prove a lower bound
for the circuit using a VC-dimension argument.

B
Proof of Lower Bound for Indexing

- Step 1: Transform an SNN for Indexing to an equivalent
Feed-Forward SNN.

- Step 2: Convert the FF SNN to a probability distribution on
deterministic circuits.

- Step 3: Identify a single circuit, and prove a lower bound
for the circuit using a VC-dimension argument:

[12

00 00l IoolI ©O0 OOl I0O] [©oo0ol 00
Dooooolﬂooooo 00000

Oooooo/lId|00 000

|00 000

i

i

i
Ofocococoo ooooo: O ocooo0o

i

B
Our Main Results for Indexing

Theorem 1 (Upper Bound):

For any +<v», there is an SNN solving the
iIndexing problem with o7» auxiliary neurons that
converges by time time WHP.

Theorem 2 (Lower Bound):

Any circuit that solves the indexing problem and
converges by time WHP, requires a@/rlogr2 »)
auxiliary neurons.

S
Our Main Results for Applications

Theorem 3 (Similarity Testing):
There is an SNN with ot 104 7/¢) @auxiliary neurons
that solves e-approx. equality in time onv/n).

Theorem 4 (Compression):

There is an SNN that implements random projection
from dimension » to ¢ using ow/z) Neuro-RAM
modules each with onmp)neurons, in time o).

Discussion 0 1¥1 0/ |0 171 1

Randomness: 2 1} -
Here used for random sampling. Z :
Useful in the brain for i !
compression, abstraction, and 10 VRILK /sz,/:} =
comparison. L \/7 _

Indexing: ff

A “subroutine” that can be used in random-sampling networks.

Indexing can be implemented with a compact spiking network, but the
network seems too complicated for a biological implementation. Are
there other, more bio-like, indexing schemes?

Alternative approaches to random sampling might involve methods like
Johnson-Lindenstrauss projection (multiplication by a random matrix),
where randomness is used in the design of the network.

This talk

Introduction
Stochastic SNNs +

Winner-Take-All algorithms and lower bounds
Similarity Testing and Indexing

Composing Stochastic SNNs

Discussion

L
5. Composing Spiking Neural Networks

- Nancy Lynch, Cameron Musco. A Compositional Model for
Spiking Neural Networks. In progress

- Combine networks that solve simple problems into larger
networks that solve more complex problems.

Xi Xi
- Example: 0 141 0|0 1, 1 1

Compose several } | —
Neuro-RAM 0 . VR NRI2,1 }.
modules (and 1 1 L
logical gates)to "
solve Similarity 1
Detection: Y :

1 | T NRIL K NRI2, k }.

K

L
Composing Spiking Neural Networks

- Attention network: Processes a sequence of inputs and
focuses attention on the “relevant” ones.

- Uses WTA and Filter modules:

- owtA ke

L
Composing Spiking Neural Networks

- Layered composition - Composition with feedback
2 R Voo
Layer 1 | Network 1 |
: : $ f
4 b ! 2
Layer 2 | Network 2 |

A A

Composing Spiking Neural Networks

- Following paradigms of Concurrency Theory, we are
developing math foundations for composing SNNs.

- Define the external behavior of a network: a mapping from
infinite sequences of input firing patterns to distributions on
infinite sequences of output firing patterns.

- Define a problem to be solved by networks:
a mapping from infinite sequences of input Tt ol

firing patterns to sets of distributions on TheTheoof |
infinite sequences of output firing patterns. Timed I/0 Automata

Second Edition

- Composition of networks N'J1 o NJ2.
- Composition of problems, P41 oPJ2.

- Theorem: If V{1 solves PJ1 and N2
solves PJ2 then NJ1 o NJ2 solves PJ1 o
PlL2 .

6. Discussion

Goal: Understand how computation is
performed in biological neural networks, in
terms of distributed algorithms.

Progress so far:
Biologically-inspired Stochastic Spiking Neural [

Network model. NS ’ .'
Winner-Take-All, networks and lower bounds. / -'.: ; "-.". f Jras .
Similarity Testing and Compression, networks . e vav Ay
and lower bounds. B 8% a5,

Indexing (NeoroRAM) sub-network.

Issues: Role of inhibition, randomness, indexing,...

Interesting technical results, may say something about
biology.

Future Work

Model:

Other biological features: Refractory period, cell memory, less
synchrony, changing synapse weights,...

Theoretical variations: Other activation functions besides sigmoid,
memory, firing rates, ...

Comparative power of different models
Composition, levels of abstraction

Algorithms:
WTA, sampling, indexing, and many other primitives
Fault-tolerance
Changing networks, learning
Role of randomness in neural computation

Building neural solutions for complex problems from
solutions for simpler problems.

D
Future Work: The Model

- Consider other biologically-relevant features: Refractory
period, cell memory, less synchrony, changing synapse
weights, ...

- Theoretical variations:
- Consider other activation functions besides the sigmoid.
- Consider more elaborate state than just firing status; firing rates.
- Learning

- Comparative power of different models
- Compositional theory Inspired by distributed algorithms

p—

- Levels of abstraction and concurrency theory
- p(vt)

N Nk

t+1 — t+2 — t+3 —

pot(v,t)

Future Work: Algorithms

Winner-Take-All:
k£—WTA, electing £ instead of just 1 output.

WTA with non-binary or varying inputs, selecting the strongest input, or
the input with the highest firing rate.

Applications of WTA to solve other problems (attention, learning, neural
coding...)

Random sampling, indexing:
Simpler indexing circuits, more general lower bounds.

Applications of random sampling in solving other neural problems
(estimating firing activity, estimating differences between firing
patterns, exploring memories,...)

Other primitives:

Other binary vector problems, computing functions, synchronization
problems,...

Network designs, lower bounds, computational tradeoffs.

More Future Work

Network changes and learning:
Hebbian-style modification of weights

Define model, study problems (memory formation, concept association,
renaming and sparse coding, classification,...)

Do network mechanisms like ours arise via learning or are they
preprogrammed? Or a combination?

The role of randomness in neural computation:
Symmetry-breaking, similarity testing, compression,...
In general, where/how does randomness help?

Connections with linear algebra

Fault-tolerance

Building solutions of complex problems from solutions for simple
problems (compositional theory for computation in SNNs).

Thanks!

