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Are there principles?

“God is a hacker”
– Francis Crick

“Individual nerve cells were formerly thought to be 
unreliable… This was quite wrong, and we now 
realise their apparently erratic behavior was caused 
by our ignorance, not the neuron’s incompetence.”
 – H.B. Barlow (1972)



faces‘Gabor filters’ .      .      ?     .     . objects

an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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Sparse coding  ➔  feature selectivity

Manifold flattening  ➔  equivariance

Persistence  ➔  invariance

Three principles of unsupervised learning



Sparse coding



The ‘Ratio Club’ (1952)

Horace Barlow





V1 is highly overcomplete
Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 
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FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 
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Barlow (1981)
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Energy function

preserve information be sparse



Locally Competitive Algorithm (LCA) 
minimizes the energy function

(Rozell, Johnson, Baraniuk & Olshausen, 2008)
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Sparse encoding of a time-varying image

image sparse encoding reconstruction



Sparse coefficient activations form smooth 
trajectories in particular local subspaces



Basis functions tile the manifold of natural images 
in such a way that data points along the manifold 
are spanned by a small number of basis vectors.



Manifold flattening



Science, 22 Dec. 2000
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10 ) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28 ) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29 ), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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function subject to two constraints: first, that
each data point !Xi is reconstructed only from
its neighbors (5), enforcing Wij ! 0 if !Xj does

not belong to the set of neighbors of !Xi;
second, that the rows of the weight matrix
sum to one: "jWij ! 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
## D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation !Xi is mapped to a low-dimensional
vector !Yi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates !Yi to minimize the
embedding cost function

$%Y & ! !
i

" !Yi " "jWij
!Yj" 2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates !Yi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors !Yi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N ' N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates !Yi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point !Xi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct !Xi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors !Yi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Local Linear Landmarks (LLL)
(Vladymyrov & Carreira-Perpinán, 2013)
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‘Topographic ICA’
(Hyvärinen & Hoyer 2001)



Bubbles: a unifying framework for low-level
statistical properties of natural image sequences
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Recently, different models of the statistical structure of natural images have been proposed. These models
predict properties of biological visual systems and can be used as priors in Bayesian inference. The funda-
mental model is independent component analysis, which can be estimated by maximization of the sparsenesses
of linear filter outputs. This leads to the emergence of principal simple cell properties. Alternatively, simple
cell properties are obtained by maximizing the temporal coherence in natural image sequences. Taking ac-
count of the basic dependencies of linear filter outputs permit modeling of complex cells and topographic or-
ganization as well. We propose a unifying framework for these statistical properties, based on the concept of
spatiotemporal activity ‘‘bubbles.’’ A bubble means here an activation of simple cells (linear filters) that is con-
tiguous both in space (the cortical surface) and in time. © 2003 Optical Society of America

OCIS codes: 330.3790, 330.4060, 330.4270.

1. INTRODUCTION
A widespread assumption is that the visual cortex is
adapted to process the particular kind of information it
receives.1,2 The visual cortex is important for survival
and reproduction, and evolutionary forces thus drive the
visual system toward signal processing that is optimal for
the natural stimuli. This does not imply that genetic in-
structions completely determine the properties of the vi-
sual system: A large part of the adaptation to the natu-
ral stimuli could be accomplished during individual
development.

One property that distinguishes natural images from
other kinds of input is statistical structure. The gray-
scale values of luminances at different retinal points, for
example, have robust and nontrivial statistical regulari-
ties. Previous research has built statistical models of
natural images and utilized them to model the receptive
fields, the spatial organization, and the interaction of
neurons in the visual cortex.3–5 Such models can also be
used as priors in Bayesian inference.6–9

This paper proposes a unifying framework for several
models of the statistical structure of natural image se-
quences. The framework combines three properties:
sparseness, temporal coherence, and energy correlations;
these will be reviewed below. It leads to models where
the joint activation of the linear filters (simple cells) takes
the form of ‘‘bubbles,’’ which are regions of activity that
are localized both in time and in space, space meaning the
cortical surface or a grid on which the filters are ar-
ranged.

The paper is organized as follows. First, we discuss
the principal statistical properties of natural images in-
vestigated so far, and we examine how these can be used
in the estimation of a linear image model (Section 2).
Then we show how sparseness and temporal coherence
can be combined in a single model, which is based on the
concept of temporal bubbles, and attempt to demonstrate
that this gives a better model of the outputs of Gabor-like

linear filters than either of the criteria alone (Section 3).
We extend the model to include topography as well, lead-
ing to the intuitive notion of spatiotemporal bubbles (Sec-
tion 4). We also discuss the extensions of the framework
to spatiotemporal receptive fields (Section 5). Finally, we
discuss the utility of our model and its relation to other
models (Section 6).

2. BASIC STATISTICAL PROPERTIES OF
NATURAL IMAGES
Here we review the research on the basic statistical prop-
erties to be included in our model. These are sparseness,
temporal coherence, and correlation of energies.

A. Sparseness
Sparseness is a property of a random variable, such as the
output of a linear filter when the input consists of natural
images. Sparseness means that the random variable
takes very small (absolute) values or very large values
more often than a Gaussian random variable; to compen-
sate, it takes values in between relatively more rarely.
Thus the random variable is activated, i.e., significantly
nonzero, only rarely. We assume here and in what fol-
lows that the variable has zero mean.

The probability density function p of a sparse variable,
say s, is characterized by a large value (‘‘peak’’) at zero
and relatively large values (‘‘heavy tails’’) far from zero.
Here ‘‘relatively’’ means compared with a Gaussian distri-
bution of the same variance. For example, the absolute
value of a sparse random variable is often modeled as an
exponential density. The exponential density is com-
pared with the density of the absolute value of a Gaussian
variable in Fig. 1. If the absolute value of a symmetric
random variable has an exponential distribution, the dis-
tribution is called Laplacian. If we scale the distribution
to have variance equal to 1, the density function is then
given by
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gative, highly sparse random process obtains independent
values at each point in time and space (with space refer-
ring to the topographic grid). For simplicity, let us de-
note the location on the topography by a single index i.
Then the variances v of the observed variables are ob-
tained by a spatiotemporal convolution followed by a
pointwise nonlinearity:

vi!t " ! f! #
j

h!i, j "$%!t " * uj!t "&" , (21)

where h(i, j) is the neighborhood function that defines
the spatial topography and % is a temporal smoothing
kernel. The simple cell outputs are now obtained by
multiplying simple Gaussian white noise zi(t) by this
variance signal:

si!t " ! vi!t "zi!t ". (22)

Finally, the latent signals si(t) are mixed linearly to give
the image. If I(x, y, t) denotes an image sequence, this
mixing can be expressed as

I!x, y, t " ! #
i!1

n

ai!x, y "si!t ". (23)

The three equations (21)–(23) define a statistical genera-
tive model for natural image sequences.

The combination of temporal and spatial energy corre-
lation is illustrated in Fig. 7. The two signals in the fig-
ure are uncorrelated, and also have no temporal correla-

tion, but the temporal dependence of activation is clear.
Since the active intervals coincide, this is a prototype of
what the dependency between two adjacent cells would
look like.

Fig. 6. Four types of representation. The plots show the outputs of filters as a function of time (horizontal axis) and the position of the
filter on the topographic grid (vertical axis). Each pixel is the output of one unit at a given time point, gray being zero, white and black
meaning positive and negative outputs. For simplicity, the topography is here one dimensional. In the basic sparse representation, the
filters are independent. In the topographic representation, the activations of the filters are also spatially grouped. In the represen-
tation that has temporal coherence, they are temporally grouped. The bubble representation combines all these aspects, leading to
spatiotemporal activity bubbles. Note that the two latter types of representation require that the data have a temporal structure, un-
like the two former ones.

Fig. 7. Combination of temporal and spatial (i.e., topographic)
energy correlation. The two signals are caricatures of what the
outputs of two simple cells with strong energy correlation could
look like. They are uncorrelated, both from each other and tem-
porally. Nevertheless, we see temporal bubbles of activity in the
outputs, and these bubbles are simultaneous, which eventually
leads to spatiotemporal bubbles when there are many cells ar-
ranged topographically. Note that a very similar figure was
used to illustrate basic energy correlation in topographic ICA.21

In that context, the temporal energy correlation was added for
the purposes of illustration only, whereas here it is an essential
part of the model.
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The Sparse Manifold Transform

. . .
�1�2 �3 �4

�1

�3
�2

�4�1 �3

x (R2)

xlocal(R2)

Figure 1. Dictionary elements learned from natural signals with sparse coding may be conceptualized as landmarks on a smooth manifold.
A) A function defined on R2 (e.g. a gray-scale natural image) and one element from its reconstruction are represented by the black and
red curves, respectively. B) Inputs are encoded using sparse inference with a learned dictionary, �, resulting in a k-sparse vector ↵, which
is defined on a discrete set {0, · · · , N}. C) For a given input signal, ↵ can be viewed as a discrete k-sparse approximation to the true
k0-sparse function, ↵TRUE, defined on the smooth manifold, where k > k0 (k = 8 and k0 = 3 in this example). Each dictionary element in
� corresponds to a landmark on the smooth manifold, M . Red arrows indicate the interpolated k0-sparse function, while black arrows
indicate elements of � associated with non-zero values in the k-sparse vector ↵. D) Since � only contains a finite number of landmarks,
we must interpolate (i.e. “steer”) among a few dictionary elements to reconstruct each of the true image components. Only one out of k0

components is shown in this subfigure, but all of them are needed to approximate the input signal.

The similarity between equation (1) and equation (2) pro-
vides an intuition to bring sparse coding and manifold learn-
ing closer together. However, LLL still has a difficulty in
that it requires a nearest neighbor search and it is not clear
how to use a KNN solver efficiently when the underlying sig-
nal is k-sparse. We posit that temporal information provides
a solution.

The general idea of imposing a ‘slowness prior’ was initially
proposed by (Földiák, 1991) and (Wiskott & Sejnowski,
2002) to extract invariant or slowly varying features from
temporal sequences rather than using static order-less data
points. While it is still a common practice in both sparse
coding and manifold learning to collect data in an order-less
fashion, many other works have demonstrated that temporal
information can be used to build better signal representa-
tions (van Hateren & Ruderman, 1998; Olshausen, 2003;
Lee et al., 2003; Hyvärinen et al., 2003; Berkes et al., 2009;
Cadieu & Olshausen, 2012). Here, temporal adjacency can
be used to determine the nearest neighbors in the embedding
space (eq. (3)) by specifically minimizing the second order
temporal derivative, implying that video sequences form
linear trajectories in the manifold domain. This is a varia-
tion of ‘slowness’ that makes the connection to manifold
learning more explicit.

In the next section, we mathematically formulate the sparse

manifold transform. In section 3, we generalize classical
topologically-equivalent manifold embedding to functional
manifold embedding and show the approximate invertibil-
ity of the transform. In section 4, the affinity groups and
dictionary topology are discussed. In section 5 we present
a stacked SMT network to learn a hierarchical representa-
tion and we present a representation visualization method.
Finally, we discuss the general principles of the SMT in
section 6 and its broader connections.

2. The Sparse Manifold Transform
The seminal works in deformable filter theory (Freeman
et al., 1991; Simoncelli et al., 1992; Simoncelli & Freeman,
1995; Perona, 1995) demonstrate how to use a relatively
small dictionary to “steer” a kernel by linearly combining
the elements in the dictionary. A set of kernels is steerable
if a property, such as orientation or position, can be inter-
polated by computing a linear combination of some subset.
In this paper, rather than using a small dictionary, we use
a 10-20 times overcomplete dictionary with positive-only
sparse coefficients. Empirically, we find that at such an over-
completeness the interpolation behavior of the dictionary
is close to locally linear. Therefore, steering the elements
can be accomplished by local neighborhood interpolation.
This choice makes the relative geometry of the dictionary
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Sparse-Manifold Transform

LLL still has a difficulty in that a neighboring interpolation
is needed and it is not clear how to use a KNN solver ef-
ficiently when the underlying signal is k-sparse. We posit
that temporal information provides a solution.

A general idea of imposing a ’slowness prior’ was initially
proposed by (Földiák, 1991) and (Wiskott & Sejnowski,
2002). While a common practice in both sparse coding and
manifold learning is that the data is collected in an order-
less fashion, (van Hateren & Ruderman, 1998; Olshausen,
2003; Lee et al., 2003; Hyvärinen et al., 2003; Cadieu &
Olshausen, 2012) demonstrated temporal information can
be used to build better signal representations. Here the tem-
poral information can be used to efficiently solve equation
(3) in the embedding space, which leads to equation (5).
This linearity is a variation to ’slowness’, which makes the
connection to manifold learning more explicit.

The seminal works in deformable filter theory (Freeman
et al., 1991; Simoncelli et al., 1992; Simoncelli & Freeman,
1995; Perona, 1995) demonstrate how to use a parsimo-
nious dictionary to ’steer’ a kernel by linearly combining
the elements in the dictionary. In this paper, rather than
using a parsimonious dictionary, we choose to use 10-20
times overcomplete positive-only sparse coding since we
empirically find that at such an overcompleteness, most
dictionary elements can approximately be interpolated by
similar-shape neighboring elements with a L1 norm close
to 1. This choice makes the geometry of the dictionary
closer to a low-dimensional manifold. A thorough analysis
is beyond the scope of this paper.

In the following sections ...

2. Sparse-Manifold Transform Formulation
We assume the dictionary learned by sparse coding has an
ordering that it’s topologically equivalent to a low dimen-
sional smooth manifold. (see fig 2) The underlying signal
is a k-sparse function defined on the manifold. Since there
are only finitely many learned dictionary elements, they
are a landmark sampling of the underlying manifold. ↵ is
a discrete approximation of the true k-sparse function de-
fined on the landmarks. There exists a geometric mapping
M : � ! P , s.t. each of the dictionary elements is geomet-
rically mapped to a new vector, M(�i) = Pi. 1 We further
assume the continuous temporal transformation leads to a
linear flow on a manifold the manifold and it also leads to a
linear flow in the geometrical embedding space. The linear
flow can be formulated as follows:

1Here P is a general geometrical embedding, which has a higher
dimensionality than the dictionary manifold. This is different from
the conventional concept that P is the manifold embedding itself.
In section 3 we introduce a functional embedding concept.

P↵t ⇡
1

2
P↵t�1 +

1

2
P↵t+1 (5)

Figure 2. This is the figure caption where we explain the figure and
concepts related to the figure and maybe we reference some text
or something

where the index t represents time, this is equivalent to that
the second order temporal derivative of P↵ is approximately
zero. We can find the embedding matrix P by solving the
following optimization:

min
P

kPADk2F , s.t. PV PT = I. (6)

where V is a positive-definite matrix for normalization pur-
pose. We choose V to be the covariance matrix of ↵. 2 Each
column of A is the sparse coefficient vector at a particular
time step, or At = ↵t. D is the second-order differential
matrix such that:

D =

2

66666664

1 � 1
2 0 0 . . . 0

� 1
2 1 � 1

2 0 . . . 0
0 � 1

2 1 � 1
2 . . . 0

0 0 � 1
2 1 . . . 0

...
...

...
...

. . .
...

0 . . . 0 0 � 1
2 1

3

77777775

(7)

The solution to this generalized eigen-decomposition prob-
lem is given (Vladymyrov & Carreira-Perpinán, 2013) by
P = V � 1

2U , where U is a matrix of d trailing eigenvectors
of the matrix V � 1

2ADDTATV � 1
2 . Two major drawbacks

of this analytic solution are: 1) The embedding dimensions
are ordered, we prefer to make the information more dis-
tributed. 2)One more manifold constraints are introduced,

2This formulation is qualitatively similar to applying slow fea-
ture analysis to sparse coefficients, though the second order deriva-
tive is used rather than the first order derivative.

We seek a geometric mapping f : Φ → P , s.t. each of the dictionary 
elements is mapped to a new vector, Pj = f(Φj), where Pj is the jth 
column of P.  Continuous temporal transformations in the input 
should have a linear flow on M and also in the geometrical 
embedding space. 

We desire:

s.t.
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V = Cov(a)
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The Sparse Manifold Transform

Figure 2. A 20x20 pixel image sequence is encoded with 4000 dic-
tionary elements, and the resulting sparse code is linearly collapsed
into 120 pooling units, from which the image sequence is recon-
structed. A) The 10 strongest connected dictionary elements from
� for a single representative pooling unit. These outputs are sparse
with a large degree of variability between subsequent frames B)
The activity of the representative pooling unit. The y-axis range
indicates the total range of all pooling units. These outputs are
dense and tend to vary smoothly to form linear trajectories in the
pooled space. C) Reconstructions computed from the �(1) values.
D) Frame samples from the 90fps video input.

data manifold. Each of the rows of P is treated as a coor-
dinate of the underlying manifold. It’s equivalent to view a
point on the manifold as a 1-sparse � function with the man-
ifold as its domain. This turns a non-linear transformation
in the original signal space into a linear interpolation in the
manifold space. The approach is effective for visualizing
data in a low-dimensional space and compactly represent-
ing the underlying geometry, but less effective when the
underlying function is not 1-sparse. A k0-sparse function
would be completely unrecoverable once mapped to this
embedding space because a topologically equivalent embed-
ding to a Euclidean space would linearly merge all k0-sparse
functions to a 1-sparse function. Here, we provide a more
general functional embedding concept that allows for better
sensing capacity and approximate invertibility.

To illustrate the distinction between the classical view of
a data manifold and the additional properties gained by a
functional perspective, let us consider a simple example of
a function over the 2D unit disk. First, we generate many

short sequences of a point moving along a straight line on
the unit disk. The velocity is a random constant 2D vector
and the starting locations are also random. We use clustering
to select 300 landmarks on this disk as a dictionary. At each
time point, we can use a nearest neighbor (KNN) solver
to find a linear interpolation, ↵t, of the point’s location.3
Then we learn the embedding matrix, P , by performing the
optimization in equation (7).

The classical approach implies a parsimonious embedding
that uses the second and third vectors of P , since the first
vector is a constant vector. We show the visualization of
this embedding in Figure 3A, which closely resembles the
underlying 2-D unit disk manifold. Visualizing the two
embedding rows as coordinates is equivalent to computing
� = P↵. For each landmark, we set the corresponding
coefficient in ↵ to 1 and the rest to 0. To illustrate our
alternative approach, we chose to preserve the first 21 rows
of P and plot them on the known ground-truth manifold.
As shown in Figure 3B, they faithfully resemble Zernike
polynomials on the unit-disk, where the second and third
rows that were used in the classical embedding are linear
ramp functions and the later rows have higher frequencies.

Figure 3. A functional interpretation of manifold embedding. A)
The classic manifold embedding perspective allows for low-
dimensional data visualization using the second and third rows of
P , which are linear ramp functions defined on the ground-truth
unit disk (shown in dashed box in panel B). Boundary effects cause
the landmarks to cluster toward the perimeter. B) The rows of P ,
visualized here on the ground-truth unit disc, can be thought of
as linear functionals to sense k0-sparse functions defined on the
underlying manifold.

Our approach uses the dictionary elements to create a dis-
cretization of the underlying manifold, shown in Figure 1,
where each column of A is a discrete k-sparse function de-
fined on the manifold. The ith row of P can then be viewed
as a linear functional that projects a discrete k-sparse func-
tion ↵ to a real number, �i. This is in line with a more
traditional neural network perspective on pooling filters,
where the pooled outputs are scalar values resulting from
dot products of the pooling weight matrix with the lower

3The choice of sparse solver does not impact the demonstration.
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The Sparse Manifold Transform

layer output vector. Having more functionals allows for a
better sensing capacity for sparse inputs. In Figure 4, we
demonstrate recovery of an underlying 4-sparse function on
the manifold. We sense a discrete k-sparse approximation,
↵, using the 21 functionals shown in Figure 3 by solving
� = P↵. From this representation, we can estimate ↵REC

with positive-only sparse inference:

g(�) =argmin
↵REC

k� � P↵RECk2
F + �zT ↵REC

s.t. � = P↵, ↵REC ⌫ 0,
(11)

where z = [kP1k2, · · · , kPNk2]
T and Pj is the jth column

of P . Although the 4-sparse structure is approximately pre-
served, the recovered function ↵REC is not an exact recovery
of ↵ because the support on the landmarks has changed,
which simply corresponds to s local shift in the underly-
ing 4-sparse structure. This will lead to a recovery that
is perceptually similar for an image signal, which we will
demonstrate in both Figures 2 and 6 C). We denote this
inversion by an operator g, giving ↵REC = g(�).

Figure 4. The left shows random discrete function, ↵, lying on a
unit disc. We use the 21 columns of P shown in Figure 3B to sense
values of � = P↵. The right shows the recovery, ↵REC, which is
computed by by solving the optimization problem in equation (11).
Although the precise activity amplitudes are different, the recovery
preserves the 4-sparse group structure of the original function.

We have demonstrated that the functional embedding of
P uses more dimensions than the traditional parsimonious
condition. This allows for a non-exact recovery in that the
amount of invertibility depends on the true sparsity of the
signal. Empirically we find that if the underlying k0-sparse
signal is very sparse (e.g. 1- or 2-sparse), then both the
k0-sparse structure and k-sparse structure can be recovered.
This recovery will gradually degrade as the true sparsity
decreases. First we will lose the ability to exactly recover
the k-sparse function, ↵, but the true structure will still
be approximately preserved. Eventually, when k0 is dense
enough, we will be unable to recover the underlying signal.
The functional embedding concept can generalize beyond
functionals defined on a single manifold and will still apply
when the underlying geometrical domain is a union of sev-
eral different manifolds. A thorough analysis of the capacity
of this sensing method is beyond the scope of this paper,
although we recognize it as an interesting research topic for
model-based compressive sensing.

4. Affinity Groups and Dictionary Topology
Once a functional embedding is learned for the dictio-
nary elements, we can compute the cosine similarity,
cos(Pj , Pk) =

PT
j Pk

kPjk2kPkk2
, between their embedding vec-

tors to find the neighbors of each dictionary element in
the embedding space. In Figure 5, we show the affinity
group structures for an overcomplete sparse coding dictio-
nary trained on natural scenes (see appendix B for dataset
details). We randomly selected 90 dictionary elements and
for each we show the top 50 neighbors in the embedding
space. As we can see from Figure 5, the embedding learned
from the SMT faithfully preserves the topological relation-
ships between the dictionary elements.

Computing the cosine similarity can be thought of as a hyper-
sphere normalization on the embedding matrix P . In other
words, if the embedding is normalized to be approximately
on a hypersphere, the cosine distance is almost equivalent
to the Gramian matrix, PT P . Taking this perspective, our
learned geometric embedding and affinity groups can ex-
plain the dictionary grouping results shown in (Hosoya &
Hyvärinen, 2015; 2016). Their PCA method can be consid-
ered an embedding that uses only spatial correlation infor-
mation, while our model uses both spatial correlation and
temporal interpolation information.

Figure 5. Affinity groups learned using the SMT reveal the topo-
logical ordering of a sparse coding dictionary. Each box indicates
a single group from the affinity matrix and each needle in the
box represents a first layer dictionary element. The needles were
created by first computing an analytic signal envelope from the
Hilbert transform of the dictionary element. This envelope was
then fit with a bivariate Gaussian, where the mean indicates the
center location of the receptive field and the primary eigenvec-
tor of the Gaussian covariance matrix gives us the spatial extent,
indicated by the bar length. The orientation was computed by
finding the peak in the Fourier amplitude map. The color indicates
the normalized strength of the connection between the dictionary
element and affinity group.

5. The Stacked Sparse Manifold Transform
An SMT layer is composed of a sparse coding sublayer
and manifold embedding sublayer that model sparse dis-
creteness and simple geometrical transforms, respectively.
It is possible to stack multiple SMT layers to form a hi-
erarchical architecture, which addresses the third pattern
from Mumford’s theory: hierarchical composition. Here we
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The Sparse Manifold Transform

demonstrate this process with a three layer network and visu-
alize the learned representations. The network is trained in
a layer-by-layer fashion on a natural video dataset described
in Appendix B.

Figure 6. A three-layer stacked SMT. Each layer contains a sparse
coding sublayer (shown in red) and a manifold embedding sub-
layer (shown in green). A) The network architecture. B) From the
bottom to the top are the dictionary elements learned in layer-1
to layer-3, or �(1) to �(3). The visualization technique is de-
scribed in section 5. C) From left to right: The input image, the
reconstruction from ↵(1), the reconstruction from ↵(2), and the
reconstruction from ↵(3). The rows are unique examples. All of
the reconstructions are unwhitened for visualization. D) Linear
interpolation in layer-3 leads to a transformation, or a “steering”,
of the corresponding feature, resulting in a non-linear interpolation
in the image space. From left to right, the first two columns are
visualizations of two layer-3 units that are each constructed by
setting a single index in ↵(3) to a value of one and the rest to zero.
The third column is an image generated by setting the same two
indices in ↵(3) to 0.5. The fourth column is a linear interpolation
in image space between the first two images.

We can produce reconstructions and dictionary visualiza-
tions by repeatedly using the inverse operator, g, developed
in section 3. This provides an inverse transform from any
layer activity vector to the image space. Formally, we de-
fine ↵(l�1)

REC = g(l)(�(l)), where l is the layer number. For
example, the inverse transform from ↵(3) to the image space
will be xREC = Cg(1)(�(2)g(2)(�(3)↵(3))), where C is an
unwhitening matrix. We can also use the inverse transform
to visualize any single dictionary element by setting ↵(l) to
a 1-hot vector. From layer-1 to layer-3 we can see: 1) The
features tend to be more global when we move to higher
layers. 2) More abstract dictionary element start to emerge

in higher layers, e.g. layer-2 units tend to be more curved
and layer-3 units start to have more global texture-like units.
3) The inversion of the transform tends to preserve more
structural information and omits less significant features in
higher layers. This frequently leads to a sharper edge and
gives a perceptually denoised reconstruction of the inputs.
4) In higher layers, interpolation between neighboring dic-
tionary elements turns into non-linear transformations in
the image space, shown in Figure 6D. 5) In higher layers,
the dataset-average activation of dictionary units tends to
be equal (data not shown). The detailed configuration is
not important since we found that varying the number of
units in different layers does not qualitatively change the
result. Nearly all of the dictionary elements in layer-3 span
the entire receptive field, which suggests that an experiment
with larger receptive fields at higher layers could result in
more interesting features.

6. Discussion
We have presented a new signal representation and unsuper-
vised learning framework, the sparse manifold transform,
which constructs a stable, linearized representation of time-
varying inputs - i.e., it turns non-linear transformations in
the primary signal space into linear interpolations in an
embedding space. The SMT is built upon a model-based
manifold sensing algorithm that allows partial recoverabil-
ity, as demonstrated in Figures 3 and 4. We apply the model
to videos of natural scenes and demonstrate the stability of
the representation over time in Figure 2. The model learns
a topological relationship among sparse coding dictionary
elements from time-varying input data, which we illustrate
by plotting affinity groups in Figure 5. We demonstrate a
method for regularizing sparse inference in section 2.1 and
demonstrate a hierarchical extension of the model in Figure
6. The formulation was developed by building upon core
concepts from manifold learning, sparse coding, and slow
feature analysis.

Previous methods point out the group structure present
in natural scene primitives (Hyvärinen & Hoyer, 2000;
Hyvärinen et al., 2001; Osindero et al., 2006), but do not
learn the structure directly from the data. We utilize tempo-
ral stability in natural video sequences to guide the learning
of group structure by constructing a linear embedding of
sparse codes.

Our model represents a new direction for learning hierar-
chical representations directly from the statistics of data
without the need for human curated labels or back propagat-
ing error signals. Many other feedforward (Shan et al., 2007;
Shan & Cottrell, 2013; Karklin & Lewicki, 2003; Le et al.,
2011; Jarrett et al., 2009) and recurrent (Paiton et al., 2016;
Cadieu & Olshausen, 2012; Zeiler et al., 2011) unsupervised
learning models produce a hierarchical code from image
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demonstrate this process with a three layer network and visu-
alize the learned representations. The network is trained in
a layer-by-layer fashion on a natural video dataset described
in Appendix B.

Figure 6. A three-layer stacked SMT. Each layer contains a sparse
coding sublayer (shown in red) and a manifold embedding sub-
layer (shown in green). A) The network architecture. B) From the
bottom to the top are the dictionary elements learned in layer-1
to layer-3, or �(1) to �(3). The visualization technique is de-
scribed in section 5. C) From left to right: The input image, the
reconstruction from ↵(1), the reconstruction from ↵(2), and the
reconstruction from ↵(3). The rows are unique examples. All of
the reconstructions are unwhitened for visualization. D) Linear
interpolation in layer-3 leads to a transformation, or a “steering”,
of the corresponding feature, resulting in a non-linear interpolation
in the image space. From left to right, the first two columns are
visualizations of two layer-3 units that are each constructed by
setting a single index in ↵(3) to a value of one and the rest to zero.
The third column is an image generated by setting the same two
indices in ↵(3) to 0.5. The fourth column is a linear interpolation
in image space between the first two images.

We can produce reconstructions and dictionary visualiza-
tions by repeatedly using the inverse operator, g, developed
in section 3. This provides an inverse transform from any
layer activity vector to the image space. Formally, we de-
fine ↵(l�1)

REC = g(l)(�(l)), where l is the layer number. For
example, the inverse transform from ↵(3) to the image space
will be xREC = Cg(1)(�(2)g(2)(�(3)↵(3))), where C is an
unwhitening matrix. We can also use the inverse transform
to visualize any single dictionary element by setting ↵(l) to
a 1-hot vector. From layer-1 to layer-3 we can see: 1) The
features tend to be more global when we move to higher
layers. 2) More abstract dictionary element start to emerge

in higher layers, e.g. layer-2 units tend to be more curved
and layer-3 units start to have more global texture-like units.
3) The inversion of the transform tends to preserve more
structural information and omits less significant features in
higher layers. This frequently leads to a sharper edge and
gives a perceptually denoised reconstruction of the inputs.
4) In higher layers, interpolation between neighboring dic-
tionary elements turns into non-linear transformations in
the image space, shown in Figure 6D. 5) In higher layers,
the dataset-average activation of dictionary units tends to
be equal (data not shown). The detailed configuration is
not important since we found that varying the number of
units in different layers does not qualitatively change the
result. Nearly all of the dictionary elements in layer-3 span
the entire receptive field, which suggests that an experiment
with larger receptive fields at higher layers could result in
more interesting features.

6. Discussion
We have presented a new signal representation and unsuper-
vised learning framework, the sparse manifold transform,
which constructs a stable, linearized representation of time-
varying inputs - i.e., it turns non-linear transformations in
the primary signal space into linear interpolations in an
embedding space. The SMT is built upon a model-based
manifold sensing algorithm that allows partial recoverabil-
ity, as demonstrated in Figures 3 and 4. We apply the model
to videos of natural scenes and demonstrate the stability of
the representation over time in Figure 2. The model learns
a topological relationship among sparse coding dictionary
elements from time-varying input data, which we illustrate
by plotting affinity groups in Figure 5. We demonstrate a
method for regularizing sparse inference in section 2.1 and
demonstrate a hierarchical extension of the model in Figure
6. The formulation was developed by building upon core
concepts from manifold learning, sparse coding, and slow
feature analysis.

Previous methods point out the group structure present
in natural scene primitives (Hyvärinen & Hoyer, 2000;
Hyvärinen et al., 2001; Osindero et al., 2006), but do not
learn the structure directly from the data. We utilize tempo-
ral stability in natural video sequences to guide the learning
of group structure by constructing a linear embedding of
sparse codes.

Our model represents a new direction for learning hierar-
chical representations directly from the statistics of data
without the need for human curated labels or back propagat-
ing error signals. Many other feedforward (Shan et al., 2007;
Shan & Cottrell, 2013; Karklin & Lewicki, 2003; Le et al.,
2011; Jarrett et al., 2009) and recurrent (Paiton et al., 2016;
Cadieu & Olshausen, 2012; Zeiler et al., 2011) unsupervised
learning models produce a hierarchical code from image
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demonstrate this process with a three layer network and visu-
alize the learned representations. The network is trained in
a layer-by-layer fashion on a natural video dataset described
in Appendix B.

Figure 6. A three-layer stacked SMT. Each layer contains a sparse
coding sublayer (shown in red) and a manifold embedding sub-
layer (shown in green). A) The network architecture. B) From the
bottom to the top are the dictionary elements learned in layer-1
to layer-3, or �(1) to �(3). The visualization technique is de-
scribed in section 5. C) From left to right: The input image, the
reconstruction from ↵(1), the reconstruction from ↵(2), and the
reconstruction from ↵(3). The rows are unique examples. All of
the reconstructions are unwhitened for visualization. D) Linear
interpolation in layer-3 leads to a transformation, or a “steering”,
of the corresponding feature, resulting in a non-linear interpolation
in the image space. From left to right, the first two columns are
visualizations of two layer-3 units that are each constructed by
setting a single index in ↵(3) to a value of one and the rest to zero.
The third column is an image generated by setting the same two
indices in ↵(3) to 0.5. The fourth column is a linear interpolation
in image space between the first two images.

We can produce reconstructions and dictionary visualiza-
tions by repeatedly using the inverse operator, g, developed
in section 3. This provides an inverse transform from any
layer activity vector to the image space. Formally, we de-
fine ↵(l�1)

REC = g(l)(�(l)), where l is the layer number. For
example, the inverse transform from ↵(3) to the image space
will be xREC = Cg(1)(�(2)g(2)(�(3)↵(3))), where C is an
unwhitening matrix. We can also use the inverse transform
to visualize any single dictionary element by setting ↵(l) to
a 1-hot vector. From layer-1 to layer-3 we can see: 1) The
features tend to be more global when we move to higher
layers. 2) More abstract dictionary element start to emerge

in higher layers, e.g. layer-2 units tend to be more curved
and layer-3 units start to have more global texture-like units.
3) The inversion of the transform tends to preserve more
structural information and omits less significant features in
higher layers. This frequently leads to a sharper edge and
gives a perceptually denoised reconstruction of the inputs.
4) In higher layers, interpolation between neighboring dic-
tionary elements turns into non-linear transformations in
the image space, shown in Figure 6D. 5) In higher layers,
the dataset-average activation of dictionary units tends to
be equal (data not shown). The detailed configuration is
not important since we found that varying the number of
units in different layers does not qualitatively change the
result. Nearly all of the dictionary elements in layer-3 span
the entire receptive field, which suggests that an experiment
with larger receptive fields at higher layers could result in
more interesting features.

6. Discussion
We have presented a new signal representation and unsuper-
vised learning framework, the sparse manifold transform,
which constructs a stable, linearized representation of time-
varying inputs - i.e., it turns non-linear transformations in
the primary signal space into linear interpolations in an
embedding space. The SMT is built upon a model-based
manifold sensing algorithm that allows partial recoverabil-
ity, as demonstrated in Figures 3 and 4. We apply the model
to videos of natural scenes and demonstrate the stability of
the representation over time in Figure 2. The model learns
a topological relationship among sparse coding dictionary
elements from time-varying input data, which we illustrate
by plotting affinity groups in Figure 5. We demonstrate a
method for regularizing sparse inference in section 2.1 and
demonstrate a hierarchical extension of the model in Figure
6. The formulation was developed by building upon core
concepts from manifold learning, sparse coding, and slow
feature analysis.

Previous methods point out the group structure present
in natural scene primitives (Hyvärinen & Hoyer, 2000;
Hyvärinen et al., 2001; Osindero et al., 2006), but do not
learn the structure directly from the data. We utilize tempo-
ral stability in natural video sequences to guide the learning
of group structure by constructing a linear embedding of
sparse codes.

Our model represents a new direction for learning hierar-
chical representations directly from the statistics of data
without the need for human curated labels or back propagat-
ing error signals. Many other feedforward (Shan et al., 2007;
Shan & Cottrell, 2013; Karklin & Lewicki, 2003; Le et al.,
2011; Jarrett et al., 2009) and recurrent (Paiton et al., 2016;
Cadieu & Olshausen, 2012; Zeiler et al., 2011) unsupervised
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reconstruction 
from layers 1,2,3

‘flattening’ at layer 3

<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

<latexit sha1_base64="ZInnqOh2WyNWZsX2+1U95+KfQFc=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMegF48RzAOSNcxOZpMhsw9neoNh2e/w4kERr36MN//GSbIHTSxoKKq66e7yYik02va3tbK6tr6xWdgqbu/s7u2XDg6bOkoU4w0WyUi1Paq5FCFvoEDJ27HiNPAkb3mjm6nfGnOlRRTe4yTmbkAHofAFo2gktzukmD5lD2nFOct6pbJdtWcgy8TJSRly1Hulr24/YknAQ2SSat1x7BjdlCoUTPKs2E00jykb0QHvGBrSgGs3nR2dkVOj9IkfKVMhkpn6eyKlgdaTwDOdAcWhXvSm4n9eJ0H/yk1FGCfIQzZf5CeSYESmCZC+UJyhnBhCmRLmVsKGVFGGJqeiCcFZfHmZNM+rjl117i7Ktes8jgIcwwlUwIFLqMEt1KEBDB7hGV7hzRpbL9a79TFvXbHymSP4A+vzB3CRkd0=</latexit> <latexit sha1_base64="xDQXKQuukpBdd2C/aFAdHDhVwHg=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQLyUpgh6LXjxWsB/QxrLZbtulm03cnRRLyO/w4kERr/4Yb/4bt20O2vpg4PHeDDPz/EhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU4exoqxBQxGqtk80E1yyBnIUrB0pRgJfsJY/vpn5rQlTmofyHqcR8wIylHzAKUEjed0RweQpfUjK1fO0Vyw5FWcOe5W4GSlBhnqv+NXthzQOmEQqiNYd14nQS4hCTgVLC91Ys4jQMRmyjqGSBEx7yfzo1D4zSt8ehMqURHuu/p5ISKD1NPBNZ0BwpJe9mfif14lxcOUlXEYxMkkXiwaxsDG0ZwnYfa4YRTE1hFDFza02HRFFKJqcCiYEd/nlVdKsVlyn4t5dlGrXWRx5OIFTKIMLl1CDW6hDAyg8wjO8wps1sV6sd+tj0Zqzsplj+APr8wdyF5He</latexit>

<latexit sha1_base64="th+GrhO07F4EmvAzxGdPtjkv3uc=">AAAB9HicbVDJSgNBEK2JW4xb1KOXxiDES5hRQY9BLx4jmAWSMfR0epImPYvdNcEwzHd48aCIVz/Gm39jZzlo4oOCx3tVVNXzYik02va3lVtZXVvfyG8WtrZ3dveK+wcNHSWK8TqLZKRaHtVcipDXUaDkrVhxGniSN73hzcRvjrjSIgrvcRxzN6D9UPiCUTSS2xlQTJ+yh7R8fpp1iyW7Yk9BlokzJyWYo9YtfnV6EUsCHiKTVOu2Y8foplShYJJnhU6ieUzZkPZ529CQBly76fTojJwYpUf8SJkKkUzV3xMpDbQeB57pDCgO9KI3Ef/z2gn6V24qwjhBHrLZIj+RBCMySYD0hOIM5dgQypQwtxI2oIoyNDkVTAjO4svLpHFWceyKc3dRql7P48jDERxDGRy4hCrcQg3qwOARnuEV3qyR9WK9Wx+z1pw1nzmEP7A+fwBznZHf</latexit><latexit sha1_base64="th+GrhO07F4EmvAzxGdPtjkv3uc=">AAAB9HicbVDJSgNBEK2JW4xb1KOXxiDES5hRQY9BLx4jmAWSMfR0epImPYvdNcEwzHd48aCIVz/Gm39jZzlo4oOCx3tVVNXzYik02va3lVtZXVvfyG8WtrZ3dveK+wcNHSWK8TqLZKRaHtVcipDXUaDkrVhxGniSN73hzcRvjrjSIgrvcRxzN6D9UPiCUTSS2xlQTJ+yh7R8fpp1iyW7Yk9BlokzJyWYo9YtfnV6EUsCHiKTVOu2Y8foplShYJJnhU6ieUzZkPZ529CQBly76fTojJwYpUf8SJkKkUzV3xMpDbQeB57pDCgO9KI3Ef/z2gn6V24qwjhBHrLZIj+RBCMySYD0hOIM5dgQypQwtxI2oIoyNDkVTAjO4svLpHFWceyKc3dRql7P48jDERxDGRy4hCrcQg3qwOARnuEV3qyR9WK9Wx+z1pw1nzmEP7A+fwBznZHf</latexit>

<latexit sha1_base64="slD2tR8G7jC72ycMiD61Qq6YbwM=">AAAB83icbVBNS8NAEJ34WetX1aOXxSLUS0lU0GPRi8cK9gOaWDbbabt0swm7G6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqlGwSU2DDcC24lCGoUCW+Hoduq3nlBpHssHM04wiOhA8j5n1FjJ9+tD/phVLs4m3VG3VHar7gxkmXg5KUOOerf05fdilkYoDRNU647nJibIqDKcCZwU/VRjQtmIDrBjqaQR6iCb3Twhp1bpkX6sbElDZurviYxGWo+j0HZG1Az1ojcV//M6qelfBxmXSWpQsvmifiqIick0ANLjCpkRY0soU9zeStiQKsqMjaloQ/AWX14mzfOq51a9+8ty7SaPowDHcAIV8OAKanAHdWgAgwSe4RXenNR5cd6dj3nripPPHMEfOJ8/H++REw==</latexit>

<latexit sha1_base64="ifGdMsi+YkpoYSBhTQDRBGv1tfI=">AAAB83icbVBNS8NAEJ34WetX1aOXxSLUS0lU0GPRi8cK9gOaWDbbabt0swm7G6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqlGwSU2DDcC24lCGoUCW+Hoduq3nlBpHssHM04wiOhA8j5n1FjJ9+tD/phVLs4mXdEtld2qOwNZJl5OypCj3i19+b2YpRFKwwTVuuO5iQkyqgxnAidFP9WYUDaiA+xYKmmEOshmN0/IqVV6pB8rW9KQmfp7IqOR1uMotJ0RNUO96E3F/7xOavrXQcZlkhqUbL6onwpiYjINgPS4QmbE2BLKFLe3EjakijJjYyraELzFl5dJ87zquVXv/rJcu8njKMAxnEAFPLiCGtxBHRrAIIFneIU3J3VenHfnY9664uQzR/AHzucPIXORFA==</latexit>

<latexit sha1_base64="1k82nWtDEqJR9leGa9YbtBiJwzU=">AAACGHicbVBNS8NAEJ3Ur1q/oh69BItQEWpSBT0WvXisYD+giWWz3bRLN5uwuxFKyM/w4l/x4kERr735b9y2OWjtg4HHezPMzPNjRqWy7W+jsLK6tr5R3Cxtbe/s7pn7By0ZJQKTJo5YJDo+koRRTpqKKkY6sSAo9Blp+6Pbqd9+IkLSiD+ocUy8EA04DShGSks989wNBMKpk6W1zG0M6WNauTjNeqOz5TrrmWW7as9g/SdOTsqQo9EzJ24/wklIuMIMSdl17Fh5KRKKYkaykptIEiM8QgPS1ZSjkEgvnT2WWSda6VtBJHRxZc3U3xMpCqUch77uDJEaykVvKi7zuokKrr2U8jhRhOP5oiBhloqsaUpWnwqCFRtrgrCg+lYLD5FOROksSzoEZ/Hl/6RVqzp21bm/LNdv8jiKcATHUAEHrqAOd9CAJmB4hld4hw/jxXgzPo2veWvByGcO4Q+MyQ+u0Z+F</latexit>



an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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along the cortical stages), but rapidly (i.e.<100 ms from V1
to IT, !20 ms per cortical stage). But what is this trans-
formation? That is, how does the ventral stream do this?

How does the ventral visual stream untangle object
manifolds?
We do not yet know the answer to this question. Hubel and
Wiesel’s [30] observation that visual cortex complex cells
can pool over simple cells to build tolerance to identity-
preserving transformations (especially position) has been
computationally implemented and extended to higher cor-
tical levels, including the IT [1,12,33]. However, beyond
this early insight, systems neuroscience has not provided a
breakthrough.

Some neurophysiological effort has focused on
characterizing IT neuronal tolerance to identity-preser-
ving transformations (e.g. Refs [31,32,34–38]), which is
central to object tangling. However, much more effort
has been aimed at understanding the effects of behavioral
states, for example, task and attention (e.g. Refs [39–45]).
Although important, these studies sidestep the untangling
problem, because such effects can be measured without
understanding the format of representation.

Substantial effort has also recently been aimed at
understanding the features or shape dimensions of visual
images to which V4 and IT neurons are most sensitive (e.g.
Refs [25,46–51]). Such studies are important for defining
the feature complexity of ventral stream neuronal tuning,
which is related to manifold untangling (because ‘object’ or

feature conjunctionmanifolds arewhatmust be untangled).
Ongoing, ambitious approaches to understanding the res-
ponse functions of individual neurons (i.e. the non-linear
operatorson thevisual image)would, if successful, lead toan
implicit understanding of object representation. However,
given the enormity of this task, it is not surprising that
progress has been slow.

The object untangling perspective leads to a
complementary but qualitatively different approach. First,
it shifts thinking away from single IT neuron response
properties [17] – which is akin to studying feathers to
understand flight [22] – toward thinking about ideal popu-
lation representations, with the computational goals of the
task clearly considered (see Figure 3b versus 3c) [52].
Second, it suggests the immediate goal of determining
how well each ventral stream neuronal representation
has untangled object manifolds and shows how to quanti-
tatively measure untangling (see linear classifiers above,
Figure 1). Third, this perspective points to better ways to
compare computational models to neuronal data: whereas
model predictions at the single-unit level are typically
grossly under-constrained, population-level comparisons
might be more meaningful (e.g. the predicted degree of
untangling at each ventral stream stage). Fourth, it sugg-
ests a clear focus on the causes of tangling – identity-
preserving transformations – rather than the continuing
primary focus on ‘shape’ or ‘features’. Indeed, because we
do not understand the dimensions of ‘shape’, we speculate
that computational approaches that focus on building

Figure 3. Untangling object manifolds along the ventral visual stream. As visual information progresses through the ventral visual pathway, it is progressively re-
represented in each visual area and becomes better and better at directly supporting object recognition. (a) A population of 500 V1 neurons was simulated as a bank of
Gabor filters with firing thresholds. Display axes in this 500-dimensional population space were chosen to maximally separate two face stimuli undergoing a range of
identity-preserving transformations (pose, size, position and lighting direction), as in Figure 1. Manifolds are shown for the two objects (red and blue) undergoing two-axis
pose variation (azimuth and elevation). As with the retina-like space shown in Figure 1c, object manifolds corresponding to the two objects are hopelessly tangled together.
Below, the responses of an example single unit are shown in response to the two faces undergoing one axis of pose variation. (b) By contrast, a population of simulated IT
neurons gives rise to object manifolds that are easily separated. 500 IT neurons were simulated with broad (but not flat) unimodal Gaussian tuning with respect to identity-
preserving transformations and with varying levels of preference for one or the other face, analogous to what is observed in single unit recording in IT. In addition to being
able to separate object manifolds corresponding to different identities, such a representation also allows one to recover information about object pose. The lines going
through the two manifolds show that the manifolds are coordinated – they are lined up in such a way that multiple orthogonal attributes of the object can be extracted using
the same representation. It is important to note that, in contrast to the V1 simulation, we do not yet know how to generate single unit responses like this from real images.
(c) A textbook idealized IT representation also produces object manifolds that are easy to separate from one another in terms of identity. Here, IT neurons were simulated
with idealized, perfectly invariant receptive fields. However, although this representation may be good for recovering identity information, it ‘collapses’ all other information
about the images.
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along the cortical stages), but rapidly (i.e.<100 ms from V1
to IT, !20 ms per cortical stage). But what is this trans-
formation? That is, how does the ventral stream do this?

How does the ventral visual stream untangle object
manifolds?
We do not yet know the answer to this question. Hubel and
Wiesel’s [30] observation that visual cortex complex cells
can pool over simple cells to build tolerance to identity-
preserving transformations (especially position) has been
computationally implemented and extended to higher cor-
tical levels, including the IT [1,12,33]. However, beyond
this early insight, systems neuroscience has not provided a
breakthrough.

Some neurophysiological effort has focused on
characterizing IT neuronal tolerance to identity-preser-
ving transformations (e.g. Refs [31,32,34–38]), which is
central to object tangling. However, much more effort
has been aimed at understanding the effects of behavioral
states, for example, task and attention (e.g. Refs [39–45]).
Although important, these studies sidestep the untangling
problem, because such effects can be measured without
understanding the format of representation.

Substantial effort has also recently been aimed at
understanding the features or shape dimensions of visual
images to which V4 and IT neurons are most sensitive (e.g.
Refs [25,46–51]). Such studies are important for defining
the feature complexity of ventral stream neuronal tuning,
which is related to manifold untangling (because ‘object’ or

feature conjunctionmanifolds arewhatmust be untangled).
Ongoing, ambitious approaches to understanding the res-
ponse functions of individual neurons (i.e. the non-linear
operatorson thevisual image)would, if successful, lead toan
implicit understanding of object representation. However,
given the enormity of this task, it is not surprising that
progress has been slow.

The object untangling perspective leads to a
complementary but qualitatively different approach. First,
it shifts thinking away from single IT neuron response
properties [17] – which is akin to studying feathers to
understand flight [22] – toward thinking about ideal popu-
lation representations, with the computational goals of the
task clearly considered (see Figure 3b versus 3c) [52].
Second, it suggests the immediate goal of determining
how well each ventral stream neuronal representation
has untangled object manifolds and shows how to quanti-
tatively measure untangling (see linear classifiers above,
Figure 1). Third, this perspective points to better ways to
compare computational models to neuronal data: whereas
model predictions at the single-unit level are typically
grossly under-constrained, population-level comparisons
might be more meaningful (e.g. the predicted degree of
untangling at each ventral stream stage). Fourth, it sugg-
ests a clear focus on the causes of tangling – identity-
preserving transformations – rather than the continuing
primary focus on ‘shape’ or ‘features’. Indeed, because we
do not understand the dimensions of ‘shape’, we speculate
that computational approaches that focus on building

Figure 3. Untangling object manifolds along the ventral visual stream. As visual information progresses through the ventral visual pathway, it is progressively re-
represented in each visual area and becomes better and better at directly supporting object recognition. (a) A population of 500 V1 neurons was simulated as a bank of
Gabor filters with firing thresholds. Display axes in this 500-dimensional population space were chosen to maximally separate two face stimuli undergoing a range of
identity-preserving transformations (pose, size, position and lighting direction), as in Figure 1. Manifolds are shown for the two objects (red and blue) undergoing two-axis
pose variation (azimuth and elevation). As with the retina-like space shown in Figure 1c, object manifolds corresponding to the two objects are hopelessly tangled together.
Below, the responses of an example single unit are shown in response to the two faces undergoing one axis of pose variation. (b) By contrast, a population of simulated IT
neurons gives rise to object manifolds that are easily separated. 500 IT neurons were simulated with broad (but not flat) unimodal Gaussian tuning with respect to identity-
preserving transformations and with varying levels of preference for one or the other face, analogous to what is observed in single unit recording in IT. In addition to being
able to separate object manifolds corresponding to different identities, such a representation also allows one to recover information about object pose. The lines going
through the two manifolds show that the manifolds are coordinated – they are lined up in such a way that multiple orthogonal attributes of the object can be extracted using
the same representation. It is important to note that, in contrast to the V1 simulation, we do not yet know how to generate single unit responses like this from real images.
(c) A textbook idealized IT representation also produces object manifolds that are easy to separate from one another in terms of identity. Here, IT neurons were simulated
with idealized, perfectly invariant receptive fields. However, although this representation may be good for recovering identity information, it ‘collapses’ all other information
about the images.
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. . .

DiCarlo & Cox (2007)



Main points

• Sparse coding provides a foundation for manifold 
learning.

• A geometrical embedding of the dictionary may be 
learned by exploiting temporal persistence of 
structure in the visual world.

• Manifold flattening may be accomplished in a 
progressive manner by successive stages of sparse 
coding (dimensionality expansion) and linear 
projection (dimensionality collapse) in the ventral 
stream of visual cortex.


