Reinforcement Learning

Hidden Theory，and New Super－Fast Algorithms
Tutorial for the Simons Institute program on Real－Time Decision Making March 7 \＆9， 2018

Sean P．Meyn

Based on joint research with Vivek Borkar ．．．Adithya M．Devraj

COGNITION \＆CONTROL
IN COMPLEX SYSTEMS

Department of Electrical and Computer Engineering－University of Florida

References

[1] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint.

Hindustan Book Agency and Cambridge University Press, Delhi, India and Cambridge, UK, 2008.
[2] A. M. Devraj and S. P. Meyn, Fastest convergence for Q-learning.

ArXiv, July 2017.
Tutorial, and extended version of Zap Q-learning. Advances in Neural Information Processing Systems (NIPS). Dec. 2017.

More references can be found there, and here:

Part I: SA \& ML Theory

Survey of basic theory: Borkar's monograph [1] and our tutorial [2]
(1) Stochastic Approximation: Algorithm \& Motivation

- Basic Algorithm
- Monte-Carlo
- Reinforcement Learning
- Empirical Risk Minimization
(2) ODE Methods
- Representation in Continuous Time
- A Menu of ODEs
- ODE Solidarity: Proof of Convergence
- SDE Solidarity and Algorithm Performance
(3) Optimizing Stochastic Approximation
- SA for Σ_{n}
- Stochastic Newton Raphson

$\left.\mathrm{E}[f(\theta, W)]\right|_{\theta=\theta^{*}}=0$

Stochastic Approximation

What is Stochastic Approximation?

Why?

A simple goal: Find the solution θ^{*} to

$$
\bar{f}\left(\theta^{*}\right):=\left.\mathrm{E}[f(\theta, W)]\right|_{\theta=\theta^{*}}=0
$$

What is Stochastic Approximation?

Why?

A simple goal: Find the solution θ^{*} to

$$
\bar{f}\left(\theta^{*}\right):=\left.\mathrm{E}[f(\theta, W)]\right|_{\theta=\theta^{*}}=0
$$

What makes this hard?

What is Stochastic Approximation?

Why?

A simple goal: Find the solution θ^{*} to

$$
\bar{f}\left(\theta^{*}\right):=\left.\mathrm{E}[f(\theta, W)]\right|_{\theta=\theta^{*}}=0
$$

What makes this hard?
(1) The function f and the distribution of the random vector W may not be known

- we may only know something about the structure of the problem

What is Stochastic Approximation?

Why?

A simple goal: Find the solution θ^{*} to

$$
\bar{f}\left(\theta^{*}\right):=\left.\mathrm{E}[f(\theta, W)]\right|_{\theta=\theta^{*}}=0
$$

What makes this hard?
(1) The function f and the distribution of the random vector W may not be known

- we may only know something about the structure of the problem
(2) Even if everything is known, computation of the expectation may be expensive. For root finding, we may need to compute the expectation for many values of θ

What is Stochastic Approximation?

Why?

A simple goal: Find the solution θ^{*} to

$$
\bar{f}\left(\theta^{*}\right):=\left.\mathrm{E}[f(\theta, W)]\right|_{\theta=\theta^{*}}=0
$$

What makes this hard?
(1) The function f and the distribution of the random vector W may not be known

- we may only know something about the structure of the problem
(2) Even if everything is known, computation of the expectation may be expensive. For root finding, we may need to compute the expectation for many values of θ
(3) The recursive algorithms we come up with are often slow, and their variance may be infinite: typical in Q-learning [Devraj \& M 2017]

What is Stochastic Approximation?

What?
Basic algorithm of Robbins \& Monro 1951:

$$
\theta(n+1)=\theta(n)+\alpha_{n} f(\theta(n), W(n+1))
$$

What is Stochastic Approximation?

What?

Basic algorithm of Robbins \& Monro 1951:

$$
\theta(n+1)=\theta(n)+\alpha_{n} f(\theta(n), W(n+1))
$$

The stepsize satisfies

- To ensure we can reach anywhere: $\sum \alpha_{n}=\infty$
- To attenuate noise: $\sum \alpha_{n}^{2}<\infty$
usually we will take $\alpha_{n}=1 / n$

What is Stochastic Approximation?

What?

Basic algorithm of Robbins \& Monro 1951:

$$
\theta(n+1)=\theta(n)+\alpha_{n} f(\theta(n), W(n+1))
$$

The stepsize satisfies

- To ensure we can reach anywhere: $\sum \alpha_{n}=\infty$
- To attenuate noise: $\sum \alpha_{n}^{2}<\infty$
usually we will take $\alpha_{n}=1 / n$
Written this way:

$$
\theta(n+1)=\theta(n)+\alpha_{n}[\bar{f}(\theta(n))+\Delta(n+1)]
$$

Interpreted as a noisy Euler approximation to the ODE

$$
\frac{d}{d t} x_{t}=\bar{f}\left(x_{t}\right)
$$

Stochastic Approximation Example

Example: Monte-Carlo

Monte-Carlo Estimation
Estimate the mean $\eta=c(X)$, where X is a random variable:

$$
\eta=\int c(x) f_{X}(x) d x
$$

Stochastic Approximation Example

Example: Monte-Carlo

Monte-Carlo Estimation
Estimate the mean $\eta=c(X)$, where X is a random variable
SA interpretation: Find θ^{*} solving $0=\mathrm{E}[f(\theta, X)]=\mathrm{E}[c(X)-\theta]$
Algorithm: $\quad \theta(n)=\frac{1}{n} \sum_{i=1}^{n} c(X(i))$

Stochastic Approximation Example

Example: Monte-Carlo

$$
\sum \alpha_{n}=\infty, \sum \alpha_{n}^{2}<\infty
$$

Monte-Carlo Estimation
Estimate the mean $\eta=c(X)$, where X is a random variable
SA interpretation: Find θ^{*} solving $0=\mathrm{E}[f(\theta, X)]=\mathrm{E}[c(X)-\theta]$

$$
\begin{aligned}
\text { Algorithm: } \quad \theta(n) & =\frac{1}{n} \sum_{i=1}^{n} c(X(i)) \\
\Longrightarrow \quad(n+1) \theta(n+1) & =\sum_{i=1}^{n+1} c(X(i))=n \theta(n)+c(X(n+1)) \\
\Longrightarrow \quad(n+1) \theta(n+1) & =(n+1) \theta(n)+[c(X(n+1))-\theta(n)]
\end{aligned}
$$

SA Recursion:

$$
\theta(n+1)=\theta(n)+\alpha_{n} f(\theta(n), X(n+1))
$$

SA and RL Design

Functional equations in Stochastic Control
Always of the form

$$
0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?
$$

SA and RL Design

Functional equations in Stochastic Control
Always of the form

$$
0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?
$$

$$
\Phi(n)=(\text { state }, \text { action })
$$

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?$
Galerkin relaxation:
$0=\mathrm{E}\left[F\left(h^{\theta^{*}}, \Phi(n+1)\right) \zeta_{n}\right]$,
$\theta^{*}=?$

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?$
Galerkin relaxation:
$0=\mathrm{E}\left[F\left(h^{\theta^{*}}, \Phi(n+1)\right) \zeta_{n}\right], \quad \theta^{*}=?$
Necessary Ingredients:

- Parameterized family $\left\{h^{\theta}: \theta \in \mathbb{R}^{d}\right\}$
- Adapted, d-dimensional stochastic process $\left\{\zeta_{n}\right\}$

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?$
Galerkin relaxation:
$0=\mathrm{E}\left[F\left(h^{\theta^{*}}, \Phi(n+1)\right) \zeta_{n}\right], \quad \theta^{*}=?$
Necessary Ingredients:

- Parameterized family $\left\{h^{\theta}: \theta \in \mathbb{R}^{d}\right\}$
- Adapted, d-dimensional stochastic process $\left\{\zeta_{n}\right\} \equiv$ eligibility vectors Examples are TD- and Q-Learning

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?$
Galerkin relaxation:
$0=\mathrm{E}\left[F\left(h^{\theta^{*}}, \Phi(n+1)\right) \zeta_{n}\right], \quad \theta^{*}=?$
Necessary Ingredients:

- Parameterized family $\left\{h^{\theta}: \theta \in \mathbb{R}^{d}\right\}$
- Adapted, d-dimensional stochastic process $\left\{\zeta_{n}\right\} \equiv$ eligibility vectors Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

Empirical Risk Minimization

Goal: find θ^{*} that minimizes $J(\theta)=\mathrm{E}[g(\theta, W)]$.

Empirical Risk Minimization

Goal: find θ^{*} that minimizes $J(\theta)=\mathrm{E}[g(\theta, W)]$.

Settle for empirical risk: $\quad J_{n}(\theta)=\frac{1}{n} \sum_{k=1}^{n} g\left(\theta, W_{k}\right)$
Methods to compute minimizer θ_{n}^{*} quickly
focus of current research - e.g., [14].

Empirical Risk Minimization

Goal: find θ^{*} that minimizes $J(\theta)=\mathrm{E}[g(\theta, W)]$.

$$
J_{n}(\theta)=\frac{1}{n} \sum_{k=1}^{n} g\left(\theta, W_{k}\right)
$$

Methods to compute minimizer θ_{n}^{*} quickly
focus of current research - e.g., [14].

However, don't forget the original problem:

$$
\theta_{n}^{*}-\theta^{*} \stackrel{\text { dist }}{\approx} \frac{1}{\sqrt{n}} N\left(0, \Sigma^{*}\right)
$$

Formula for covariance below

Empirical Risk Minimization

Goal: find θ^{*} that minimizes $J(\theta)=\mathrm{E}[g(\theta, W)]$.

Settle for empirical risk: $\quad J_{n}(\theta)=\frac{1}{n} \sum_{k=1}^{n} g\left(\theta, W_{k}\right)$
Methods to compute minimizer θ_{n}^{*} quickly
focus of current research - e.g., [14].

However, don't forget the original problem:

$$
\theta_{n}^{*}-\theta^{*} \stackrel{\text { dist }}{\approx} \frac{1}{\sqrt{n}} N\left(0, \Sigma^{*}\right) \quad \text { Formula for covariance below }
$$

The same conclusion would be reached using stochastic approximation (with careful design).

ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
(1) Timescale: $t_{0}=0$ and $t_{n+1}=t_{n}+\alpha_{n}$ for $n \geq 0$.
(2) Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$; defined elsewhere by linear interpolation.

ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
(1) Timescale: $t_{0}=0$ and $t_{n+1}=t_{n}+\alpha_{n}$ for $n \geq 0$.
(2) Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$; defined elsewhere by linear interpolation.

For $t_{n}>t_{k}$,

$$
\begin{aligned}
X_{t_{n}} & =X_{t_{k}}+\sum_{j} f\left(X_{t_{j}}, W(j+1)\right) \delta_{t_{j}}, \quad \delta_{t_{j}}=t_{j}-t_{j-1} \\
& =X_{t_{k}}+\int_{t_{k}}^{t_{n}} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(t_{k}, t_{n}\right)
\end{aligned}
$$

ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
(1) Timescale: $t_{0}=0$ and $t_{n+1}=t_{n}+\alpha_{n}$ for $n \geq 0$.
(2) Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$; defined elsewhere by linear interpolation.

For $t_{n}>t_{k}$,

$$
\begin{aligned}
X_{t_{n}} & =X_{t_{k}}+\sum_{j} f\left(X_{t_{j}}, W(j+1)\right) \delta_{t_{j}}, \quad \delta_{t_{j}}=t_{j}-t_{j-1} \\
& =X_{t_{k}}+\int_{t_{k}}^{t_{n}} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(t_{k}, t_{n}\right)
\end{aligned}
$$

Properties of the noise follow from assumptions on f and \boldsymbol{W}.

ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
(1) Timescale: $t_{0}=0$ and $t_{n+1}=t_{n}+\alpha_{n}$ for $n \geq 0$.
(2) Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$; defined elsewhere by linear interpolation.
(3) Time horizon $T \gg 0$: Construct increasing subsequence $\left\{T_{n}\right\}$ so that

$$
T=\lim _{n \rightarrow \infty}\left(T_{n+1}-T_{n}\right)
$$

Analysis restricted to each time interval:

$$
X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right), \quad T_{n} \leq t<T_{n+1}
$$

ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.
Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$:

$$
X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right), \quad T_{n} \leq t<T_{n+1}
$$

ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.
Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$:

$$
X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right), \quad T_{n} \leq t<T_{n+1}
$$

For $\alpha_{k}=k^{-1}$,

$$
\mathcal{E}\left(t_{m}, t_{n}\right)=\sum_{k=m+1}^{n}[f(\theta(k), W(k+1))-\bar{f}(\theta(k))] \alpha_{k}+O\left(m^{-2}\right)
$$

ODE and SDE Approximations

Properties of the noise follow from assumptions on f and \boldsymbol{W}.
Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$:

$$
X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right), \quad T_{n} \leq t<T_{n+1}
$$

For $\alpha_{k}=k^{-1}$,

$$
\mathcal{E}\left(t_{m}, t_{n}\right)=\sum_{k=m+1}^{n}[f(\theta(k), W(k+1))-\bar{f}(\theta(k))] \alpha_{k}+O\left(m^{-2}\right)
$$

For nice Markovian \boldsymbol{W}, f Lipschitz in θ and "nice" in W :

$$
\mathcal{E}\left(t_{m}, t_{n}\right)=M\left(t_{n}\right)-M\left(t_{m}\right)+\mathcal{J}\left(t_{m}, t_{n}\right)
$$

where \boldsymbol{M} is a martingale, and the "junk term" can be disposed of.

ODE and SDE Approximations !! Comments for the experts

 Properties of the noise follow from assumptions on f and W.Continuous time process: $X_{t}=\theta(n)$ for $t=t_{n}$:

$$
\begin{aligned}
X_{t} & =X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right), \quad T_{n} \leq t<T_{n+1} \\
\mathcal{E}\left(t_{m}, t_{n}\right) & =\sum_{k=m+1}^{n}[f(\theta(k), W(k+1))-\bar{f}(\theta(k))] \alpha_{k}+O\left(m^{-2}\right) \\
& =M\left(t_{n}\right)-M\left(t_{m}\right)+\mathcal{J}\left(t_{m}, t_{n}\right)
\end{aligned}
$$

Markovian \boldsymbol{W} : what is nice?

$$
\mathcal{J}\left(t_{m}, t_{n}\right)=\text { Simple junk }-\sum_{k=m+1}^{n} \alpha_{k}\left[\mathcal{H}_{k}-\mathcal{H}_{k-1}\right]
$$

Need nice solutions to "Poisson's equation" : $\mathcal{H}_{k}=h(\theta(k), W(k+1))[6,7]$.

ODE and SDE Approximations

- Boundedness of $\left\{\theta_{n}\right\}$
[1, Ch. 3]
Follows from stability of the homogeneous ODE,

$$
\begin{aligned}
& \frac{d}{d t} \xi_{t}=\bar{f}^{\infty}\left(\xi_{t}\right), \quad \bar{f}^{\infty}(x)=\lim _{r \rightarrow \infty} r^{-1} \bar{f}(r x) \quad \text { Borkar-M. Theorem } \\
& \text { "ODE at } \infty \text { " }
\end{aligned}
$$

ODE and SDE Approximations

- Boundedness of $\left\{\theta_{n}\right\}$
[1, Ch. 3]
Follows from stability of the homogeneous ODE,

$$
\frac{d}{d t} \xi_{t}=\bar{f}^{\infty}\left(\xi_{t}\right), \quad \bar{f}^{\infty}(x)=\lim _{r \rightarrow \infty} r^{-1} \bar{f}(r x) \quad \text { Borkar-M. Theorem }
$$

- Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
[1, Ch. 2]
$X_{t} \approx x_{t}^{k}$ for large k and all t, where

$$
\frac{d}{d t} x_{t}^{k}=\bar{f}\left(x_{t}^{k}\right), \quad x_{T_{k}}^{k}=X_{T_{k}}
$$

ODE and SDE Approximations

- Boundedness of $\left\{\theta_{n}\right\}$
[1, Ch. 3]
Follows from stability of the homogeneous ODE,

$$
\frac{d}{d t} \xi_{t}=\bar{f}^{\infty}\left(\xi_{t}\right), \quad \bar{f}^{\infty}(x)=\lim _{r \rightarrow \infty} r^{-1} \bar{f}(r x) \quad \text { Borkar-M. Theorem }
$$

- Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
[1, Ch. 2]
$X_{t} \approx x_{t}^{k}$ for large k and all t, where

$$
\frac{d}{d t} x_{t}^{k}=\bar{f}\left(x_{t}^{k}\right), \quad x_{T_{k}}^{k}=X_{T_{k}}
$$

- Variance analysis \equiv SDE approximation
[1, Ch. 8]

$$
\begin{gathered}
Y_{T} \approx Y_{0}+\int_{0}^{T}\left(A+\frac{1}{2} I\right) Y_{s} d s+B_{T} \\
Y_{t}=e^{t / 2}\left(X_{t}-\theta^{*}\right) \quad Y_{t_{n}} \approx \sqrt{n}\left(\theta(n)-\theta^{*}\right) \text { since } t_{n} \approx \log (n) .
\end{gathered}
$$

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to $\theta^{*} \quad$ In one word: Euler scheme for solving an ODE is robust

Comparison

$$
\begin{aligned}
& X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right) \\
& x_{t}^{n}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(x_{s}^{n}\right) d s, \quad T_{n} \leq t<T_{n+1}
\end{aligned}
$$

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to $\theta^{*} \quad$ In one word: Euler scheme for solving an ODE is robust

Comparison

$$
\begin{aligned}
& X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right) \\
& x_{t}^{n}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(x_{s}^{n}\right) d s, \quad T_{n} \leq t<T_{n+1}
\end{aligned}
$$

Assumptions

- $\frac{d}{d t} x_{t}=\bar{f}\left(x_{t}\right)$ is globally asymptotically stable
- \bar{f} is Lipschiz continuous, Lipschitz constant L

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}

Comparison

$$
\begin{aligned}
& X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right) \\
& x_{t}^{n}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(x_{s}^{n}\right) d s, \quad T_{n} \leq t<T_{n+1}
\end{aligned}
$$

Assumptions

- $\frac{d}{d t} x_{t}=\bar{f}\left(x_{t}\right)$ is globally asymptotically stable
- \bar{f} is Lipschiz continuous, Lipschitz constant L
- Nice noise: $\lim _{n \rightarrow \infty} \max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|=0$.
- The sequence $\left\{\theta_{n}\right\}$ is bounded (Lyapunov condition, or check ODE at ∞)

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}

Comparison

$$
\begin{aligned}
& X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right) \\
& x_{t}^{n}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(x_{s}^{n}\right) d s, \quad T_{n} \leq t<T_{n+1}
\end{aligned}
$$

Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}

Comparison

$$
\begin{aligned}
& X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right) \\
& x_{t}^{n}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(x_{s}^{n}\right) d s, \quad T_{n} \leq t<T_{n+1}
\end{aligned}
$$

Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
e_{t}^{n} \leq L \int_{T_{n}}^{t} e_{s}^{n} d s+\overline{\mathcal{E}}^{n}, \quad T_{n} \leq t<T_{n+1}
$$

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}

Comparison

$$
\begin{aligned}
& X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right) \\
& x_{t}^{n}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(x_{s}^{n}\right) d s, \quad T_{n} \leq t<T_{n+1}
\end{aligned}
$$

Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
\begin{array}{rll}
& e_{t}^{n} \leq L \int_{T_{n}}^{t} e_{s}^{n} d s+\overline{\mathcal{E}}^{n}, & T_{n} \leq t<T_{n+1} \\
\Longrightarrow \quad & e_{t}^{n} \leq \overline{\mathcal{E}}^{n} \exp \left(\left[T_{n+1}-T_{n}\right] L\right) & \text { Bellman Gronwall Lemma }
\end{array}
$$

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
\begin{aligned}
& e_{t}^{n} \leq \overline{\mathcal{E}}^{n} \exp \left(\left[T_{n+1}-T_{n}\right] L\right) \quad \text { vanishes } \\
& \quad \Longrightarrow \quad X_{t} \approx x_{t}^{n} \quad \text { for large } n \text { and all } t
\end{aligned}
$$

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
e_{t}^{n} \leq \overline{\mathcal{E}}^{n} \exp \left(\left[T_{n+1}-T_{n}\right] L\right) \quad \text { vanishes }
$$

$\Longrightarrow \quad X_{t} \approx x_{t}^{n} \quad$ for large n and all t

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
\begin{aligned}
& e_{t}^{n} \leq \overline{\mathcal{E}}^{n} \exp \left(\left[T_{n+1}-T_{n}\right] L\right) \quad \text { vanishes } \\
& \Longrightarrow \quad X_{t} \approx x_{t}^{n} \quad \text { for large } n \text { and all } t
\end{aligned}
$$

Fix large T, and note implications:
(1) $x_{T_{n+1}-}^{n} \approx \theta^{*}$ for all n by GAS

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
\begin{aligned}
& e_{t}^{n} \leq \overline{\mathcal{E}}^{n} \exp \left(\left[T_{n+1}-T_{n}\right] L\right) \quad \text { vanishes } \\
& \Longrightarrow \quad X_{t} \approx x_{t}^{n} \quad \text { for large } n \text { and all } t
\end{aligned}
$$

Fix large T, and note implications:
(1) $x_{T_{n+1}-}^{n} \approx \theta^{*}$ for all n by GAS
(2) $x_{T_{n+1}}^{n+1}=X_{T_{n+1}} \approx x_{T_{n+1}-}^{n} \approx \theta^{*}$ for large n

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
\begin{aligned}
& e_{t}^{n} \leq \overline{\mathcal{E}}^{n} \exp \left(\left[T_{n+1}-T_{n}\right] L\right) \quad \text { vanishes } \\
& \Longrightarrow \quad X_{t} \approx x_{t}^{n} \quad \text { for large } n \text { and all } t
\end{aligned}
$$

Fix large T, and note implications:
(1) $x_{T_{n+1}-}^{n} \approx \theta^{*}$ for all n by GAS
(2) $x_{T_{n+1}}^{n+1}=X_{T_{n+1}} \approx x_{T_{n+1}-}^{n} \approx \theta^{*}$ for large n
(3) $x_{t}^{n+1} \approx \theta^{*}$ for large n and all t by GAS

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
\begin{aligned}
& e_{t}^{n} \leq \overline{\mathcal{E}}^{n} \exp \left(\left[T_{n+1}-T_{n}\right] L\right) \quad \text { vanishes } \\
& \Longrightarrow \quad X_{t} \approx x_{t}^{n} \quad \text { for large } n \text { and all } t
\end{aligned}
$$

Fix large T, and note implications:
(1) $x_{T_{n+1}-}^{n} \approx \theta^{*}$ for all n by GAS
(2) $x_{T_{n+1}}^{n+1}=X_{T_{n+1}} \approx x_{T_{n+1}-}^{n} \approx \theta^{*}$ for large n
(3) $x_{t}^{n+1} \approx \theta^{*}$ for large n and all t by GAS
(9) $X_{t} \approx x_{t}^{n} \approx \theta^{*}$ for large n and all t

Algorithm and Convergence Analysis

Convergence of $\left\{\theta_{n}\right\}$ to θ^{*}
Error: $e_{t}^{n}=\left\|X_{t}-x_{t}^{n}\right\|$ and $\overline{\mathcal{E}}^{n}=\max _{T_{n} \leq t \leq T_{n+1}}\left\|\mathcal{E}\left(T_{n}, t\right)\right\|$:

$$
\begin{aligned}
e_{t}^{n} \leq \overline{\mathcal{E}}^{n} & \exp \left(\left[T_{n+1}-T_{n}\right] L\right) \quad \text { vanishes } \\
& \Longrightarrow \quad X_{t} \approx x_{t}^{n} \quad \text { for large } n \text { and all } t
\end{aligned}
$$

Fix large T, and note implications:
(1) $x_{T_{n+1}-}^{n} \approx \theta^{*}$ for all n by GAS
(2) $x_{T_{n+1}}^{n+1}=X_{T_{n+1}} \approx x_{T_{n+1}-}^{n} \approx \theta^{*}$ for large n
(3) $x_{t}^{n+1} \approx \theta^{*}$ for large n and all t by GAS
(4) $X_{t} \approx x_{t}^{n} \approx \theta^{*}$ for large n and all t

Convergence: $\quad \lim _{k \rightarrow \infty} \theta_{k}=\lim _{k \rightarrow \infty} X_{t_{k}}=\theta^{*}$

SDE Approximations

Linear SDE for $Y_{t}=e^{t / 2}\left(X_{t}-\theta^{*}\right)$

$$
Y_{t_{n}} \approx \sqrt{n}\left(\theta(n)-\theta^{*}\right) \text { since } t_{n} \approx \log (n)
$$

- Same starting point: $X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right)$
- Linearize: $\bar{f}(x) \approx A\left(x-\theta^{*}\right)$, for $x \approx \theta^{*}$.
- Nice noise gives FCLT: $e^{\left(t-T_{n}\right) / 2} \mathcal{E}\left(T_{n}, t\right) \stackrel{\text { dist }}{\approx} B_{t}-B_{T_{n}}$

SDE Approximations

Linear SDE for $Y_{t}=e^{t / 2}\left(X_{t}-\theta^{*}\right)$

$$
Y_{t_{n}} \approx \sqrt{n}\left(\theta(n)-\theta^{*}\right) \text { since } t_{n} \approx \log (n)
$$

- Same starting point: $X_{t}=X_{T_{n}}+\int_{T_{n}}^{t} \bar{f}\left(X_{s}\right) d s+\mathcal{E}\left(T_{n}, t\right)$
- Linearize: $\bar{f}(x) \approx A\left(x-\theta^{*}\right)$, for $x \approx \theta^{*}$.
- Nice noise gives FCLT: $e^{\left(t-T_{n}\right) / 2} \mathcal{E}\left(T_{n}, t\right) \stackrel{\text { dist }}{\approx} B_{t}-B_{T_{n}}$ and with a bit of work:

$$
Y_{t} \stackrel{\text { dist }}{\approx} Y_{T_{n}}+\int_{T_{n}}^{t}\left(A+\frac{1}{2} I\right) Y_{s} d s+B_{t}-B_{T_{n}}
$$

SDE Approximations

Linear SDE for $Y_{t}=e^{t / 2}\left(X_{t}-\theta^{*}\right)$

$$
Y_{t} \stackrel{\text { dist }}{\approx} Y_{T_{n}}+\int_{T_{n}}^{t}\left(A+\frac{1}{2} I\right) Y_{s} d s+B_{t}-B_{T_{n}}
$$

\boldsymbol{B} Brownian motion, $B_{t} \sim N\left(0, t \Sigma_{\Delta}\right)$.
Translating back to reality: (under assumptions I won't list)

SDE Approximations

Linear SDE for $Y_{t}=e^{t / 2}\left(X_{t}-\theta^{*}\right)$

$$
Y_{t} \stackrel{\text { dist }}{\approx} Y_{T_{n}}+\int_{T_{n}}^{t}\left(A+\frac{1}{2} I\right) Y_{s} d s+B_{t}-B_{T_{n}}
$$

\boldsymbol{B} Brownian motion, $B_{t} \sim N\left(0, t \Sigma_{\Delta}\right)$.
Translating back to reality: (under assumptions I won't list)
Central Limit Theorem
$\sqrt{n} \tilde{\theta}(n)$ converges in distribution to $N(0, \Sigma)$, whose covariance is the solution to the Lyapunov equation:

$$
\left(A+\frac{1}{2} I\right) \Sigma+\Sigma\left(A+\frac{1}{2} I\right)^{T}+\Sigma_{\Delta}=0
$$

The covariance is finite if Real $\lambda(A)<-\frac{1}{2}$

SDE Approximations

Linear SDE for $Y_{t}=e^{t / 2}\left(X_{t}-\theta^{*}\right)$

Central Limit Theorem

$\sqrt{n} \tilde{\theta}(n)$ converges in distribution to $N(0, \Sigma)$, whose covariance is the solution to the Lyapunov equation:

$$
\left(A+\frac{1}{2} I\right) \Sigma+\Sigma\left(A+\frac{1}{2} I\right)^{T}+\Sigma_{\Delta}=0
$$

The covariance is finite if Real $\lambda(A)<-\frac{1}{2}$
Questions for algorithm design:
(1) How do we fix an algorithm if it fails this condition?
(2) How can we optimize Σ ?

SDE Approximations

Linear SDE for $Y_{t}=e^{t / 2}\left(X_{t}-\theta^{*}\right)$

Central Limit Theorem

$\sqrt{n} \tilde{\theta}(n)$ converges in distribution to $N(0, \Sigma)$, whose covariance is the solution to the Lyapunov equation:

$$
\left(A+\frac{1}{2} I\right) \Sigma+\Sigma\left(A+\frac{1}{2} I\right)^{T}+\Sigma_{\Delta}=0
$$

The covariance is finite if Real $\lambda(A)<-\frac{1}{2}$
Questions for algorithm design:
(1) How do we fix an algorithm if it fails this condition?
(2) How can we optimize Σ ?
(3) Does this lead to improved algorithms for reinforcement learning?

Asymptotic Covariance

Recursion for uncorrelated noise
Consider a linear model with $\tilde{\theta}(n):=\theta(n)-\theta^{*}$:

$$
\tilde{\theta}(n+1)=\tilde{\theta}(n)+\frac{1}{n}[A \tilde{\theta}(n)+\Delta(n+1)]
$$

$\{\Delta(n)\}$ uncorrelated, zero mean, covariance Σ_{Δ}.

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with $\tilde{\theta}(n):=\theta(n)-\theta^{*}$:

$$
\tilde{\theta}(n+1)=\tilde{\theta}(n)+\frac{1}{n}[A \tilde{\theta}(n)+\Delta(n+1)]
$$

$\{\Delta(n)\}$ uncorrelated, zero mean, covariance Σ_{Δ}.
Approximate $\sqrt{n+1} \approx \sqrt{n}\left(1+(2 n)^{-1}\right)$:

$$
\sqrt{n+1} \tilde{\theta}(n+1) \approx \sqrt{n} \tilde{\theta}(n)+\frac{1}{n}\left[\left(A+\frac{1}{2} I\right) \sqrt{n} \tilde{\theta}(n)+\sqrt{n} \Delta(n+1)\right]
$$

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with $\tilde{\theta}(n):=\theta(n)-\theta^{*}$:

$$
\tilde{\theta}(n+1)=\tilde{\theta}(n)+\frac{1}{n}[A \tilde{\theta}(n)+\Delta(n+1)]
$$

$\{\Delta(n)\}$ uncorrelated, zero mean, covariance Σ_{Δ}.
Approximate $\sqrt{n+1} \approx \sqrt{n}\left(1+(2 n)^{-1}\right)$:

$$
\sqrt{n+1} \tilde{\theta}(n+1) \approx \sqrt{n} \tilde{\theta}(n)+\frac{1}{n}\left[\left(A+\frac{1}{2} I\right) \sqrt{n} \tilde{\theta}(n)+\sqrt{n} \Delta(n+1)\right]
$$

Covariance recursion:

$$
\begin{aligned}
\Sigma_{n+1} & =(n+1) \mathrm{E}\left[\tilde{\theta}(n+1) \tilde{\theta}(n+1)^{T}\right] \\
& \approx \Sigma_{n}+\frac{1}{n}\left\{\left(A+\frac{1}{2} I\right) \Sigma_{n}+\Sigma_{n}\left(A+\frac{1}{2} I\right)^{T}+\Sigma_{\Delta}\right\}
\end{aligned}
$$

Asymptotic Covariance

$\Sigma=\lim _{n \rightarrow \infty} \Sigma_{n}=\lim _{n \rightarrow \infty} n \mathrm{E}\left[\tilde{\theta}(n) \tilde{\theta}(n)^{T}\right], \quad \sqrt{n} \tilde{\theta}(n) \approx N(0, \Sigma)$

SA recursion for covariance:

$$
\Sigma_{n+1} \approx \Sigma_{n}+\frac{1}{n}\left\{\left(A+\frac{1}{2} I\right) \Sigma_{n}+\Sigma_{n}\left(A+\frac{1}{2} I\right)^{T}+\Sigma_{\Delta}\right\}
$$

$$
A=\frac{d}{d \theta} \bar{f}\left(\theta^{*}\right)
$$

Conclusions

(1) If $\operatorname{Re} \lambda(A) \geq-\frac{1}{2}$ for some eigenvalue then Σ is (typically) infinite
(2) If $\operatorname{Re} \lambda(A)<-\frac{1}{2}$ for all, then $\Sigma=\lim _{n \rightarrow \infty} \Sigma_{n}$ is the unique solution to the Lyapunov equation:

$$
0=\left(A+\frac{1}{2} I\right) \Sigma+\Sigma\left(A+\frac{1}{2} I\right)^{T}+\Sigma_{\Delta}
$$

Optimal Asymptotic Covariance

Introduce a $d \times d$ matrix gain sequence $\left\{G_{n}\right\}$:

$$
\theta(n+1)=\theta(n)+\frac{1}{n+1} G_{n} f(\theta(n), X(n))
$$

Optimal Asymptotic Covariance

Introduce a $d \times d$ matrix gain sequence $\left\{G_{n}\right\}$:

$$
\theta(n+1)=\theta(n)+\frac{1}{n+1} G_{n} f(\theta(n), X(n))
$$

Assume it converges, and linearize:

$$
\tilde{\theta}(n+1) \approx \tilde{\theta}(n)+\frac{1}{n+1} G(A \tilde{\theta}(n)+\Delta(n+1)), \quad A=\frac{d}{d \theta} \bar{f}\left(\theta^{*}\right)
$$

Optimal Asymptotic Covariance

Introduce a $d \times d$ matrix gain sequence $\left\{G_{n}\right\}$:

$$
\theta(n+1)=\theta(n)+\frac{1}{n+1} G_{n} f(\theta(n), X(n))
$$

Assume it converges, and linearize:

$$
\tilde{\theta}(n+1) \approx \tilde{\theta}(n)+\frac{1}{n+1} G(A \tilde{\theta}(n)+\Delta(n+1)), \quad A=\frac{d}{d \theta} \bar{f}\left(\theta^{*}\right)
$$

If $G=G^{*}:=-A^{-1}$ then

- Resembles Monte-Carlo estimate
- Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]
- It is optimal: $\Sigma^{*}=G^{*} \Sigma_{\Delta} G^{* T} \leq \Sigma^{G} \quad$ any other G

Optimal Asymptotic Covariance

Introduce a $d \times d$ matrix gain sequence $\left\{G_{n}\right\}$:

$$
\theta(n+1)=\theta(n)+\frac{1}{n+1} G_{n} f(\theta(n), X(n))
$$

Assume it converges, and linearize:

$$
\tilde{\theta}(n+1) \approx \tilde{\theta}(n)+\frac{1}{n+1} G(A \tilde{\theta}(n)+\Delta(n+1)), \quad A=\frac{d}{d \theta} \bar{f}\left(\theta^{*}\right)
$$

If $G=G^{*}:=-A^{-1}$ then

- Resembles Monte-Carlo estimate
- Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]
- It is optimal: $\Sigma^{*}=G^{*} \Sigma_{\Delta} G^{* T} \leq \Sigma^{G} \quad$ any other G

Ruppert-Polyak averaging is also optimal, but first two bullets are missing.

Optimal Asymptotic Covariance

Example: return to Monte-Carlo

$$
\theta(n+1)=\theta(n)+\frac{g}{n+1}(-\theta(n)+X(n+1))
$$

Optimal Asymptotic Covariance

Example: return to Monte-Carlo

$$
\begin{aligned}
\theta(n+1)=\theta(n)+\frac{g}{n+1}(-\theta(n)+ & X(n+1)) \\
\Delta(n) & =X(n)-\mathrm{E}[X(n)]
\end{aligned}
$$

Optimal Asymptotic Covariance

Normalization for analysis:

$$
\Delta(n)=X(n)-\mathrm{E}[X(n)]
$$

$$
\tilde{\theta}(n+1)=\tilde{\theta}(n)+\frac{g}{n+1}(-\tilde{\theta}(n)+\Delta(n+1))
$$

Optimal Asymptotic Covariance

Normalization for analysis:

$$
\Delta(n)=X(n)-\mathrm{E}[X(n)]
$$

$$
\tilde{\theta}(n+1)=\tilde{\theta}(n)+\frac{g}{n+1}(-\tilde{\theta}(n)+\Delta(n+1))
$$

Asymptotic variance as a function of g

Optimal Asymptotic Covariance

Normalization for analysis:

$$
\Delta(n)=X(n)-\mathrm{E}[X(n)]
$$

$$
\tilde{\theta}(n+1)=\tilde{\theta}(n)+\frac{g}{n+1}(-\tilde{\theta}(n)+\Delta(n+1))
$$

Example: $X(n)=W^{2}(n), W \sim N(0,1), \sigma_{\Delta}^{2}=2$

Asymptotic variance as a function of g

Optimal Asymptotic Covariance

Normalization for analysis:

$$
\Delta(n)=X(n)-\mathrm{E}[X(n)]
$$

$$
\tilde{\theta}(n+1)=\tilde{\theta}(n)+\frac{g}{n+1}(-\tilde{\theta}(n)+\Delta(n+1))
$$

Example: $X(n)=W^{2}(n), W \sim N(0,1), \sigma_{\Delta}^{2}=2$

SA estimates of $\mathrm{E}\left[W^{2}\right], \quad W \sim N(0,1)$

Optimal Asymptotic Covariance

Central Limit Theorem optimal $g^{*}=1$

Ruppert-Polyak: turn up the gain, with $\varrho \in(0.5,1)$:

$$
\begin{aligned}
\bar{\theta}(n+1) & =\bar{\theta}(n)+\frac{1}{(n+1)^{\varrho}}[-\bar{\theta}(n)+X(n+1)] \\
\theta(n) & =\frac{1}{n} \sum_{k=1}^{n} \bar{\theta}(k) \quad \text { Also has optim }
\end{aligned}
$$

Also has optimal asymptotic covariance

Optimal Asymptotic Covariance

$$
\Sigma=\frac{\sigma_{\Delta}^{2}}{2}\left(\frac{g^{2}}{g-1 / 2}\right)
$$

Central Limit Theorem sub-optimal $g>1$

~

Optimal Asymptotic Covariance

$$
\Sigma=\frac{\sigma_{\Delta}^{2}}{2}\left(\frac{g^{2}}{g-1 / 2}\right)
$$

Central Limit Theorem fails $g \leq 1 / 2$

2

Optimal Asymptotic Covariance

Impact on algorithm design : new Q-learning algorithms

Next time

Part II: Fastest SA and Zap Q-Learning

Hidden theory implications for reinforcement learning
(4) Fastest Stochastic Approximation

- Algorithm Performance Revisited
- Zap Stochastic Newton-Raphson
(5) Reinforcement Learning
- RL \& SA
- MDP Theory
- Q-Learning
(6) Zap Q-Learning
- Watkin's algorithm
- Optimal stopping
(7) Conclusions \& Future Work
(8) References

Fastest Stochastic Approximation

What is Stochastic Approximation?

Recap

Basic algorithm of Robbins \& Monro 1951, with matrix gain:

$$
\theta(n+1)=\theta(n)+\alpha_{n} G_{n} f(\theta(n), W(n+1))
$$

Interpreted as a noisy Euler approximation to the ODE

$$
\frac{d}{d t} x_{t}=G \bar{f}\left(x_{t}\right)
$$

Usually we take $\alpha_{n}=1 / n$
Matrices $\left\{G_{n}\right\}$ used to

- Optimize asymptotic covariance
- Improve dynamics (inspired by Newton-Raphson)

Performance Criteria

Two standard approaches to evaluate performance, $\tilde{\theta}(n):=\theta(n)-\theta^{*}$:
(1) Finite- n bound:

$$
\mathrm{P}\{\|\tilde{\theta}(n)\| \geq \varepsilon\} \leq \exp (-I(\varepsilon, n)), \quad I(\varepsilon, n)=O\left(n \varepsilon^{2}\right)
$$

(2) Asymptotic covariance:

$$
\Sigma=\lim _{n \rightarrow \infty} n \mathbf{E}\left[\tilde{\theta}(n) \tilde{\theta}(n)^{T}\right], \quad \sqrt{n} \tilde{\theta}(n) \approx N(0, \Sigma)
$$

Performance Criteria

Two standard approaches to evaluate performance, $\tilde{\theta}(n):=\theta(n)-\theta^{*}$:
(1) Finite- n bound:

$$
\mathrm{P}\{\|\tilde{\theta}(n)\| \geq \varepsilon\} \leq \exp (-I(\varepsilon, n)), \quad I(\varepsilon, n)=O\left(n \varepsilon^{2}\right)
$$

(2) Asymptotic covariance:

$$
\Sigma=\lim _{n \rightarrow \infty} n \mathbf{E}\left[\tilde{\theta}(n) \tilde{\theta}(n)^{T}\right], \quad \sqrt{n} \tilde{\theta}(n) \approx N(0, \Sigma)
$$

Latter metric is most valuable for algorithm design.

Performance Criteria

Two standard approaches to evaluate performance, $\tilde{\theta}(n):=\theta(n)-\theta^{*}$:
(1) Finite- n bound:

$$
\mathrm{P}\{\|\tilde{\theta}(n)\| \geq \varepsilon\} \leq \exp (-I(\varepsilon, n)), \quad I(\varepsilon, n)=O\left(n \varepsilon^{2}\right)
$$

(2) Asymptotic covariance:

$$
\Sigma=\lim _{n \rightarrow \infty} n \mathbf{E}\left[\tilde{\theta}(n) \tilde{\theta}(n)^{T}\right], \quad \sqrt{n} \tilde{\theta}(n) \approx N(0, \Sigma)
$$

Latter metric is most valuable for algorithm design.
Recall last time: $G=G^{*}:=-A^{-1}$ then

- Resembles Monte-Carlo estimate
- Resembles Newton-Rapshon
- It is optimal: $\quad \Sigma^{*}=G^{*} \Sigma_{\Delta} G^{* T} \leq \Sigma^{G} \quad$ any other G

Performance Criteria

Two standard approaches to evaluate performance, $\tilde{\theta}(n):=\theta(n)-\theta^{*}$:
(1) Finite- n bound:

$$
\mathrm{P}\{\|\tilde{\theta}(n)\| \geq \varepsilon\} \leq \exp (-I(\varepsilon, n)), \quad I(\varepsilon, n)=O\left(n \varepsilon^{2}\right)
$$

(2) Asymptotic covariance:

$$
\Sigma=\lim _{n \rightarrow \infty} n \mathbf{E}\left[\tilde{\theta}(n) \tilde{\theta}(n)^{T}\right], \quad \sqrt{n} \tilde{\theta}(n) \approx N(0, \Sigma)
$$

Latter metric is most valuable for algorithm design.
Recall last time: $G=G^{*}:=-A^{-1}$ then

- Resembles Monte-Carlo estimate
- Resembles Newton-Rapshon Do you see the resemblance?
- It is optimal: $\Sigma^{*}=G^{*} \Sigma_{\Delta} G^{* T} \leq \Sigma^{G} \quad$ any other G

Optimal Asymptotic Covariance and Zap SNR

Resembles Newton-Rapshon?
This doesn't look much like Newton-Raphson:

$$
\frac{d}{d t} x_{t}=-A^{-1} \bar{f}\left(x_{t}\right), \quad A=\frac{d}{d \theta} \bar{f}\left(\theta^{*}\right)
$$

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate deterministic Newton-Raphson)

$$
\text { Requires } \quad \widehat{A}_{n} \approx A\left(\theta_{n}\right):=\frac{d}{d \theta} \bar{f}\left(\theta_{n}\right)
$$

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

$$
\begin{aligned}
\theta(n+1) & =\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), X(n)) \\
\widehat{A}_{n} & =\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right), \quad A_{n}=\frac{d}{d \theta} f(\theta(n), X(n))
\end{aligned}
$$

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

$$
\begin{aligned}
\theta(n+1) & =\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), X(n)) \\
\widehat{A}_{n} & =\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right), \quad A_{n}=\frac{d}{d \theta} f(\theta(n), X(n))
\end{aligned}
$$

$$
\widehat{A}_{n} \approx A\left(\theta_{n}\right) \text { requires high-gain, } \frac{\gamma_{n}}{\alpha_{n}} \rightarrow \infty, \quad n \rightarrow \infty
$$

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

$$
\begin{aligned}
\theta(n+1) & =\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), X(n)) \\
\widehat{A}_{n} & =\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right), \quad A_{n}=\frac{d}{d \theta} f(\theta(n), X(n))
\end{aligned}
$$

$$
\widehat{A}_{n} \approx A\left(\theta_{n}\right) \text { requires high-gain, } \frac{\gamma_{n}}{\alpha_{n}} \rightarrow \infty, \quad n \rightarrow \infty
$$

Always: $\alpha_{n}=1 / n$. Numerics that follow: $\gamma_{n}=(1 / n)^{\rho}, \rho \in(0.5,1)$

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

$$
\begin{aligned}
\theta(n+1) & =\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), X(n)) \\
\widehat{A}_{n} & =\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right), \quad A_{n}=\frac{d}{d \theta} f(\theta(n), X(n))
\end{aligned}
$$

$$
\widehat{A}_{n} \approx A\left(\theta_{n}\right) \text { requires high-gain, } \frac{\gamma_{n}}{\alpha_{n}} \rightarrow \infty, \quad n \rightarrow \infty
$$

Always: $\alpha_{n}=1 / n$. Numerics that follow: $\gamma_{n}=(1 / n)^{\rho}, \rho \in(0.5,1)$
ODE for Zap SNR

$$
\frac{d}{d t} x_{t}=-\left[A\left(x_{t}\right)\right]^{-1} \bar{f}\left(x_{t}\right), \quad A(x)=\frac{d}{d x} \bar{f}(x)
$$

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

$$
\begin{aligned}
\theta(n+1) & =\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), X(n)) \\
\widehat{A}_{n} & =\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right), \quad A_{n}=\frac{d}{d \theta} f(\theta(n), X(n))
\end{aligned}
$$

$$
\widehat{A}_{n} \approx A\left(\theta_{n}\right) \text { requires high-gain, } \frac{\gamma_{n}}{\alpha_{n}} \rightarrow \infty, \quad n \rightarrow \infty
$$

Always: $\alpha_{n}=1 / n$. Numerics that follow: $\gamma_{n}=(1 / n)^{\rho}, \rho \in(0.5,1)$
ODE for Zap SNR

$$
\frac{d}{d t} x_{t}=-\left[A\left(x_{t}\right)\right]^{-1} \bar{f}\left(x_{t}\right), \quad A(x)=\frac{d}{d x} \bar{f}(x)
$$

- Not necessarily stable
- General conditions for convergence is open

Reinforcement Learning and Stochastic Approximation

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?$

SA and RL Design

Functional equations in Stochastic Control
Always of the form

$$
0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?
$$

$$
\Phi(n)=(\text { state }, \text { action })
$$

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?$
Galerkin relaxation:
$0=\mathrm{E}\left[F\left(h^{\theta^{*}}, \Phi(n+1)\right) \zeta_{n}\right]$,
$\theta^{*}=?$

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=?$
Galerkin relaxation:
$0=\mathrm{E}\left[F\left(h^{\theta^{*}}, \Phi(n+1)\right) \zeta_{n}\right]$,

$$
\theta^{*}=?
$$

Necessary Ingredients:

- Parameterized family $\left\{h^{\theta}: \theta \in \mathbb{R}^{d}\right\}$
- Adapted, d-dimensional stochastic process $\left\{\zeta_{n}\right\}$

Examples are TD- and Q-Learning

SA and RL Design

Functional equations in Stochastic Control
Always of the form
$0=\mathrm{E}\left[F\left(h^{*}, \Phi(n+1)\right) \mid \Phi(0) \ldots \Phi(n)\right], \quad h^{*}=$?
Galerkin relaxation:
$0=\mathrm{E}\left[F\left(h^{\theta^{*}}, \Phi(n+1)\right) \zeta_{n}\right], \quad \theta^{*}=?$
Necessary Ingredients:

- Parameterized family $\left\{h^{\theta}: \theta \in \mathbb{R}^{d}\right\}$
- Adapted, d-dimensional stochastic process $\left\{\zeta_{n}\right\}$

Examples are TD- and Q-Learning
These algorithms are thus special cases of stochastic approximation

Stochastic Optimal Control

MDP Model
\boldsymbol{X} is a controlled Markov chain, with input \boldsymbol{U}

- For all states x and sets A,

$$
\mathrm{P}\{X(n+1) \in A \mid X(n)=x, U(n)=u, \text { and prior history }\}=P_{u}(x, A)
$$

- $c: \mathrm{X} \times \mathrm{U} \rightarrow \mathbb{R}$ is a cost function
- $\beta<1$ a discount factor

Stochastic Optimal Control

MDP Model
\boldsymbol{X} is a controlled Markov chain, with input \boldsymbol{U}

- For all states x and sets A,

$$
\mathrm{P}\{X(n+1) \in A \mid X(n)=x, U(n)=u, \text { and prior history }\}=P_{u}(x, A)
$$

- $c: \mathrm{X} \times \mathrm{U} \rightarrow \mathbb{R}$ is a cost function
- $\beta<1$ a discount factor

Value function:

$$
h^{*}(x)=\min _{U} \sum_{n=0}^{\infty} \beta^{n} \mathrm{E}[c(X(n), U(n)) \mid X(0)=x]
$$

Stochastic Optimal Control

MDP Model
\boldsymbol{X} is a controlled Markov chain, with input \boldsymbol{U}

- For all states x and sets A,

$$
\mathrm{P}\{X(n+1) \in A \mid X(n)=x, U(n)=u, \text { and prior history }\}=P_{u}(x, A)
$$

- $c: \mathrm{X} \times \mathrm{U} \rightarrow \mathbb{R}$ is a cost function
- $\beta<1$ a discount factor

Value function:

$$
h^{*}(x)=\min _{U} \sum_{n=0}^{\infty} \beta^{n} \mathrm{E}[c(X(n), U(n)) \mid X(0)=x]
$$

Bellman equation:

$$
h^{*}(x)=\min _{u}\left\{c(x, u)+\beta \mathrm{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right]\right\}
$$

Q-function

Trick to swap expectation and minimum

Bellman equation:

$$
h^{*}(x)=\min _{u}\left\{c(x, u)+\beta \mathrm{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right]\right\}
$$

Q-function

Trick to swap expectation and minimum

Bellman equation:

$$
h^{*}(x)=\min _{u}\left\{c(x, u)+\beta \mathrm{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right]\right\}
$$

Q-function:

$$
Q^{*}(x, u):=c(x, u)+\beta \mathbb{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right]
$$

Q-function

Trick to swap expectation and minimum

Bellman equation:

$$
h^{*}(x)=\min _{u}\left\{c(x, u)+\beta \mathrm{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right]\right\}
$$

Q-function:

$$
\begin{gathered}
Q^{*}(x, u):=c(x, u)+\beta \mathrm{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right] \\
h^{*}(x)=\min _{u} Q^{*}(x, u)
\end{gathered}
$$

Q-function

Trick to swap expectation and minimum

Bellman equation:

$$
h^{*}(x)=\min _{u}\left\{c(x, u)+\beta \mathrm{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right]\right\}
$$

Q-function:

$$
\begin{gathered}
Q^{*}(x, u):=c(x, u)+\beta \mathrm{E}\left[h^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right] \\
h^{*}(x)=\min _{u} Q^{*}(x, u)
\end{gathered}
$$

Another Bellman equation:

$$
\begin{gathered}
Q^{*}(x, u)=c(x, u)+\beta \mathrm{E}\left[\underline{Q}^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right] \\
\underline{Q}^{*}(x)=\min _{u} Q^{*}(x, u)
\end{gathered}
$$

Q-function

Trick to swap expectation and minimum

Another Bellman equation:

$$
\begin{gathered}
Q^{*}(x, u)=c(x, u)+\beta \mathrm{E}\left[\underline{Q}^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right] \\
\underline{Q}^{*}(x)=\min _{u} Q^{*}(x, u)
\end{gathered}
$$

$$
Q^{*}(x, u)=\min _{U} \sum_{n=0}^{\infty} \beta^{n} \mathrm{E}[c(X(n), U(n)) \mid X(0)=x, U(0)=u]
$$

Q-function

Trick to swap expectation and minimum

Another Bellman equation:

$$
\begin{gathered}
Q^{*}(x, u)=c(x, u)+\beta \mathrm{E}\left[\underline{Q}^{*}(X(n+1)) \mid X(n)=x, U(n)=u\right] \\
\underline{Q}^{*}(x)=\min _{u} Q^{*}(x, u)
\end{gathered}
$$

$$
Q^{*}(x, u)=\min _{U} \sum_{n=0}^{\infty} \beta^{n} \mathrm{E}[c(X(n), U(n)) \mid X(0)=x, U(0)=u]
$$

One-to-one mapping between cost functions and Q-functions. Notation:

$$
Q^{*}=\mathcal{Q}^{*}(c)
$$

Q-Learning and Galerkin Relaxation

Dynamic programming
Find function Q^{*} that solves

$$
\mathrm{E}\left[c(X(n), U(n))+\beta \underline{Q}^{*}(X(n+1))-Q^{*}(X(n), U(n)) \mid \mathcal{F}_{n}\right]=0
$$

Q-Learning and Galerkin Relaxation

Dynamic programming
Find function Q^{*} that solves

$$
\mathrm{E}\left[c(X(n), U(n))+\beta \underline{Q}^{*}(X(n+1))-Q^{*}(X(n), U(n)) \mid \mathcal{F}_{n}\right]=0
$$

That is,

$$
\left.\begin{array}{rl}
0=\mathrm{E}\left[F\left(Q^{*}, \Phi(n+1)\right) \mid \Phi(0)\right. & \ldots \Phi(n)] \\
& \text { with } \Phi(n+1)
\end{array}\right)(X(n+1), X(n), U(n)) .
$$

Q-Learning and Galerkin Relaxation

Dynamic programming
Find function Q^{*} that solves

$$
\mathrm{E}\left[c(X(n), U(n))+\beta \underline{Q}^{*}(X(n+1))-Q^{*}(X(n), U(n)) \mid \mathcal{F}_{n}\right]=0
$$

Q-Learning
Find θ^{*} that solves

$$
\mathrm{E}\left[\left(c(X(n), U(n))+\beta \underline{Q}^{\theta^{*}}\left((X(n+1))-Q^{\theta^{*}}((X(n), U(n))) \zeta_{n}\right]=0\right.\right.
$$

where the input \boldsymbol{U} is randomized state feedback

Q-Learning and Galerkin Relaxation

Dynamic programming
Find function Q^{*} that solves

$$
\mathrm{E}\left[c(X(n), U(n))+\beta \underline{Q}^{*}(X(n+1))-Q^{*}(X(n), U(n)) \mid \mathcal{F}_{n}\right]=0
$$

Q-Learning
Find θ^{*} that solves

$$
\mathrm{E}\left[\left(c(X(n), U(n))+\beta \underline{Q}^{\theta^{*}}\left((X(n+1))-Q^{\theta^{*}}((X(n), U(n))) \zeta_{n}\right]=0\right.\right.
$$

where the input \boldsymbol{U} is randomized state feedback
The family $\left\{Q^{\theta}\right\}$ and eligibility vectors $\left\{\zeta_{n}\right\}$ are part of algorithm design.

Watkins' Q-learning

Find θ^{*} that solves

$$
\mathrm{E}\left[\left(c(X(n), U(n))+\beta \underline{Q}^{\theta^{*}}\left((X(n+1))-Q^{\theta^{*}}((X(n), U(n))) \zeta_{n}\right]=0\right.\right.
$$

Watkins' Q-learning

Find θ^{*} that solves

$$
\mathrm{E}\left[\left(c(X(n), U(n))+\beta \underline{Q}^{\theta^{*}}\left((X(n+1))-Q^{\theta^{*}}((X(n), U(n))) \zeta_{n}\right]=0\right.\right.
$$

Watkin's algorithm is Stochastic Approximation
The family $\left\{Q^{\theta}\right\}$ and eligibility vectors $\left\{\zeta_{n}\right\}$ in this design:

- Linearly parameterized family of functions: $Q^{\theta}(x, u)=\theta^{\top} \psi(x, u)$
- $\zeta_{n} \equiv \psi\left(X_{n}, U_{n}\right) \quad$ and
- $\psi_{n}(x, u)=1\left\{x=x^{n}, u=u^{n}\right\} \quad$ (complete basis)

Watkins' Q-learning

Find θ^{*} that solves

$$
\mathrm{E}\left[\left(c(X(n), U(n))+\beta \underline{Q}^{\theta^{*}}\left((X(n+1))-Q^{\theta^{*}}((X(n), U(n))) \zeta_{n}\right]=0\right.\right.
$$

Watkin's algorithm is Stochastic Approximation
The family $\left\{Q^{\theta}\right\}$ and eligibility vectors $\left\{\zeta_{n}\right\}$ in this design:

- Linearly parameterized family of functions: $Q^{\theta}(x, u)=\theta^{\top} \psi(x, u)$
- $\zeta_{n} \equiv \psi\left(X_{n}, U_{n}\right) \quad$ and
- $\psi_{n}(x, u)=1\left\{x=x^{n}, u=u^{n}\right\} \quad$ (complete basis)

Asymptotic covariance is typically infinite

Watkins' Q-learning

Big Question: Can we Zap Q-Learning?

Find θ^{*} that solves

$$
\mathrm{E}\left[\left(c(X(n), U(n))+\beta \underline{Q}^{\theta^{*}}\left((X(n+1))-Q^{\theta^{*}}((X(n), U(n))) \zeta_{n}\right]=0\right.\right.
$$

Watkin's algorithm is Stochastic Approximation
The family $\left\{Q^{\theta}\right\}$ and eligibility vectors $\left\{\zeta_{n}\right\}$ in this design:

- Linearly parameterized family of functions: $Q^{\theta}(x, u)=\theta^{\top} \psi(x, u)$
- $\zeta_{n} \equiv \psi\left(X_{n}, U_{n}\right) \quad$ and
- $\psi_{n}(x, u)=1\left\{x=x^{n}, u=u^{n}\right\} \quad$ (complete basis)

Asymptotic covariance is typically infinite

Zap Q－Learning

Asymptotic Covariance of Watkins' Q-Learning

 Improvements are needed!Histogram of parameter estimates after 10^{6} iterations.

Example from Devraj \& M 2017

Zap Q-learning

Zap Q-Learning \equiv Zap SNR for Q-Learning

$$
\begin{aligned}
0=\bar{f}(\theta) & =\mathrm{E}[f(\theta, \Phi(n+1))] \\
& :=\mathrm{E}\left[\zeta_{n}\left[c(X(n), U(n))+\beta \underline{Q}^{\theta}(X(n+1))-Q^{\theta}(X(n), U(n))\right]\right]
\end{aligned}
$$

Zap Q-learning

Zap Q-Learning \equiv Zap SNR for Q-Learning

$$
\left.\begin{array}{rl}
0=\bar{f}(\theta) & =\mathrm{E}[f(\theta, \Phi(n+1))] \\
& :=\mathrm{E}\left[\zeta_{n}\left[c(X(n), U(n))+\beta \underline{Q}^{\theta}(X(n+1))-Q^{\theta}(X(n), U(n))\right]\right] \\
& \text { - } A(\theta)
\end{array}\right)=\frac{d}{d \theta} \bar{f}(\theta) ;
$$

Zap Q-learning

Zap Q-Learning \equiv Zap SNR for Q-Learning

$$
\begin{aligned}
0=\bar{f}(\theta) & =\mathrm{E}[f(\theta, \Phi(n+1))] \\
& :=\mathrm{E}\left[\zeta_{n}\left[c(X(n), U(n))+\beta \underline{Q}^{\theta}(X(n+1))-Q^{\theta}(X(n), U(n))\right]\right]
\end{aligned}
$$

- $A(\theta)=\frac{d}{d \theta} \bar{f}(\theta)$; At points of differentiability:

$$
\begin{aligned}
& A(\theta)=\mathrm{E}\left[\zeta_{n}\left[\beta \psi\left(X(n+1), \phi^{\theta}(X(n+1))\right)-\psi(X(n), U(n))\right]^{T}\right] \\
& \phi^{\theta}(X(n+1)):=\underset{u}{\arg \min } Q^{\theta}(X(n+1), u)
\end{aligned}
$$

Zap Q-learning

Zap Q-Learning 三 Zap SNR for Q-Learning

$$
\begin{aligned}
0=\bar{f}(\theta) & =\mathrm{E}[f(\theta, \Phi(n+1))] \\
& :=\mathrm{E}\left[\zeta_{n}\left[c(X(n), U(n))+\beta \underline{Q}^{\theta}(X(n+1))-Q^{\theta}(X(n), U(n))\right]\right]
\end{aligned}
$$

- $A(\theta)=\frac{d}{d \theta} \bar{f}(\theta)$; At points of differentiability:

$$
\begin{aligned}
& A(\theta)=\mathrm{E}\left[\zeta_{n}\left[\beta \psi\left(X(n+1), \phi^{\theta}(X(n+1))\right)-\psi(X(n), U(n))\right]^{T}\right] \\
& \phi^{\theta}(X(n+1)):=\underset{u}{\arg \min } Q^{\theta}(X(n+1), u)
\end{aligned}
$$

Algorithm:
$\theta(n+1)=\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), \Phi(n+1)) ; \quad \widehat{A}_{n}=\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right) ;$

Zap Q-learning

Zap Q-Learning \equiv Zap SNR for Q-Learning

$$
\begin{aligned}
0=\bar{f}(\theta) & =\mathrm{E}[f(\theta, \Phi(n+1))] \\
& :=\mathrm{E}\left[\zeta_{n}\left[c(X(n), U(n))+\beta \underline{Q}^{\theta}(X(n+1))-Q^{\theta}(X(n), U(n))\right]\right]
\end{aligned}
$$

- $A(\theta)=\frac{d}{d \theta} \bar{f}(\theta)$; At points of differentiability:

$$
\begin{aligned}
& A(\theta)=\mathrm{E}\left[\zeta_{n}\left[\beta \psi\left(X(n+1), \phi^{\theta}(X(n+1))\right)-\psi(X(n), U(n))\right]^{T}\right] \\
& \phi^{\theta}(X(n+1)):=\underset{u}{\arg \min } Q^{\theta}(X(n+1), u)
\end{aligned}
$$

Algorithm:

$$
\begin{aligned}
\theta(n+1) & =\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), \Phi(n+1)) ; \quad \widehat{A}_{n}=\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right) ; \\
A_{n+1} & :=\frac{d}{d \theta} f\left(\theta_{n}, \Phi(n+1)\right) \\
& =\zeta_{n}\left[\beta \psi\left(X(n+1), \phi^{\theta_{n}}(X(n+1))\right)-\psi(X(n), U(n))\right]^{T}
\end{aligned}
$$

Zap Q-learning

Zap Q-Learning \equiv Zap SNR for Q-Learning

$$
\begin{aligned}
0=\bar{f}(\theta) & =\mathrm{E}[f(\theta, \Phi(n+1))] \\
& :=\mathrm{E}\left[\zeta_{n}\left[c(X(n), U(n))+\beta \underline{Q}^{\theta}(X(n+1))-Q^{\theta}(X(n), U(n))\right]\right]
\end{aligned}
$$

- $A(\theta)=\frac{d}{d \theta} \bar{f}(\theta)$; At points of differentiability:

$$
\begin{aligned}
& A(\theta)=\mathrm{E}\left[\zeta_{n}\left[\beta \psi\left(X(n+1), \phi^{\theta}(X(n+1))\right)-\psi(X(n), U(n))\right]^{T}\right] \\
& \phi^{\theta}(X(n+1)):=\underset{u}{\arg \min } Q^{\theta}(X(n+1), u)
\end{aligned}
$$

Algorithm:

$$
\begin{aligned}
\theta(n+1) & =\theta(n)+\alpha_{n}\left[-\widehat{A}_{n}\right]^{-1} f(\theta(n), \Phi(n+1)) ; \quad \widehat{A}_{n}=\widehat{A}_{n-1}+\gamma_{n}\left(A_{n}-\widehat{A}_{n-1}\right) ; \\
A_{n+1} & :=\frac{d}{d \theta} f\left(\theta_{n}, \Phi(n+1)\right) \\
& =\zeta_{n}\left[\beta \psi\left(X(n+1), \phi^{\theta_{n}}(X(n+1))\right)-\psi(X(n), U(n))\right]^{T}
\end{aligned}
$$

Zap Q-learning

Zap Q-Learning \equiv Zap SNR for Q-Learning

ODE Analysis: change of variables $q=\mathcal{Q}^{*}(\varsigma)$
Functional \mathcal{Q}^{*} maps cost functions to Q-functions:

$$
q(x, u)=\varsigma(x, u)+\beta \sum_{x^{\prime}} P_{u}\left(x, x^{\prime}\right) \min _{u^{\prime}} q\left(x^{\prime}, u^{\prime}\right)
$$

Zap Q-learning

Zap Q-Learning \equiv Zap SNR for Q-Learning

ODE Analysis: change of variables $q=\mathcal{Q}^{*}(\varsigma)$
Functional \mathcal{Q}^{*} maps cost functions to Q -functions:

$$
q(x, u)=\varsigma(x, u)+\beta \sum_{x^{\prime}} P_{u}\left(x, x^{\prime}\right) \min _{u^{\prime}} q\left(x^{\prime}, u^{\prime}\right)
$$

ODE for Zap-Q

$$
q_{t}=\mathcal{Q}^{*}\left(\varsigma_{t}\right), \quad \frac{d}{d t} \varsigma_{t}=-\varsigma_{t}+c
$$

\Rightarrow convergence, optimal covariance, ...

Zap Q-Learning

Example: Optimize Walk to Cafe

Zap Q-Learning

Example: Optimize Walk to Cafe

Convergence with Zap gain $\gamma_{n}=n^{-0.85}$

Watkins' algorithm has infinite asymptotic covariance with $\alpha_{n}=1 / n$

Discount factor: $\beta=0.99$

Zap Q-Learning

Example: Optimize Walk to Cafe

Convergence with Zap gain $\gamma_{n}=n^{-0.85}$

Watkins' algorithm has infinite asymptotic covariance with $\alpha_{n}=1 / n$

Discount factor: $\beta=0.99$

Zap Q-Learning

Example: Optimize Walk to Cafe

Convergence with Zap gain $\gamma_{n}=n^{-0.85}$

Watkins' algorithm has infinite asymptotic covariance with $\alpha_{n}=1 / n$ Optimal scalar gain is approximately $\alpha_{n}=1500 / n$

Discount factor: $\beta=0.99$

Zap Q-Learning

Example: Optimize Walk to Cafe

CLT gives good prediction of finite- n performance

Zap Q-Learning

Example: Optimize Walk to Cafe
Local Convergence: $\theta(0)$ initialized in neighborhood of θ^{*}

Zap Q-Learning

Example: Optimize Walk to Cafe

Local Convergence: $\theta(0)$ initialized in neighborhood of θ^{*}

2σ confidence intervals for the Q-learning algorithms

Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance
State space: \mathbb{R}^{100}
Parameterized Q-function: Q^{θ} with $\theta \in \mathbb{R}^{10}$

$\operatorname{Real} \lambda>-\frac{1}{2} \quad$ for every eigenvalue λ
Asymptotic covariance is infinite

Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance
State space: \mathbb{R}^{100}
Parameterized Q-function: Q^{θ} with $\theta \in \mathbb{R}^{10}$

Real $\lambda>-\frac{1}{2} \quad$ for every eigenvalue λ
Asymptotic covariance is infinite

Authors observed slow convergence Proposed a matrix gain sequence
$\left\{G_{n}\right\} \quad$ (see refs for details)

Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance
State space: \mathbb{R}^{100}
Parameterized Q-function: Q^{θ} with $\theta \in \mathbb{R}^{10}$

Eigenvalues of A and $G A$ for the finance example
Favorite choice of gain in [25] barely meets the criterion $\operatorname{Re}(\lambda(G A))<-\frac{1}{2}$

Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance
State space: \mathbb{R}^{100}.

Parameterized Q-function: Q^{θ} with $\theta \in \mathbb{R}^{10}$

Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: \mathbb{R}^{100}.
Parameterized Q-function: Q^{θ} with $\theta \in \mathbb{R}^{10}$

Histograms of the average reward obtained using the different algorithms:

$$
\text { Zap-Q } \gg \text { G-Q }
$$

Conclusions

Conclusions \& Future Work

Conclusions

- The asymptotic covariance is an awesome design tool. It is also predictive of finite- n performance.

Example: $g^{*}=1500$ was chosen based on asymptotic covariance

Conclusions \& Future Work

Conclusions

- The asymptotic covariance is an awesome design tool. It is also predictive of finite- n performance.

Example: $g^{*}=1500$ was chosen based on asymptotic covariance

- The success of Zap Q-Learning is due to two factors:
- Choice of gain for optimal asymptotic variance (validated in simulations)
- Luck: Newton-Raphson is globally stable

Conclusions \& Future Work

Conclusions

- The success of Zap Q-Learning is due to two factors:
- Choice of gain for optimal asymptotic variance (validated in simulations)
- Luck: Newton-Raphson is globally stable
- Future work:
- Q-learning with function-approximation
- Obtain conditions for a stable algorithm in a general setting
- Optimal stopping time problems
- Reduced complexity algorithms with adaptive optimization of algorithm parameters (stay tuned for revision on arXiv)

Thank you!

Augut 2008 Prep pibikaben westion for on-the vening. Menograph to appast Fethurary 2009.
 Markov Chains and Stochastic Stability

S. P. Meyn and R. L. Tweedie

```
CAMBRIDGE
```


References

Selected References I

[1] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan Book Agency and Cambridge University Press (jointly), Delhi, India and Cambridge, UK, 2008.
[2] A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv, July 2017.
[3] M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de Probabilités XXXIII, pages 1-68, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
[4] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447-469, 2000.
[5] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations, volume 22 of Applications of Mathematics. Springer-Verlag, Berlin, 1990.
[6] P. J. Schweitzer. Perturbation theory and finite Markov chains. J. Appl. Prob., 5:401-403, 1968.
[7] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge University Press, Cambridge, second edition, 2009. Cambridge Mathematical Library.
[8] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007. See last chapter on simulation and average-cost TD learning

Selected References II

[9] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure. The Annals of Statistics, 13(1):236-245, 1985.
[10] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes. Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research and Industrial Engineering, Ithaca, NY, 1988.
[11] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i telemekhanika (in Russian). translated in Automat. Remote Control, 51 (1991), pages 98-107, 1990.
[12] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J. Control Optim., 30(4):838-855, 1992.
[13] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic approximation. Ann. Appl. Probab., 14(2):796-819, 2004.
[14] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems 24, pages 451-459. Curran Associates, Inc., 2011.

Selected References III

[15] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan \& Claypool Publishers, 2010.
[16] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, Cambridge, Cambridge, UK, 1989.
[17] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279-292, 1992.
[18] R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn., 3(1):9-44, 1988.
[19] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approximation. IEEE Trans. Automat. Control, 42(5):674-690, 1997.
[20] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th Internat. Conf. on Neural Info. Proc. Systems, pages 1064-1070. MIT Press, 1997.
[21] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In Advances in Neural Information Processing Systems, 2011.
[22] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning Research, 5(Dec):1-25, 2003.

Selected References IV

[23] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley, 2011.
[24] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Trans. Automat. Control, 44(10):1840-1851, 1999.
[25] D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and Applications, 16(2):207-239, 2006.
[26] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning. Mach. Learn., 22(1-3):33-57, 1996.
[27] J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn., 49(2-3):233-246, 2002.
[28] A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79-110, 2003.
[29] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin's minimum principle. In IEEE Conference on Decision and Control, pages 3598-3605, Dec. 2009.

