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'Edge Devices and their relationship with the Cloud

» Edge Device directly interact and
communicate with other machines,

objects, environment, and
infrastructure (50B by 2020)

= Edge devices are involved in the
fastest sense-infer-act loop

* Processing directly in the fastest loop
gives the best agility

Fog

* Cloud is more powerful but slow

' Edge
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‘ Eta Compute is focused on addressing issues at
the edge using neuromorphic computing
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' Neuromorphic Computing

Original term “neuromorphic electronics” to describe
electronic analog circuits that mimic neurobiological
circuits and architectures in the nervous system

Carver Mead
1985

“Neuromorphic engineering/computing” was introduced
to expand the scope to include analog, digital, mixed-
mode analog/digital VLSI and software systems
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Brain evolved to balance energy consumption with
information processing

* Brain is unique - serves as an interface between
morphology, physiology and behavior

 Brain evolution is shaped by two key selective
pressures

* Selective pressure #1: to generate adaptive behavior

via information processing under changing conditions
(Benefit)

* Selective pressure #2: To minimize the energy
consumed during this process (Cost)
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‘ Bulk of energy consumed for spike generation &
for its speed, quality and propagation needs

Glial cell
w Laughlin et al 1998
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Nervous system consumes 20% of
energy for just 2% of body mass

Action potential generation
« Action potential maintenance

* Synaptic transmission

Bandwidth Signaling speed
Noise Signal quality
Propagation Signal transmission




‘ Asynchronous Spike Timing Maximizes
Information Rates
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* Inresponse to long stimuli - variability in spike train or its spike entropy H, was calculated

 For repeated identical stimuli - variability in spike train or its noise entropy Hy was calculated
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‘ Neuronal morphology biased to deliver
information at the lowest allowed energy

Smaller neurons = lower Information rates D 20-
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‘ Balance between dense short & sparse long
connectivity enables energy efficient behavior

* Distributions of dense short connections are “tuned” to
extract information from the environment

* But adaptive behavior requires many of these local
computations to be integrated rapidly

* Thicker and longer axons encode information spread over
several low information rate thin axon tracts

* These sparse long range connections enables constant
synaptic path length = rapid information exchange
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‘ Neurons evolved to balance information rates with
energy consumed

Pre-synaptic Peat-symaptic

Improve channel properties (kinetics & sensitivity)
j : : ﬁ = high IR but high energy
Voltage gated channels control threshold = control

IR and energy consumed
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* Thicker myelin, faster

| conduction in A

* Synchronous arrival of
input from Aand B

« Altered circuit properties,
increased synaptic strength |
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* No synaptic potentiation
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@ Eta Compute joule by controlling myelination .
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‘ Biophysics at synapse optimized for energy
efficient information processing

Presynaptic
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p — probability of vesicle released onto postsynaptic cell
s - probability of presynaptic spike occurrence

* Information transmitted at a synapse at increasing pis linear for
lower sbut less-than-linear for higher s

* Since lower simplies lower energy consumed, the transmitted
information per joule is higher for lower sirrespective of p
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‘ Balanced synaptic currents promote efficiency in
both information coding & energy

Cortical

Microcircuits . . Balanced Balanced
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‘ Synaptic plasticity enables optimal filtering of

information for efficient information transfer

Chklovksii et al, 2004
Blitz et al, 2004

Structural changes
to optimize
information
transfer rates via
spine growth &
pruning
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‘ Population Dynamics Biased to Optimize energy
while enhancing information processing

Deneve et al 2017 [

fast” synapses wf
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Enforcing a balance between excitation and
inhibition in populations of spiking neurons
enable efficient information coding
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Friston 2009
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Reduced encoding of redundant information at lower layers
(R1) for energy savings at higher layers (R3)
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‘ Massively Parallel & Asynchronous Brain Enables System
Level Efficiency during information processing

 Strong evidence brain is asynchronous — many
clocks or rhythms

 This “just in time” mode of operation is one
reason for brain efficiency during behaviors
(system level)

* Complex operations can take more time than
average and simple ones can take less

Buzsaki, 2006, Zeki, 2015

* Actions can start as soon as prerequisite
actions are done
M Eta Compute 15




‘ Strong link between energy & information offers a
blueprint for the design of neuromorphic systems
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' Eta Compute Asynchronous Single Core

Single Core:
128 KB RAM
512 KB Flash

Delay Insensitive Asynchronous logic (DIAL™)
core - timing precision without fast clocks

2 K neurons,

Low power consumption Due to fine grain clock gating and zero
Sl e 128 K synapses
High operating speed Operating speed determined by local
latencies not global worst case latency Max speed:
Robustness to variations in supply Our innovation where timing is based 60 MHz, 2 mW
voltage, temperature and fabrication only on matched delays (and is -
process parameters insensitive to circuit and wire delays) Continuously
Formally Verifiable Our innovation to ensure synchronous variable VOltage
and asynchronous operations are down to 0.2V for low
equivalent power 2 uW at 100
No new tools are needed Our methodology is fully implanted KHz !

using conventional tools
Low cost - 55 nm
process
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' Eta Compute Asynchronous Multicore Chip

Multicore - tapeout in fall 2018
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» Sparse spiking dynamics that runs at low frequencies = exploit low voltage operation

* Software programmable in C++ for flexibility in exploring model parameters and dynamics
* Demonstrated voice applications for keyword spotting, continuous speech recognition, etc
* Beginning to look into image processing and health monitoring applications
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Brain evolved to strike a balance between
information processing and energy consumption

Asynchrony in computing and information
processing is one of the key principles in enabling
this balance in neuromorphic systems

Spiking neural models with synaptic plasticity
combined with analog signal processing running on
DIAL enables efficient information processing

Several applications currently being tested seems to
hold promise for interesting applications at the edge
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