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Distributed Algorithms 
• My Theory of Distributed Systems research group works 

on distributed algorithms, concerned with communication 
in wired and wireless networks, network organization, 
distributed data management, consensus,… 

• Also general concurrent systems theory, 
concerned with modeling systems and 
proving general theorems about how they 
can be constructed and proved correct. 

• Many kinds of biological systems behave 
like distributed algorithms… 



Biological Distributed Algorithms 
• Many kinds of biological systems behave 

like distributed algorithms, e.g.: 
•  Cells in developing organisms organize 

themselves into meaningful patterns. 
•  Insect colonies cooperate to solve problems of 

cooperative exploration, task allocation, 
consensus. 

•  Neurons cooperate to implement focus, learning, 
memory. 



•  They have special characteristics: 
•  Use simple chemical “messages”. 
•  Components have simple “state”, follow 

simple rules. 
•  Flexible, robust, adaptive. 

Biological Distributed Algorithms 



Biological Distributed Algorithms 
Q:  How can distributed algorithms help in 
understanding the behavior of biological 
systems? 
 
Q:  How can understanding biological 
systems help in building better distributed 
network algorithms? 



Some of our Results 
•  Insect colony behavior: 

•  Cooperative foraging (resource discovery) 
•  Task allocation 
•  Nest relocation (consensus) 
•  Density estimation 

• May lead to the discovery of new kinds of 
distributed algorithms:  flexible, robust, 
adaptive. 



Some of our Results 
• Brain network operation 

•  Winner-Take-All (leader election) 
•  Similarity Detection 
•  Neural coding 



Our Work on Brain Algorithms 
• Goal:  Understand how computation is performed in biological 

neural networks, in terms of distributed algorithms. 
• Biological features we consider:  Spiking neurons, noisy firing 

thresholds, excitation and inhibition, restricted connectivity, 
synapse weights, synchronization. 

• So far, we have focused on fixed, designed 
networks, rather than on how they are learned.   

• Sample problems:  Select one neuron from a 
set of firing neurons, test similarity of input 
patterns, neural coding, data compression,,… 

• Basic abstract computational primitives, rather 
than complex real-world problems. 



Guiding Questions 
• How do the various biologically-inspired model features affect 

the solvability of particular problems?  The costs of solving 
them?  The design of algorithms? 

•  Is there interesting new theory beyond that for other well-
studied models of computation, such as deterministic threshold 
circuits, Boltzmann machines, distributed graph networks? 

• Can this theory say anything interesting about 
computation in real neural networks? 

• E.g., clarify the role of noise and randomness; 
clarify the role of inhibition and excitation; 
identify recurring patterns,… 

• Our starting point:   Work by Maass et al. on 
theory of Spiking Neural Networks. 



This talk 
1.  Introduction √ 
2.  Our model:  Stochastic Spiking Neural Networks  
3.  Winner-Take-All algorithms and lower bounds  
4.  Similarity Testing and Indexing 
5.  Composing Stochastic Spiking Neural Networks 
6.  Discussion 



2.  Stochastic Spiking Neural Networks 
•  ​𝑣↑𝑡 =1 if and only if neuron 𝑣 spikes at time 𝑡. 

 
•  𝑝𝑜𝑡(𝑣,𝑡)= ​Σ↓𝑢  ​𝑢↑𝑡−1  𝑤(𝑢,𝑣) – 𝑏(𝑣) 

•  Pr​[ ​𝑣↑𝑡 =1] = 1/(1+ ​𝑒↑−𝑝𝑜𝑡(𝑣,𝑡) ) 

𝑣𝑡  = 1 𝑣t+1 = 1t+1 = 1 𝑣t+2 = 0t+2 = 0 𝑣t+3 = 1t+3 = 1
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Stochastic Spiking Neural Networks 
• All neurons are strictly inhibitory or strictly excitatory, i.e., 

𝑤(𝑢,𝑣)≥ 0 for all 𝑣 or 𝑤(𝑢,𝑣)≤ 0 for all 𝑣. 

• We ignore many other biological features:  Refractory 
period, spike propagation delay, history, noise on 
synapses,… 

• Some can be simulated in our model. 
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Neural Network Model 
• A weighted directed graph, nodes represent neurons, edges 

represent synapses, weights indicate synaptic strength. 
• Regard 𝑤𝑒𝑖𝑔ℎ𝑡 = 0 as absence of edge, 𝑤𝑒𝑖𝑔ℎ𝑡 > 0 as 

excitatory, 𝑤𝑒𝑖𝑔ℎ𝑡 < 0 as inhibitory. 
𝑢 𝑣 



Neural Network Model 

• Neurons are either input neurons X, output neurons Y, or 
auxiliary neurons A. 

•  Input and output neurons must be excitatory. 
• Auxiliary neurons may be either excitatory or inhibitory. 
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Network Dynamics 
• Configuration 𝐶:  Assigns a firing state, 

0 or 1, to each neuron, where 𝐶(𝑢) = 1 
means it’s firing and = 0 means it’s not. 

• Execution 𝛼= ​𝐶↑0 , ​𝐶↑1 , ​𝐶↑2 ,…, a sequence of configurations. 
•  ​𝑢↑𝑡 = ​𝐶↑𝑡 (𝑢) denotes the firing state of neuron 𝑢 at time 𝑡. 
•  Input firing patterns may be arbitrary. 
•  Initial firing patterns for non-input (auxiliary and output) 

neurons are part of the network definition. 
•  For every infinite input execution, the network produces a 

probability distribution on infinite executions, by applying the 
stochastic firing dynamics for all non-input neurons at all 
rounds. 



Computational Problems in our Model 
•  𝑛 input neurons 𝑋, each always firing or always not firing. 
• 𝑚 output neurons 𝑌. 
•  Target function 𝑓: ​{0,1}↑𝑛  → ​{0,1}↑𝑚  (possibly multi-valued). 
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• Goal:  Design a compact 
network that rapidly 
converges to some output 
firing pattern 𝑌 ∈ 𝑓(𝑋), with 
high probability. 



Computational Problems in our Model 
•  𝑛 input neurons 𝑋, each always firing or always not firing. 
• 𝑚 output neurons 𝑌. 
•  Target function 𝑓: ​{0,1}↑𝑛  → ​{0,1}↑𝑚  (possibly multi-valued). 

• Complexity Measures: 
•  Static measures, like number 

of neurons, number of auxiliary 
neurons, maximum weight 
used,... 

•  Time (number of rounds to 
convergence). 

Auxiliary
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This talk 
1.  Introduction √ 
2.  Stochastic SNNs √ 
3.  Winner-Take-All algorithms and lower bounds 
4.  Similarity Testing and Indexing 
5.  Composing Stochastic SNNs 
6.  Discussion 



3.  The Winner-Take-All Problem 
• Nancy Lynch, Cameron Musco, Merav Parter.  

Computational Tradeoffs in Biological Neural Networks:  
Self-Stabilizing Winner-Take-All Networks.  ITCS 2017. 

WTA Circuit 
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Winner-Take-All:  𝑊𝑇𝐴(𝑛,​𝑡↓𝑐 , ​𝑡↓𝑠 , δ) 
•  𝑛 fixed inputs, each either always firing or always not firing. 
•  𝑛 corresponding outputs. 
• Starting from any state, with probability ≥1 − δ,  the network: 

•  Converges, within a short time ​𝑡↓𝑐 , to a single firing output, which 
corresponds to a firing input, and then 

•  Remains stable for a long time ​𝑡↓𝑠 . 

𝑥1 … 
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

WTA Circuit

• A neural leader election problem, 
studied in computational 
neuroscience. 

• Used in perceptual attention, 
learning,… 

• Powerful “nonlinear” primitive 
[Maass ‘99]. 



Simple Solution with Two Inhibitors 
• Stability inhibitor ​𝑎↓𝑠 :   

•  Fires with high probability whenever one or more outputs fire. 
•  Prevents outputs that didn’t fire at time 𝑡 from firing at time 𝑡+1.  

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐𝑏=.5
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• Convergence inhibitor ​
𝑎↓𝑐 : 
•  Fires with high probability 

whenever two or more 
outputs fire. 

•  Causes any output that fires 
at time 𝑡 to fire at time 𝑡+1 
with probability 
approximately ½. 



Simple Solution with Two Inhibitors 
•  Idea:  Roughly half of the currently-firing outputs stop firing at 

each step. 
• So with constant probability, there is some time ​𝑡↓𝑐  ≤ ​log�𝑛      

such that exactly one output fires at time 𝑡. 
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• Moreover, after time ​𝑡↓c , 
with high probability, this 
selected output continues 
to fire for a long time ​𝑡↓𝑠 .   

• Meanwhile, only inhibitor ​
𝑎↓𝑠  fires, preventing all 
other outputs from firing. 



Simple Solution with Two Inhibitors 
• Output neuron bias (threshold) = 3. 
• Weights of (input, output) edges = 3. 
• Weights of output self-loops = 2. 
• Weights of (output, 

inhibitor) edges = 1. 
• Weights of (inhibitor, 

output) edges = −1. 
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Include a Weighting Factor γ 
• Multiply all weights and biases by a weighting factor γ, 

which must be sufficiently large with respect to 𝑛 and 
stability time ​𝑡↓𝑠 . 

2γ 
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• We can increase the 
stability time ​𝑡↓𝑠  by 
increasing γ; 
specifically, a linear 
increase in γ  yields 
an exponential 
increase in ​𝑡↓𝑠 . 

• Convergence time ​𝑡↓𝑐   
is 𝑂( ​log�𝑛).  



Our Main Theorem 
•  Theorem 1:  Assume γ ≥ 𝑐 log ​(�𝑛 ​𝑡↓𝑠  /δ).  Then starting from 

any state, with probability ≥1 − δ,  the network converges, 
within time ​𝑡↓𝑐 ≈𝑐​log�𝑛 ​log�(​1/𝛿 ) , to a single firing output 
corresponding to a firing input, and remains stable for time ​
𝑡↓𝑠 . 

 

• Also: 
•  Expected time result. 
•  More than two inhibitors 

can be used to give 
faster convergence. 

•  Can’t solve the problem 
much faster with two 
inhibitors. 

•  Can’t solve it at all with 
one inhibitor. 
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Proof of Correctness 
• We must show that, with high probability: 

•  (Convergence)  System soon reaches a “valid WTA” configuration. 
•  (Stability)  Once it reaches such a configuration, it stays there for a 

long time. 

• Similar properties are commonly proved for distributed 
algorithms; our proofs follow a style inspired by analysis of 
distributed algorithms: 
•  Stability properties are proved using invariants. 
•  Convergence properties proved by showing 

progress through a series of milestones. 

• Except now we want high probability 
statements rather than absolute 
statements. 



Stability Proof 
• Lemma 2 (Stability):  Consider a 
“valid WTA” configuration 𝐶, in which: … 

… 

•  Exactly one output, corresponding to a firing input, is firing, 
•  ​𝑎↓𝑠  is firing, and 
•  ​𝑎↓𝑐  is not firing. 
Then WHP, the next configuration is identical to 𝐶. 
 

• Corollary 3:  This situation persists for a long time (WHP): 
        𝐶,𝐶,𝐶,… 
• Duration ​𝑡↓𝑠  is exponential in the weighting factor 𝛾. 



Stability Proof 
• Follows typical style of invariant proofs. 
• Uses a series of lemmas saying what is 
guaranteed (WHP) by each single 
transition. 

… 

… 

• Namely, consider a configuration 𝐶, leading 
(probabilistically) to a new configuration 𝐶′.  Then (WHP): 
•  No output corresponding to a non-firing input fires in 𝐶′. 
•  If ​𝑎↓𝑠  is the only inhibitor that fires in 𝐶, then the same outputs 

fire in 𝐶′ as in 𝐶.  
•  If there is exactly one firing output in 𝐶 then ​𝑎↓𝑠  fires in 𝐶’ and ​𝑎↓𝑐   

does not. 



Convergence Proof 
• Harder…Describes multi-step behavior. 
• Analogous to progress properties, 

which are generally proved by 
progressing through a sequence of 
“milestones”. 

• Now most of these steps happen WHP. 

reset

all other 
configurations

valid
WTA

near-
validn-WTA 2-WTA

good configurations

≤ 2 steps

…



Convergence Proof 
•  The arrow from near-valid to valid WTA is not 

WHP, just with some constant probability: 
•  Could skip from ≥ 2 outputs firing to 0. 
•  Race condition in shutting down ​𝑎↓𝑐 . 

•  To get high probability, the network might 
have to reset and try again, several times. 

reset

all other 
configurations

valid
WTA

near-
validn-WTA 2-WTA

good configurations

≤ 2 steps

…



Convergence Proof  
•  Lemma 4 (Convergence):  From any configuration 𝐶, the 

probability of reaching a valid WTA configuration within time 
≈ 𝑐 log​𝑛 is ≥ 1/18.  

•  Theorem 1:  If γ ≥ 𝑐 log​
(�𝑛 ​𝑡↓𝑠  /δ), then the 
network solves 𝑊𝑇𝐴(𝑛, ​
𝑡↓𝑐 , ​𝑡↓𝑠 , δ) , with ​𝑡↓𝑐 ≈𝑐​
log�𝑛 ​log�(​1/𝛿 ) .  
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Faster Solution with More Inhibitors 
• Uses one stability inhibitor, plus 𝑘 convergence inhibitors, 

with exponentially-growing biases. 
•  These extra inhibitors 

speed up convergence 
when there are many 
firing outputs: 
•  Higher-bias inhibitors 

trigger when more outputs 
fire. 

•  Many firing inhibitors serve 
to decrease the output 
neurons’ probability of 
continuing to fire. 

𝑦1 𝑦2 𝑦3 𝑦𝑛

𝑎1 𝑎2 𝑎𝑘+1

𝑥1 … 
0 1 1 0
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… 



•  Theorem 5:  Assume γ ≥ 𝑐 log ​(�𝑛 ​𝑡↓𝑠  /δ).   Then from any 
state, with prob ≥1 − δ,  the network converges, within 

Faster Solution with More Inhibitors 

time ​𝑡↓𝑐 ≈𝑐 𝑘​​log↑​1/k   n log�(​
1/𝛿 ) , to a single firing 
output corresponding to a 
firing input, and remains 
stable for time ​𝑡↓𝑠 . 
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Lower Bounds 
• Based on a slightly restricted version of the model: 

•  Inputs connect to no outputs except their own. 
•  Outputs do not connect to each other. 
•  Auxiliary neurons are all inhibitors. 

•  These conditions are satisfied by our algorithms. 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑥1 … 
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑎1 𝑎2 𝑎
𝑚

• Proofs depend on locality 
arguments as commonly 
used in distributed 
computing theory. 



Lower Bounds 
•  Theorem 6:  No SNN with just one auxiliary neuron can solve 

WTA with stability time ​𝑡↓𝑠 ≫ convergence time ​𝑡↓𝑐 . 
• Proof idea:  Assume a WTA network with one inhibitor 𝑎. 
• Claim 1:  If 𝑎 is not firing, then any output with a firing input will 

fire (with good probability);  this is needed to ensure that at 
least one output will fire by the required convergence time ​𝑡↓𝑐 . 

 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑥1 … 
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑎

• Claim 2:  If 𝑎 is firing, then any 
output that was firing will stop 
firing (with good probability); 
this is needed to ensure that at 
most one output is firing by ​𝑡↓𝑐 . 

•  This combination makes it hard 
to maintain stability. 



Lower Bounds 
• Theorem 7:  No SNN with two auxiliary neurons can 
improve on the convergence-time bound in our two-
neuron solution by more than a factor of 𝑂(log​log​𝑛). 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑥1 … 
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑎1 𝑎2

•  Idea:  Fast convergence 
requires a lot of inhibition 
when many outputs fire.  

• This required inhibition is 
too high when a few 
outputs fire.  



Discussion 

•  Inhibition: 
•  In our networks, inhibitors are used to achieve two goals:  

stability and convergence. 
•  Inhibition is often viewed as a stability mechanism in the brain; 

in our networks, it also helps to drive computation toward 
convergence. 

• Randomness: 
•  Randomness is a source of noise that can introduce 

inaccuracies and slow down computation.  
•  But it can also be a powerful computational resource. 
•  Here, randomness is used to break symmetry among output 

neurons. 

… 

… 



This talk 
1.  Introduction √ 
2.  Stochastic SNNs √ 
3.  Winner-Take-All algorithms and lower bounds √ 
4.  Similarity Testing and Indexing 
5.  Composing Stochastic SNNs 
6.  Discussion 



4.  Similarity Testing and Indexing 
• Nancy Lynch, Cameron Musco, Merav Parter.  Neuro-

RAM Unit with Applications to Similarity Testing and 
Compression in Spiking Neural Networks.  DISC 2017. 
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Similarity Testing 
• Similarity testing problem:  Given two input firing patterns ​𝑋↓1  

and ​𝑋↓2 , distinguish the case where ​𝑋↓1 = ​𝑋↓2  from the 
case where they are far from being equal, e.g., 𝑑(​𝑋↓1 , ​𝑋↓2 ) 
≥ ϵ 𝑛.


• After convergence, the output neuron should fire 
continuously if the inputs are equal, and not fire if they are far 
from equal. 

• A natural sub-problem 
for pattern recognition 
and other tasks.
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Algorithm Idea 
• Simple (non-neural) sublinear time algorithm:  Sample 𝑂(log​

𝑛 / ϵ) random positions and check whether ​𝑋↓1  and ​𝑋↓2  
match at those positions. 

•  If ​𝑋↓1 = ​𝑋↓2 , then ​𝑆↓1 = ​𝑆↓2 .  If 𝑑(​𝑋↓1 , ​𝑋↓2 ) ≥ ϵ 𝑛, then 
with high probability, ​𝑆↓1 ≠ ​𝑆↓2 .
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Implementing the Algorithm in an SNN 
• Equality check between ​𝑆↓1  and ​𝑆↓2  is straightforward. 
•  For sampling random positions, we use an Indexing Module 

(Neuro-RAM):  given an index encoded by the firing pattern 
of a set of neurons, select the appropriate value of ​𝑋↓1  or ​
𝑋↓2 . • After convergence, 
the output neuron 
should fire 
continuously if and 
only if 𝑋(𝑍) is firing. 

• Simulates an 
excitatory connection 
from 𝑋(𝑍) to 𝑦. 

𝑥1 𝑥3 𝑥𝑛𝑥2 … 𝑧2 𝑧𝑙𝑜𝑔
𝑛

𝑧1 … 

0 1 0 1
𝑋

1 1 0
𝑍

Indexing Network
(Neuro-RAM)

𝑦



​𝑋↓2  ​𝑋↓1  

0 1 1 0 0 1 1 
… 

​𝑁𝑅↓1,1  = ​𝑁𝑅↓2,1  

​𝑍↓1  

​𝑁𝑅↓1,𝑘  ​𝑁𝑅↓2,𝑘  = 
​𝑍↓𝑘  

𝑘=𝑂(log​𝑛 / ϵ)  
random 
neurons 

⋀ … 

Similarity Testing with Neuro-RAM 
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1 

1 

1 

0 



Indexing Problem (Neuro-RAM) 
•  Indexing might not seem very “neural”. 
• Some neural motivation:  Uses information contained in a 

small set of neurons (the index) to access information from 
a much larger data store. 

•  This seems to be an 
important primitive for 
other applications 
besides similarity 
testing. 

• E.g., a smell, or sight, 
or a word triggering a 
memory. 

𝑥1 𝑥3 𝑥𝑛𝑥2 … 𝑧2 𝑧𝑙𝑜𝑔
𝑛

𝑧1 … 

0 1 0 1
𝑋

1 1 0
𝑍

Indexing Network
(Neuro-RAM)

𝑦



Main Algorithmic Result for Indexing 
•  Theorem 1:  For any 𝑡 ≤√�𝑛 , there is an SNN solving the 

indexing problem with 𝑂(𝑛/𝑡) auxiliary neurons that 
converges by time 𝑡 (WHP).   

𝑥1 𝑥3 𝑥𝑛𝑥2 … 𝑧2 𝑧𝑙𝑜𝑔
𝑛

𝑧1 … 

0 1 0 1
𝑋

1 1 0
𝑍

𝑦

𝑑2 ​
𝑑↓{𝑛
/𝑡} 

𝑑1 … 

• Corollary:  A 
sublinear-sized 
circuit for the 
similarity testing 
problem:  𝑂(​√�𝑛 ​
log�𝑛 /𝜖 ) auxiliary 
neurons, running in 
time 𝑂(√�𝑛 ). 



Implementation of Neuro-RAM Module  
• Example:  𝑂(√�𝑛 ) auxiliary neurons implementing Neuro-

RAM in 𝑂(√�𝑛 ) rounds. 
• Divide 𝑛 input neurons 𝑋 into √�𝑛  buckets. 
• Divide log 𝑛 index neurons 𝑍 into two halves. 

• Step 1:  Select a bucket ​𝑋↓𝑖  using first half of 𝑍. 
• Step 2:  Select the desired index inside the bucket ​𝑋↓𝑖  

using the last half of 𝑍. 
• Various forms of trickiness involved in encoding and 

decoding, not very neural. 



Our Main Results for Indexing 

Theorem 1 (Upper Bound):  
For any 𝑡 ≤√�𝑛 , there is an SNN solving the 
indexing problem with 𝑂(𝑛/𝑡) auxiliary neurons that 
converges by time 𝑡 time WHP.   
 

Theorem 2 (Lower Bound):  
Any circuit that solves the indexing problem and 
converges by 𝑡 time WHP, requires Ω(​𝑛/𝑡​ log↑2 𝑛 ) 
auxiliary neurons. 



Lower Bound for Indexing 
•  This lower bound shows that our two-inhibitor network’s 

convergence time cannot be improved by more than a ​​
log↑2 �𝑛  factor. 

• We also get a stronger lower bound for Feed-Forward SNNs. 
•  This separates FF SNNs from FF circuits composed of 

sigmoidal gates with real-valued outputs; these can 
implement indexing with 𝑂(√�𝑛 ) neurons, in 𝑂(√�𝑛 ) time. 



Proof of Lower Bound for Indexing 
• Step 1:  Transform an SNN for Indexing to an equivalent 

Feed-Forward SNN: 

 
• Step 2:  Convert the FF SNN to a probability distribution on 

deterministic circuits. 
• Step 3:  Identify a single circuit, and prove a lower bound 

for the circuit using a VC-dimension argument. 

… 



• Step 1:  Transform an SNN for Indexing to an equivalent 
Feed-Forward SNN. 

• Step 2:  Convert the FF SNN to a probability distribution on 
deterministic circuits: 

• Step 3:  Identify a single circuit, and prove a lower bound 
for the circuit using a VC-dimension argument. 

… 

… 

Proof of Lower Bound for Indexing 



• Step 1:  Transform an SNN for Indexing to an equivalent 
Feed-Forward SNN. 

• Step 2:  Convert the FF SNN to a probability distribution on 
deterministic circuits. 

• Step 3:  Identify a single circuit, and prove a lower bound 
for the circuit using a VC-dimension argument: 

… 

Proof of Lower Bound for Indexing 



Our Main Results for Indexing 

Theorem 1 (Upper Bound):  
For any 𝑡 ≤√�𝑛 , there is an SNN solving the 
indexing problem with 𝑂(𝑛/𝑡) auxiliary neurons that 
converges by time 𝑡 time WHP.   
 

Theorem 2 (Lower Bound):  
Any circuit that solves the indexing problem and 
converges by 𝑡 time WHP, requires Ω(​𝑛/𝑡​ log↑2 𝑛 ) 
auxiliary neurons. 



Our Main Results for Applications 

Theorem 3 (Similarity Testing):   
There is an SNN with 𝑂(√�𝑛  𝑙𝑜𝑔 𝑛/𝜖) auxiliary neurons 
that solves  ϵ-approx. equality in time 𝑂(√�𝑛 ). 

Theorem 4 (Compression):  
There is an SNN that implements random projection 
from dimension 𝐷 to 𝑑, using 𝑂( ​𝐷/𝑑 ) Neuro-RAM 
modules each with 𝑂(√�𝐷 ) neurons, in time 𝑂(√�𝐷 ). 



Discussion 
• Randomness: 

•  Here used for random sampling. 
•  Useful in the brain for 

compression, abstraction, and 
comparison. 

​
𝑋
↓
2  

​
𝑋
↓
1  

0 1 1 0 0 1 1
… 

​𝑁𝑅↓1,1  = ​𝑁𝑅↓2,1  
​
𝑍
↓
1  

​𝑁𝑅↓1,𝑘  ​𝑁𝑅↓2,𝑘  =
​
𝑍
↓
𝑘  

⋀… 

1 

1 
1 

1

0 

•  Indexing: 
•  A “subroutine” that can be used in random-sampling networks. 
•  Indexing can be implemented with a compact spiking network, but the 

network seems too complicated for a biological implementation.  Are 
there other, more bio-like, indexing schemes? 

•  Alternative approaches to random sampling might involve methods like 
Johnson-Lindenstrauss projection (multiplication by a random matrix), 
where randomness is used in the design of the network. 



This talk 
1.  Introduction √ 
2.  Stochastic SNNs √ 
3.  Winner-Take-All algorithms and lower bounds √ 
4.  Similarity Testing and Indexing √ 
5.  Composing Stochastic SNNs 
6.  Discussion 



5.  Composing Spiking Neural Networks 
• Nancy Lynch, Cameron Musco.  A Compositional Model for 

Spiking Neural Networks.  In progress 
• Combine networks that solve simple problems into larger 

networks that solve more complex problems. 

• Example:  
Compose several 
Neuro-RAM 
modules (and 
logical gates) to 
solve Similarity 
Detection: 

​
𝑋↓
2  

​
𝑋↓
1  0 1 1 0 0 1 1

… 

​𝑁𝑅↓1,1  = ​𝑁𝑅↓2,1  
​
𝑍↓
1  

​𝑁𝑅↓1,𝑘  ​𝑁𝑅↓2,𝑘  = 
​
𝑍↓
𝑘  

⋀ … 
1 

1 
1 

1
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• Attention network:  Processes a sequence of inputs and 

focuses attention on the “relevant” ones. 
• Uses WTA and Filter modules: 

Composing Spiking Neural Networks 

WTA 

​ 
𝑥↓
1  

𝑦1

​
𝑦↓
1  

​
𝑥↓
3  

​
𝑥↓
2  

​
𝑦↓
2  

​
𝑦↓
1  

Filter 

​ 
𝑤
↓3  

​ 
𝑤
↓2  

​ 
𝑤
↓1  

​ 
𝑧↓
3  

​ 
𝑧↓
2  

​ 
𝑧↓
1  



 
 

•  Layered composition 

Composing Spiking Neural Networks 
• Composition with feedback 

Layer 2 

​ 
𝑧↓
3  

​ 
𝑧↓
2  

​ 
𝑧↓
1  

Layer 1 

​ 
𝑥↓
3  

​ 
𝑥↓
2  

​ 
𝑥↓
1  

​ 
𝑦↓
2  

​ 
𝑦↓
1  

​ 
𝑥↓
3  

​
𝑦↓
2  

Network 1 

​ 
𝑥↓
2  

​ 
𝑥↓
1  

​ 
𝑦↓
1  

Network 2 

​ 
𝑧↓
3  

​ 
𝑧↓
2  

​ 
𝑧↓
1  



 
 

•  Following paradigms of Concurrency Theory, we are 
developing math foundations for composing SNNs. 

• Define the external behavior of a network:  a mapping from 
infinite sequences of input firing patterns to distributions on 
infinite sequences of output firing patterns. 

Composing Spiking Neural Networks 

• Define a problem to be solved by networks:  
a mapping from infinite sequences of input 
firing patterns to sets of distributions on 
infinite sequences of output firing patterns. 

• Composition of networks ​𝒩↓1  ∘ ​𝒩↓2 . 
• Composition of problems, ​𝒫↓1  ∘ ​𝒫↓2 . 
•  Theorem:  If ​𝒩↓1  solves ​𝒫↓1  and ​𝒩↓2  

solves ​𝒫↓2  then ​𝒩↓1  ∘ ​𝒩↓2  solves ​𝒫↓1  ∘ ​
𝒫↓2 . 



6.  Discussion 
• Goal:  Understand how computation is 

performed in biological neural networks, in 
terms of distributed algorithms. 

• Progress so far: 
•  Biologically-inspired Stochastic Spiking Neural 

Network model. 
•  Winner-Take-All, networks and lower bounds. 
•  Similarity Testing and Compression, networks 

and lower bounds. 
•  Indexing (NeoroRAM) sub-network. 

•  Issues:  Role of inhibition, randomness, indexing,… 
•  Interesting technical results, may say something about 

biology.   



Future Work 
• Model:  

•  Other biological features:  Refractory period, cell memory, less 
synchrony, changing synapse weights,… 

•  Theoretical variations:  Other activation functions besides sigmoid, 
memory, firing rates,… 

•  Comparative power of different models 
•  Composition, levels of abstraction 

• Algorithms: 
•  WTA, sampling, indexing, and many other primitives 

•  Fault-tolerance 
• Changing networks, learning 
• Role of randomness in neural computation 
• Building neural solutions for complex problems from 

solutions for simpler problems. 



Future Work:  The Model 
• Consider other biologically-relevant features:  Refractory 

period, cell memory, less synchrony, changing synapse 
weights,… 

•  Theoretical variations: 
•  Consider other activation functions besides the sigmoid. 
•  Consider more elaborate state than just firing status; firing rates. 
•  Learning 

• Comparative power of different models 
• Compositional theory 
•  Levels of abstraction 

𝑣𝑡  = 1 𝑣t+1 = 1t+1 = 1 𝑣t+2 = 0t+2 = 0 𝑣t+3 = 1t+3 = 1

1
𝑝(𝑣,𝑡)

𝑝𝑜𝑡(𝑣,𝑡)

1/2

Inspired by distributed algorithms  
and concurrency theory 



Future Work:  Algorithms 
•  Winner-Take-All: 

•  𝑘−WTA, electing 𝑘 instead of just 1 output. 
•  WTA with non-binary or varying inputs, selecting the strongest input, or 

the input with the highest firing rate. 
•  Applications of WTA to solve other problems (attention, learning, neural 

coding…) 
•  Random sampling, indexing: 

•  Simpler indexing circuits, more general lower bounds. 
•  Applications of random sampling in solving other neural problems 

(estimating firing activity, estimating differences between firing 
patterns, exploring memories,…) 

•  Other primitives: 
•  Other binary vector problems, computing functions, synchronization 

problems,… 
•  Network designs, lower bounds, computational tradeoffs. 



More Future Work 
•  Network changes and learning: 

•  Hebbian-style modification of weights 
•  Define model, study problems (memory formation, concept association, 

renaming and sparse coding, classification,…) 
•  Do network mechanisms like ours arise via learning or are they 

preprogrammed?  Or a combination? 
•  The role of randomness in neural computation: 

•  Symmetry-breaking, similarity testing, compression,… 
•  In general, where/how does randomness help? 

•  Connections with linear algebra 
•  Fault-tolerance 
•  Building solutions of complex problems from solutions for simple 

problems (compositional theory for computation in SNNs). 



Thanks! 


