Reinforcement Learning
Hidden Theory, and New Super-Fast Algorithms

Tutorial for the Simons Institute program on Real-Time Decision Making

March 7 & 9, 2018

Sean P. Meyn

Based on joint research with Vivek Borkar ... Adithya M. Devraj

0 COGNITION & CONTROL
IN COMPLEX SYSTEMS

Department of Electrical and Computer Engineering — University of Florida

http://ccc.centers.ufl.edu/

References

[1] V. S. Borkar. Stochastic
Approximation: A Dynamical
Systems Viewpoint.

o
|

Hindustan Book Agency and
Cambridge University Press, Delhi,
India and Cambridge, UK, 2008.

[2] A. M. Devraj and S. P. Meyn,

Fastest convergence for Q-learning.
Kl
Bl 2

Falk

K

ArXiv, July 2017.

Tutorial, and extended version of Zap
Q-learning. Advances in Neural Information
Processing Systems (NIPS). Dec. 2017.

More references can be found there, and here:

Part I: SA & ML Theory

Survey of basic theory: Borkar's monograph [1] and our tutorial [2]

@ Stochastic Approximation: Algorithm & Motivation
@ Basic Algorithm
@ Monte-Carlo
@ Reinforcement Learning
@ Empirical Risk Minimization
© ODE Methods
@ Representation in Continuous Time
@ A Menu of ODEs
@ ODE Solidarity: Proof of Convergence
@ SDE Solidarity and Algorithm Performance
© Optimizing Stochastic Approximation
@ SA for ¥,
@ Stochastic Newton Raphson

Zap Q-learning

EFOW))|,_,. = O

0=0*

Stochastic Approximation

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

F(07) =E[f(0,W)]

0=0*

=0

1/46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

for)=Elfo.w)| . =0

What makes this hard?

1/46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

fer) =W, =0

What makes this hard?

@ The function f and the distribution of the random vector W may not
be known
— we may only know something about the structure of the problem

1/46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

fer) =W, =0

What makes this hard?

@ The function f and the distribution of the random vector W may not
be known
— we may only know something about the structure of the problem

@ Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of 0

1/46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

fy=Elfe.wy| =0
What makes this hard?
@ The function f and the distribution of the random vector W may not
be known
— we may only know something about the structure of the problem
@ Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of
© The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]

1/46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:
On+1)=0(n)+ anf(f(n), W(n+1))

2/46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:
O(n+1)=0(n)+ anf(f(n), W(n+1))

The stepsize satisfies
@ To ensure we can reach anywhere: g ay = 00

e To attenuate noise: Za% < 00
usually we will take o, = 1/n

2/46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:
O(n+1)=0(n)+ anf(f(n), W(n+1))

The stepsize satisfies
@ To ensure we can reach anywhere: g ay = 00

e To attenuate noise: Za% < 00
usually we will take o, = 1/n

Written this way:
O(n+1) =0(n) + an[f(O(n)) + A(n+ 1)]
Interpreted as a noisy Euler approximation to the ODE
d _

&xt = f(xt)

2/46

Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example

Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean 7 = ¢(X), where X is a random variable:

1= [cla) fx(o) ds

3/46

Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example

Example: Monte-Carlo

Monte-Carlo Estimation
Estimate the mean 7 = ¢(X), where X is a random variable J

SA interpretation: Find §* solving 0 = E[f (0, X)] = E[c¢(X) — 0]

LS ux

1=1

Algorithm: 6(n

SI}—‘

3/46

Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example

Example: Monte-Carlo

Ya, =00, Y a2 <oo

Monte-Carlo Estimation J

Estimate the mean 7 = ¢(X), where X is a random variable

SA interpretation: Find §* solving 0 = E[f (0, X)] = E[c¢(X) — 0]

Algorithm: 6(n % i (X
n+;:1
= (n+10(n+1)=>» ¢(X(i)) =nb(n)+c(X(n+1))
i=1

— m+1)8(n+1)=(n+1)0(n)+[c(X(n+1)) —0(n)]

SA Recursion: O(n+1)=60(n)+ anf(f(n),X(n+1))

3/46

Stochastic Approximation: Algorithm & Motivation

SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

h* =7

4/46

Stochastic Approximation: Algorithm & Motivation

SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

®(n) = (state, action)

h* =7

D¢

4/46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h",®(n+1))¢], 0 =7

4/46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(A”, ®(n+1))G], 0 =1

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,}

4/46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h’,®(n+1))], 0 =7

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,} = eligibility vectors
Examples are TD- and Q-Learning

4/46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h",®(n+1))¢], 0 =7

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,} = eligibility vectors
Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

4/46

Stochastic Approximation: Algorithm & Motivation

Empirical Risk Minimization

Goal: find 6" that minimizes J(0) = E[g(6, W)].

DA
5/46

Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find 6" that minimizes J(0) = E[g(6, W)].

n

1
Settle for empirical risk: Jn(0) = - Zg(@, Wi)
k=1

Methods to compute minimizer 6}, quickly
focus of current research — e.g., [14].

5/46

Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find 6" that minimizes J(0) = E[g(6, W)].

n

1
Settle for empirical risk: Jn(0) = - Zg(@, Wi)
k=1

Methods to compute minimizer 6}, quickly
focus of current research — e.g., [14].

However, don't forget the original problem:

dist 1
(9;; — 0" =~ —N(O, E*) Formula for covariance below

NG

5/46

Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find 6" that minimizes J(0) = E[g(6, W)].

n

1
Settle for empirical risk: Jn(0) = - Zg(@, Wi)
k=1

Methods to compute minimizer 6}, quickly
focus of current research — e.g., [14].

However, don't forget the original problem:

dist 1
0 — 0" = —N(O E*) Formula for covariance below

n \/ﬁ

The same conclusion would be reached using stochastic approximation
(with careful design).

5/46

Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.

6/46

Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.

For t,, > ty,

th = th -+ Z f(tha W(] + 1)) 6tj ’ 5tj = t-7 B tj_l
J

tn
- th + f(Xs) ds + g(tk>tn)

173

6/46

Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.

For t,, > tg,

Xpp = Xop + 3 F(Xep, WG+ 1) 60, 0y =t —tja
j

tn
:th + f(Xs) d8+g(tk:tn)

12
Properties of the noise follow from assumptions on f and W.

6/46

Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.

© Time horizon T > 0: Construct increasing subsequence {7}, } so that

T = lim (T — Tn)

Analysis restricted to each time interval:
t -
Xt = XTn + f(Xs) ds + g(Tn,t) s Tn <t< Tn+1
Tn

6/46

Representation in Continuous Time
ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 0(n) for t = t,:

t
Xt = XTn + f(Xs) ds + g(Tn,t) s Tn <t< Tn+1
Tn

7/46

Representation in Continuous Time
ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 0(n) for t = t,:
t —
Xe=Xp, + | f(Xo)ds+E(Tn,t), Tn<t<Tht
Tn

For oy = k1,

n

E(tmitn) = > [F(Ok), W(k + 1)) — F(B(k))] oy, + O(m™?)

k=m+1

7/46

Representation in Continuous Time
ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 6(n) for t = t,:

t
X; = XTn —|—/ f(Xs) ds + S(Tn,t) , Tn<t<T,p
T

For oy = k1,
Eltmtn) = Y [F(O(R), W (k +1)) = F(6(R))] o + O(m ™)
k=m+1
For nice Markovian W, f Lipschitz in 8 and “nice” in W:
E(tm,tn) = M(ty) — M(tym) + T (tm, tn)

where M is a martingale, and the “junk term” can be disposed of.

7/46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations Il Comments for the experts

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 6(n) for t = t,:

t
X = XTn —|—/ f(XS) ds + 5(Tn,t) , T, <t< Tn+1
Tn
n

Eltmita) = Y [fOK),W(k+1)) = F(O(K))] g + O(m™?)

k=m+1
= M(ty) — M(tm) + T (tm, tn)
Markovian W: what is nice?

n

J(tm, tn) = Simple junk — Z Oék[%k — ,kal]
k=m+1

Need nice solutions to “Poisson’s equation”: Hy = h(6(k), W(k+1)) [6, 7].

8/46

Glenlont:
ODE and SDE Approximations

e Boundedness of {6,,} [1, Ch. 3]
Follows from stability of the homogeneous ODE,

%ft = foo(ft) s foo(:)j) = lim ’I“_lf(Tl') Borkar-M. Theorem

“ODE at o0"

9/46

Glenlont:
ODE and SDE Approximations

e Boundedness of {6,,}
Follows from stability of the homogeneous ODE,

—ft &), fe(x) = lim 1 f(rz)

=00

° Convergence of {6,,} to 6*
X, ~ af for large k and all t, where
k k

dtxt = f(ﬂft)) xljg“k = X7,

[1, Ch. 3]

Borkar-M. Theorem

[1, Ch. 2]

9/46

Glenlont:
ODE and SDE Approximations

e Boundedness of {6,,} [1, Ch. 3]
Follows from stability of the homogeneous ODE,
7& foo(&) ‘]Foo(a:) = hﬁm 7’71_}?(7'1‘) Borkar-M. Theorem
° Convergence of {0,} to 6* [1, Ch. 2]

X, ~ af for large k and all t, where

Lok = by, oh = Xn

@ Variance analysis = SDE approximation [1, Ch. §]

T
YTzYO—i—/ (A+ 3I)Y,ds+ Br
0

Y, = et/2(X; — 0%) Yy, ~/n(0(n) — 0%) since t, ~ log(n).

9/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis

Convergence of {6,,} to 6* In one word: Euler scheme for solving an ODE is robust

Comparison
t
X=X, + f(Xs)ds + E(Tp,t)
Ty
t —
v =X, + | f(x})ds, Tn <t<Thn
Ty

10/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis

Convergence of {6,,} to 6* In one word: Euler scheme for solving an ODE is robust

Comparison
t

Xi=Xp, + | f(Xs)ds+E(Ty,t)
Tn
t —
v =X, + | f(x})ds, Tn <t<Thn
Tn

Assumptions
° %xt = f(=;) is globally asymptotically stable

e f is Lipschiz continuous, Lipschitz constant L

10/ 46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison
t

Xi=Xp, + | f(Xs)ds+E(Ty,t)
Tn
t —
v =X, + | f(x})ds, Tn <t<Thn
Tn

Assumptions
° %xt = f(=;) is globally asymptotically stable
e f is Lipschiz continuous, Lipschitz constant L

@ Nice noise: lim max ||E(T,,t)| =0.
n=300 Ty <t<Tp 41

@ The sequence {0, } is bounded (Lyapunov condition, or check ODE at ~c)

V.
10/ 46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison

t
Xe=Xp, + | f(Xs)ds+ E(Tn,t)
Tn

t
xy = Xrp, + . f(zl) ds, T, <t<Tyu

Error: e = || X — 27| and £" = g e IE(Th, t)]|:

11/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison

t
Xe=Xp, + | f(Xs)ds+ E(Tn,t)
Tn

t
v =X, + | f(x})ds, Tn <t<Thn
Tn
Error: e = || X — 27| and £" = g e IE(Th, t)]|:
t —
e;‘SL/ ey ds—+E", T, <t<Tpi1
Tn

11/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison

t
X =Xg, + f(Xs)ds + E(Tp,t)
Tn

t
v =X, + | f(x})ds, Tn <t<Thn
Tn
Error: e} = | X — o} d&" = e E(T,,t)]:
rror: ef! = [| Xy — 2| an Tngr?;¥n+l 1E(T, 1)
t —
e;‘SL/ ey ds—+E", T, <t<Tpi1
Tn
= e <&"exp([Thy1 — Tu]L) Bellman Gronwall Lemma

11/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" = max || E(Ty,t)]:
TnStSTTH—l

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy

&
T Tart Tana

12/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" = max || E(Ty,t)]:
TnStSTTH—l

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy FlX Iarge T, and note Impllcations

&

T Tart Tana

12/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" = max || E(Ty,t)]:
TnStSTTH—l

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE X,

o«

Fix large T, and note implications:
(1) :c%m_ ~ 0* for all n by GAS

T Tart Tana

12/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" = max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

T Tart Tana

12/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" = max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE (_\X,‘ FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

© 2! ~ 0* for large n and all t by GAS

Ta Tart Ton

12/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" = max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE (_\X,‘ FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

© 2! ~ 0* for large n and all t by GAS

¢
T T Tt Q X: =~} ~ 0" for largen and all t

12/46

(olp] JVIIHLE ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" = max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

© 2! ~ 0* for large n and all t by GAS

¢
T T Tt Q X: =~} ~ 0" for largen and all t

Convergence: lim 0 = lim X, = 6"
k—o0 k—o0

12/46

SDE Solidarity and Algorithm Performance
SDE Approximations

Linear SDE for Y; = et/Q(Xt —0")
Vi, =~ v/n(f(n) — 6%) since t,, = log(n).
t
@ Same starting point: Xy = Xp, + f(Xs)ds + E(Ty,t)
Tn
e Linearize: f(z)~ A(x — 6*), for x ~ 0*.

@ Nice noise gives FCLT: e(t_T”)/25(Tn, t) %’ By — B,

13/46

(o[p] M VIIILEE SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Y; = e"’/Q(Xt —0")

Vi, =~ v/n(f(n) — 6%) since t,, = log(n).
t
@ Same starting point: Xy = Xp, + f(Xs)ds + E(Ty,t)
Tn
e Linearize: f(z)~ A(x — 6*), for x ~ 0*.

@ Nice noise gives FCLT: e(t_T")/25(Tn, t) %’ By — B,

and with a bit of work:

. t
v, ¥ vy, +/ (A+11)Y.ds+ B, - Br,

13/46

(o[p] M VIIILEE SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Y; = et/Q(Xt —0")

. t
v, & vy, +/ (A+11)Y.ds+ B, - Br,
Tn

B Brownian motion, B; ~ N(0,tXA).
Translating back to reality: (under assumptions | won't list)

14 /46

SDE Solidarity and Algorithm Performance
SDE Approximations

Linear SDE for Y; = et/Q(Xt —0")

. t
v, & vy, +/ (A+11)Y.ds+ B, - Br,
Tn

B Brownian motion, B; ~ N(0,tXA).
Translating back to reality: (under assumptions | won't list)

Central Limit Theorem

/nf(n) converges in distribution to N (0, %), whose covariance is the
solution to the Lyapunov equation:

(A+3)S+ A+ 3)"+ZA =0

The covariance is finite if Real \(A4) < —%

14 /46

(o[p] M VIIILEE SDE Solidarity and Algorithm Performance

SDE Approximations

Linear SDE for V; = e/?(X; — 0%)

Central Limit Theorem

/nf(n) converges in distribution to N (0, X), whose covariance is the
solution to the Lyapunov equation:

(A+iDT+2(A+3)"+Za=0

The covariance is finite if Real A(4) < —3

Questions for algorithm design:

@ How do we fix an algorithm if it fails this condition?
@ How can we optimize X7

14 /46

(o[p] M VIIILEE SDE Solidarity and Algorithm Performance

SDE Approximations

Linear SDE for V; = e/?(X; — 0%)

Central Limit Theorem

/nf(n) converges in distribution to N (0, X), whose covariance is the
solution to the Lyapunov equation:

(A+iDT+2(A+3)"+Za=0

The covariance is finite if Real A(4) < —3

Questions for algorithm design:

@ How do we fix an algorithm if it fails this condition?
@ How can we optimize X7

© Does this lead to improved algorithms for reinforcement learning?

14 /46

Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with (n) := 0(n) — 6*:

O(n+1)=0(n)+ L[A0(n) + A(n +1)]

{A(n)} uncorrelated, zero mean, covariance Y.

15/46

Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with (n) := (n) — 6*:

O(n+1)=0(n)+ L[A0(n) + A(n +1)]
{A(n)} uncorrelated, zero mean, covariance Y.

Approximate \/n + 1 ~ /n(1+ (2n)~1):
Vi +10(n+1) = /nf(n) + L[(A+ 31)v/nb(n) + vVnA(n +1)]

15/46

Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with (n) := (n) — 6*:

O(n+1)=0(n)+ L[A0(n) + A(n +1)]
{A(n)} uncorrelated, zero mean, covariance Y.

Approximate \/n + 1 ~ /n(1+ (2n)~1):
Vi +10(n +1) = Vaf(n) + L[(A+ 51)vnb(n) + VnA(n + 1)]
Covariance recursion:
Sn+1 = (n+ DE[O(n +)9(+1)7]

z2n+%{ N, +3%, (A—i—%I)T—FEA}

15/46

Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

£ = lim B, = lim nE[0(n)d(n)"], Vnb(n) =~ N(0,%)

n—o0

SA recursion for covariance:

Snit & S+ H{(A+ 3080+ Su(A+ 3D+ 24 |

A=LF(0%)
Conclusions

Q If ReA(4) > —% for some eigenvalue then X is (typically) infinite

Q If ReA(4) < —% for all, then ¥ = lim,,_,, Xy, is the unique solution
to the Lyapunov equation:

0=(A+iNS+S(A+31)"+ s

16 /46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

0(n-+1) = 0(n) + — G f(On), X(n)

17 /46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

0(n-+1) = 0n) + — <G f(0(n), X (1)

Assume it converges, and linearize:

1

9(n+1)%9(n)+n+1

G(AO(n) + A(n+1)), A=

17 /46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

1
f(n+1)=0(n)+ man(G(n),X(n))
Assume it converges, and linearize:

1
n—+1

O(n+1) =~ 6(n) + G(AG(n) + A(n + 1)), A=

If G = G*:= —A"! then
@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]
o Itisoptimal: X*=G*TAGT < XC any other G

17 /46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

0(n-+1) = 0(n) + — G f(On), X(n)

Assume it converges, and linearize:

1

9(n+1)%9(n)+n+1

G(AO(n) + A(n+1)), A=

If G =G*:=—A""! then
@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]
o Itisoptimal: X*=G*TAGT < XC any other G
Ruppert-Polyak averaging is also optimal, but first two bullets are missing.

17 /46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance
Example: return to Monte-Carlo

O(n+1) = 0(n) + HLH (—e(n) FX(n+ 1))

18/46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Example: return to Monte-Carlo
g

O(n+1) = 0(n) + (—e(n) FX(n+ 1))

18/46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance
Normalization for analysis: A(n) = X(n) — E[X(n)]

O(n+1) = 0(n) + HLH (—é(n) NG 1))

18/46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Normalization for analysis: A(n) = X(n) — E[X(n)]

O(n+1) = 0(n) + HLH (—é(n) NG 1))

Asymptotic variance as a function of g

18/46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Normalization for analysis: A(n) = X(n) — E[X(n)]
f(n+1) = 6(n) + n%l (—é(n) T A+ 1))
Example: X (n) = W2(n), W ~ N(0,1), 0% =2

oQ:

2 :
O'Af ,,,,,

Asymptotic variance as a function of g

18/46

Optimizing Stochastic Approximation Stochastic Ni Rapk

Optimal Asymptotic Covariance

Normalization for analysis: A(n) = X(n) — E[X(n)]
G(n+1) =0(n) + RLH (—é(n) NG 1))
Example: X(n) = W2(n), W ~ N(0,1), 0% =2

‘
9 k1010

SA estimates of E[W?2], W ~ N(0,1)

18/46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

2
. . . ° ? ? 59
Central Limit Theorem optimal ¢* =1
——— Theoretical Experimental
0 _ 3 . 4
- . VTH(T) T =10 . =10
” 02 02
RSN 01 01
[) i .“'II.L.
> -6 -4 -2 o 2 4 6 8
03 03
ﬂ_' 02 02
Qlﬁ 01 01
0 0
-6 -4 -2 o 2 4 6 8

Ruppert-Polyak: turn up the gain, with o € (0 5,1):

On+1)=0(n)+ —— [O(n) + X(n+ 1)]

(n +1)9

6(n) = Z Also has optimal asymptotic covariance

k=1

:\»—‘

o = = =z 9ace

19/46

ing Stochastic Approximation

Optimal Asymptotic Covariance >=% ()

TA
Central Limit Theorem sub-optimal g > 1
——— Theoretical Experimental
0, . 3 . 4

T VTO(T) T =10 . T =10
*” 02 02
> g o
[))
> -6 -4 -2 0 2 4 6 8 B3 -4 -2 o 2 4 6 8

03 03
Q_‘ 02 02
Qlﬁ 01 01

U~6 -4 -2 0 2 4 6 8 0-6 -4 -2 0 2 4 6 8

g=10

g=20

u]
o)
I
i
it

imizing Stochastic Approximation

Optimal Asymptotic Covariance s (L)

Central Limit Theorem fails g < 1/2

——— Theoretical Experimental
- VTO(T) T=10° T =10" T=10°
03 03 03
” 02 02
*
= 01 01
Il
> -6 -4 2 0 2 4 6 8 E
03
Q_‘ 02
m‘ 0.1
[
-6 -4 -2 o 2 4 6 8
i
S
Il
=
2
S
Il
>

= 9ac
19/46

Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Impact on algorithm design : new Q-learning algorithms

.
o
2
=

L
c
©

£

v

o}

Watkins, Speedy Q-learning,

1 2 3 4 5 6 7 8 9 4, 10 %105

Next time

20/46

Part Il: Fastest SA and Zap Q-Learning

Hidden theory implications for reinforcement learning

@ Fastest Stochastic Approximation
o Algorithm Performance Revisited
@ Zap Stochastic Newton-Raphson

© Reinforcement Learning
e RL & SA
@ MDP Theory
@ Q-Learning

O Zap Q-Learning
@ Watkin's algorithm
@ Optimal stopping

@ Conclusions & Future Work
© References

Basics

Fastest Stochastic Approximation

Fastest Stochastic Approximation

What is Stochastic Approximation?
Recap

Basic algorithm of Robbins & Monro 1951, with matrix gain:
0(n+1)=0(n) + anGnf(0(n), W(n+1))
Interpreted as a noisy Euler approximation to the ODE

%Sﬂt = Gf(xt)

Usually we take o, = 1/n
Matrices {G} used to

@ Optimize asymptotic covariance

@ Improve dynamics (inspired by Newton-Raphson)

22/46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
@ Finite-n bound:

P{l6(n)[| > e} < exp(—I(e,n)), I(e,n) = O(ne?)
@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T} . Vnb(n) =~ N(0,%)

n—oo

23/46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
@ Finite-n bound:

PUIOM)] = €} < exp(—I(e,n)), I(e,n) = O(ne?)

@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T}, Vnb(n) ~ N(0,%)

n—oo

Latter metric is most valuable for algorithm design.

23/46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
© Finite-n bound:

PUIOM)] = €} < exp(—I(e,n)), I(e,n) = O(ne?)

@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T}, Vnb(n) ~ N(0,%)

n—oo

Latter metric is most valuable for algorithm design.
Recall last time: G = G* := —A~! then

@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon
o Itisoptimal: ¥* = G*LAG T < 2C any other G

23/46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
© Finite-n bound:

PUIOM)] = €} < exp(—I(e,n)), I(e,n) = O(ne?)

@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T}, Vnb(n) ~ N(0,%)

n—oo

Latter metric is most valuable for algorithm design.
Recall last time: G = G* := —A~! then

@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon Do you see the resemblance?
o Itisoptimal: ¥* = G*LAG T < 2C any other G

23/46

D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Resembles Newton-Rapshon?
This doesn't look much like Newton-Raphson:

_ d -
=A@, A= T 0)

24 / 46

D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate deterministic Newton-Raphson)

Requires A, ~ A(6),) := die f(6,)

24 / 46

o Gt iesie i it
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))

An - An—l + ’Yn(An - 121\71—1)7 An = C%f(@(n),X(n))

24 / 46

D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))
. ~ ~ d

Ap=An_1+m(4n — Ap), A, = = (0(n), X(n))

A, ~ A(6,) requires high-gain, In 00, n — oo
a

n

24 /46

D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))

~ ~ ~ d
An A n n_An—) = T35
1+ (A 1) A, T

~

n

Always: a;, = 1/n. Numerics that follow: v, = (1/n)?, p €

(6(n), X(n))

A, =~ A(6,,) requires high-gain, In 00, n — oo
a

(0.5,1)

24 /46

D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))

—~ —~ —~ d

Ap=An_1+m(4n — Ap), A, = = (0(n), X(n))

A, ~ A(6,) requires high-gain, In 00, n — oo
a

n

Always: oy, = 1/n. Numerics that follow: 7, = (1/n)”, p € (0.5,1)

ODE for Zap SNR

d

S =A@ @), AW@) =1 F (@)

24 /46

Fastest Stochastic Approximation WAL ERT N Rap}

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

O(n+1) = 0(n) + an[— A, F(0(n), X (n))

A=Ayt nldn = A), Ay = 25 F(6(), X ()
En ~ A(6,,) requires high-gain, Z—Z — 00, n — 00
Always: oy, = 1/n. Numerics that follow: v, = (1/n)?, p € (0.5,1))
ODE for Zap SNR
Sa= A @), AW = @) |

@ Not necessarily stable
@ General conditions for convergence is open 26

Reinforcement Learning
and Stochastic Approximation

SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

h* =7

25 /46

SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

h* =7
®(n) = (state, action)

D¢

25/ 46

G ED
SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h",®(n+1))¢], 0 =7

25 /46

G ED
SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(A”, ®(n+1))G], 0 =1

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,}
Examples are TD- and Q-Learning

25 /46

G ED
SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7

Galerkin relaxation:
0=E[F(",®(n+1)))], g* =7

Necessary Ingredients:
o Parameterized family {n? : § € R%}
e Adapted, d-dimensional stochastic process {(,,}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

25/46

TP U=
Stochastic Optimal Control

MDP Model
X is a controlled Markov chain, with input U
o For all states = and sets A,
P{X(n+1) € A| X(n) ==z, U(n) = u,and prior history} = P, (z, A)

@ c: Xx U — R is a cost function

@ (8 < 1 a discount factor restrict to finite state and action space here
v

26 /46

TP U=
Stochastic Optimal Control

MDP Model
X is a controlled Markov chain, with input U
o For all states = and sets A,
P{X(n+1) € A| X(n) ==z, U(n) = u,and prior history} = P, (z, A)
@ ¢: Xx U—Ris a cost function

@ (8 < 1 a discount factor restrict to finite state and action space here
v

Value function:

() = min 3 BE[e(X (n), U(n)) | X(0) =]
n=0

26 /46

MDP Theory

Stochastic Optimal Control

MDP Model
X is a controlled Markov chain, with input U

@ For all states x and sets A,
P{X(n+1) € A| X(n) ==z, U(n) = u,and prior history} = P, (z, A)
@ c: Xx U — R is a cost function

@ (8 < 1 a discount factor restrict to finite state and action space here
v

Value function: .
W () = min 3" BEle(X(n), U(n)) | X(0) = 2]
n=0

Bellman equation:

h*(z) = mu%n{c(:v,u) + BER* (X (n+1)) | X(n) =z, U(n) =ul}

Q-Learning
@-function

Trick to swap expectation and minimum

Bellman equation:

h*(z) = m&n{c(:c,u) + BER (X(n+1)) | X(n) =2, Un) =u]}

27/46

Q-Learning
@-function

Trick to swap expectation and minimum

Bellman equation:
h*(z) = m&n{c(m,u) + BER* (X (n+1)) | X(n) =z, U(n) =ul}
Q-function:

Q" (,u) i= cla, u) + BE[N (X (n +1)) | X(n) =2, U(n) =1

27 /46

Q-Learning
@-function

Trick to swap expectation and minimum

Bellman equation:
h*(z) = m&n{c(:c,u) + BER* (X(n+1)) | X(n) =z, U(n) =ul}
Q-function:

Q" (,u) i= cla, u) + BE[N (X (n +1)) | X(n) =2, U(n) =

h(2) = min Q" (z,u)

27/46

Reinforcement Learning ORI RETTI

@-function

Trick to swap expectation and minimum

Bellman equation:
h*(z) = m&n{c(:c,u) + BER (X(n+1)) | X(n) =2, Un) =u]}
Q-function:
Q" (z,u) :=c(z,u) + BEL (X(n+ 1)) | X(n) =z, U(n) = ul
W (@) = min Q" (z,u)

Another Bellman equation:

Q*(z,u) = c¢(z,u) + BE]

O

(X(n+1)) | X(n) =2, Uln) = ul

(x) = muin Q(x,u)

D |

27/46

CHEEL T
@-function

Trick to swap expectation and minimum

Another Bellman equation:

Q*(z,u) = c(x,u) + PE[

O

(X(n+1) | X(n) =2z, Uln) = ul

(x) = muin Q(x,u)

D |

Q" (z,u) = mUiHZB"E[C(X(n), U(n)) | X(0) = 2,U(0) = u]
n=0

28 /46

Q-Learning
@-function

Trick to swap expectation and minimum

Another Bellman equation:

Q*(z,u) = c(x,u) + PE[

O

(X(n+1) | X(n) =2z, Uln) = ul

(x) = muin Q(x,u)

D |

Q" (z,u) = mUiHZB"E[C(X(n), U(n)) | X(0) = 2,U(0) = u]
n=0

One-to-one mapping between cost functions and Q-functions.
Notation:

Q" =2 ()

28 /46

Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0

29 /46

Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0

That is,
0=E[F(Q",®(n+1)) | ®(0) ... ®(n)],

with ®(n + 1) = (X (n + 1), X (n), U(n)).

29/46

Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0

Q-Learning
Find 6* that solves

E[(c(X(n),U(n)) + BQ" (X (n +1)) = Q" ((X(n),U(n)))¢a] = 0

where the input U is randomized state feedback

29 /46

Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0

Q-Learning
Find 6* that solves

E[(c(X(n),U(n)) + BQ" (X (n +1)) = Q" ((X(n),U(n)))¢a] = 0

where the input U is randomized state feedback

The family {Q%} and eligibility vectors {¢,,} are part of algorithm design.

V.

29/46

Watkins' ()-learning

Find 6* that solves

E[(c(X(n), U(n)) + BQ" (X(n+1)) = Q" (X(n), U(n)))¢] = 0

o = = = =z 9ace
30/46

CHEEL T
Watkins' ()-learning

Find 6* that solves

E[(c(X (n),U(n)) + BQ” (X(n+1)) = Q" ((X(n),U(n)))¢a] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {(,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
o (, =v(X,,Uy) and
° Yp(z,u) =1z =a",u=1u"} (complete basis)

30/46

CHEEL T
Watkins' ()-learning

Find 6* that solves

E[(c(X (n),U(n)) + BQ” (X(n+1)) = Q" ((X(n),U(n)))¢a] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {(,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
o (, =v(X,,Uy) and
° Yp(z,u) =1z =a",u=1u"} (complete basis)

Asymptotic covariance is typically infinite

30/46

Q-Learning
Watkins' ()-learning

Big Question: Can we Zap Q-Learning?
Find 6* that solves

E[(c(X (n),U(n)) + BQ” (X(n+1)) = Q" ((X(n),U(n)))¢a] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {(,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
o (, =v(X,,Uy) and
° Yp(z,u) =1z =a",u=1u"} (complete basis)

Asymptotic covariance is typically infinite

30/46

—
]
=
=

w
C
©

£

K]

o

A
o
100 R in
80 -

60 -

Zap Q-Learning

Watkins, Speedy Q-learning,

f Polyak-Ruppert Averaging

Zap Q-Learning

Asymptotic Covariance of Watkins' Q-Learning 1
Improvements are needed! 4 51
N o
32
Histogram of parameter estimates after 10° iterations.
40 :
IA
% Histogram for 6,,(15) |
i H
|
n = 10° Hl
20} 1]
:A
10} 0*(15) !
:A
0 N N N N N N I
200 300 400 1486.6

Example from Devraj & M 2017

31/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =E[f(0,D(n+1))]
= E[Gu [e(X (n), U(n)) + BQ(X (n + 1)) — Q°(X (n),U(n))]]

32/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0= J(6) =

32/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0= J(6) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
(be(X(n +1)):= argjnin QG(X(n +1),u)

32/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
(be(X(n +1)):= argjnin QG(X(n +1),u)

Algorithm:

e(n + 1): a(n) + an[f‘:{n} lf(e(n)vé(n"i_ 1))7 fln — ;l\,,,| + Am(fln 7 }1,,,1):

32/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
qb‘g(X(n +1)):= argjnin QG(X(n +1),u)

Algorithm:

O(n+1)=0(n) +an A, FON), ®(n+1)); A, = A, + (A, A)
Apyqi= %f (0, ®(n+1))
= (u [BY(X (n+ 1), 6" (X (n + 1)) — ¥(X(n),U(n))] "

32/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
qb‘g(X(n +1)):= argjnin QG(X(n +1),u)

Algorithm:

e(n + 1): a(n) + an{f‘:l\/l} lf(e(n)vé(n—i_ 1))7 fl/: - “Alnfl + 7’//(‘4/7 o 441271):

Apy1 = %f (0, ®(n+1))
= Gu[BU(X (n+1), ¢ (X (n + 1)) — (X (n),U(n))]"

Stable?
32/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

ODE Analysis: change of variables ¢ = Q*(<)
Functional Q* maps cost functions to Q-functions:

(e, u) = s(,0) + B Y Pule, 2’y ming (e, o)

xl

33/46

Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

ODE Analysis: change of variables ¢ = Q*(<)
Functional Q* maps cost functions to Q-functions:

q(x,u) = s(2,u) + B) Pu(w,2") ming(a’,u')

xl

ODE for Zap-Q

d
@ = Q% (), %9& = —¢G+cC

= convergence, optimal covariance, ...

33/46

ek re
Zap Q-Learning

T
Example: Optimize Walk to Cafe ?i 5 ﬁ
3

34/46

Zap Q-Learning AP

Example: Optimize Walk to Cafe) \ 5 ﬁ
3

2

Convergence with Zap gain 7, = n~ 98 Discount factor: 8 = 0.99

Watkins' algorithm has infinite asymptotic covariance with a,, = 1/n

\

100 W‘:M’v«i“;» Watkins, Speedy Q-learning,

- f Polyak-Ruppert Averaging

80 e

Bellman Error

\ 60
\ 40
SN~) .
¥ ‘g\‘ 20 |
Sy & 4
7 Lap o o
74 0 1 2 3 4 5 6 7 8 9, 10 .10°

Convergence of Zap-Q Learning
Discount factor: 5 = 0.99

34/46

. 1
Zap Q-Learning AP
Example: Optimize Walk to Cafe . i 5 ﬁ
32
Convergence with Zap gain 7, = n= 0% Discount factor: 8 = 0.99

Watkins' algorithm has infinite asymptotic covariance with a,, = 1/n

Watkins, Speedy Q-learning,
f Polyak-Ruppert Averaging

Bellman Error

Convergence of Zap-Q Learning
Discount factor: 5 = 0.99

34/46

ek re
Zap Q-Learning

Example: Optimize Walk to Cafe ?i 5 ﬁ
3

—0.85 2

Convergence with Zap gain v, =n Discount factor: 8 = 0.99

Watkins' algorithm has infinite asymptotic covariance with a,, = 1/n

Optimal scalar gain is approximately «,, = 1500/n

S
g 100 Watkins, Speedy Q-learning,
Ll f Polyak-Ruppert Averaging
S 8 =
R S Watkins, g = 1500
\ = 60
\ \] |
. @ i
. . \ 40 J‘w
"*‘Jv«’”l'w
Wi Py

. — VT A
, Yn = Qp o »#MA«.\».\,ANMMWMM.NM\,,,

2 3 4 5 6 7 8 9, 10 108
Convergence of Zap-Q Learning
Discount factor: 5 = 0.99

34/46

Zap Q-Learning
Zap Q-Learning

Example: Optimize Walk to Cafe

—— Theoritical pdf

6
3 “

—— Experimental pdf

mmm Empirical: 1000 trials
g
Entry #18:

n=10*

200 -150 -100 -50 O 50 100 150 200

n = 10°

Entry#10: n = 10*
CLT gives good prediction of finite-n performance

-800 -600 -400 200 O 200 400 600 800

n=10°

DA
35/46

Zap Q-Learning
Example: Optimize Walk to Cafe) \

Local Convergence: 6(0) initialized in neighborhood of 6*

05 2
. B Speedy 2 NEEEM g = 500 ‘ Polyak-Ruppert
I Poly < g = 1500 W Z2p-Q: Y =
= g = 5000 W Zap-Q: Yo = o)
1
A .

60 80 100 120 140 160 0 20 30 40 50 3

Bellman Error
_, Histograms n = 108

5]

36 /46

Zap Q-Learning AP
Example: Optimize Walk to Cafe) i 5

Local Convergence: 6(0) initialized in neighborhood of 6*
051 2
I Speedy 2 I g = 500 Polyak-Ruppert
[Poly < W g = 1500 W Zap-Q: 7 = O
= W g - 5000 I Zap-Q: 7 = ap

Bellman Error
Histograms n = 10°

0 20 40 60 80 100 120 140 160 0 10 20 30 40 s0 3

sl
S
3

o o,
® ®

Bellman Error
S

o
>

2

o
W

10

CLEE
Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00
Parameterized Q-function: QY with § € R'9

-10 T T T T
1
ach xox Real \;(A) i Real\ > —— for every eigenvalue A
-10* x
x Asymptotic covariance is infinite

-107Y x 1
167 Xy
—107} X
-10° -

0 1 2 3 4 5 6 7 8 9 10

37/46

CLEE
Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00
Parameterized Q-function: QY with § € R'9

-10 T T
1
ach xox Real \;(A) i Real A > —— for every eigenvalue A
-10* x
x Asymptotic covariance is infinite

-107Y x 1
-107 * x Authors observed slow convergence
16! & Proposed a matrix gain sequence

o . L L L {Gn} (seerefsfor details)
-1 1 2 3 4 5 6 7 8 9 10

37/46

Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00

Parameterized Q-function: QY with § € R'9

-10 : : : : 10 r T T T
et XX Real \;(A) 3 \i(GA) x
X x ~5 x x
-10" x ECD
-107 x § ox x
. o]
e X .
s x x
-107 X x
_10° ' L L L ~10 | ' ' L L H
0 1 2 3 4 5 7 8 9 10 -30 -25 -20 -15 -10 -5 _0.525
H Re (A(GA))

Eigenvalues of A and G A for the finance example

Favorite choice of gain in [25] barely meets the criterion Re(A(GA)) < —3

37/46

CLEE
Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance
State space: R!00. Parameterized Q-function: Q% with # € R0

W, = \/ﬁen —— Theoritical pdf —— Experimental pdf — mmmm Empirical: 1000 trials

Zap-Q

-250 -200 -150 -100 -50] 50 100 -200 -100 0 100 200 300
-1000 0 1000 2000 3000 -600 -400 -200 0 200 400 600 800
Entry#1: n = 2 x 10° Entry#7: n = 2 x 10°

38/46

CLEE
Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00.
Parameterized Q-function: QY with # € R0

Histograms of the average reward obtained using the different algorithms:

stn=2x10* ol 1 =2 x 10° ol =2 x10° =mGQo) g=100
30 w0 500 G-Q(0) g =200
400 [Zap-Q p=1.0

& o0 I Zap-Q p =08

40 [0 Zap-Q p=0.85

Zap-Q > G-Q

39/46

Conclusions

Conclusions & Future Work

Conclusions & Future Work

Conclusions
@ The asymptotic covariance is an awesome design tool.

It is also predictive of finite-n performance.

Example: g* = 1500 was chosen based on asymptotic covariance

40/ 46

Conclusions & Future Work

Conclusions & Future Work

Conclusions

@ The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.
Example: g* = 1500 was chosen based on asymptotic covariance
@ The success of Zap Q-Learning is due to two factors:

o Choice of gain for optimal asymptotic variance (validated in simulations)
o Luck: Newton-Raphson is globally stable

40/46

Conclusions & Future Work

Conclusions & Future Work

Conclusions

@ The success of Zap Q-Learning is due to two factors:

e Choice of gain for optimal asymptotic variance (validated in simulations)
o Luck: Newton-Raphson is globally stable

@ Future work:

o Q-learning with function-approximation
o Obtain conditions for a stable algorithm in a general setting

o Optimal stopping time problems

o Reduced complexity algorithms with adaptive optimization of algorithm
parameters (stay tuned for revision on arXiv)

40/46

Thank you!

~&

~ 4l

5

Pl _
73] ii

= 9ac
41/ 46

References

References

http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html

Selected References |

(1]
(2]
(3]
(4]
(5]
(6]
7]

(8]

V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press (jointly), Delhi, India and Cambridge, UK,
2008.

A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv , July 2017.

M. Benaim. Dynamics of stochastic approximation algorithms. In Séminaire de
Probabilités XXXIII, pages 1-68, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447-469, 2000.

A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics. Springer-Verlag, Berlin, 1990.

P. J. Schweitzer. Perturbation theory and finite Markov chains. J. Appl. Prob., 5:401-403,
1968.

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Cambridge Mathematical Library.

S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

43/46

https://arxiv.org/abs/1707.03770

References

Selected References |l

(9]

(10]

(11]

(12]

(13]

(14]

D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236-245, 1985.

D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika (in Russian). translated in Automat. Remote Control, 51 (1991), pages
98-107, 1990.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838-855, 1992.

V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796-819, 2004.

E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, pages 451-459. Curran Associates, Inc., 2011.

44/ 46

References

Selected References llI

(15]

[16]

(17]
(18]

(19]

[20]

[21]

(22]

C. Szepesviri. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College,
Cambridge, Cambridge, UK, 1989.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279-292, 1992.

R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9-44, 1988.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674—-690, 1997.

C. Szepesviéri. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th
Internat. Conf. on Neural Info. Proc. Systems, pages 1064—1070. MIT Press, 1997.

M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems, 2011.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1-25, 2003.

45 /46

References

Selected References |V

(23]

(24]

(25]

26]

(27]

(28]

[29]

D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840-1851, 1999.

D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and
Applications, 16(2):207-239, 2006.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33-57, 1996.

J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233-246, 2002.

A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79-110, 2003.

P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin's minimum principle. In IEEE
Conference on Decision and Control, pages 3598—-3605, Dec. 2009.

46 /46

	Stochastic Approximation and Learning
	Part I: SA & ML Theory
	Stochastic Approximation: Algorithm & Motivation
	Basic Algorithm
	Monte-Carlo
	Reinforcement Learning
	Empirical Risk Minimization

	ODE Methods
	Representation in Continuous Time
	A Menu of ODEs
	ODE Solidarity: Proof of Convergence
	SDE Solidarity and Algorithm Performance

	Optimizing Stochastic Approximation
	SA for n
	Stochastic Newton Raphson

	Fastest Stochastic Approximation and Zap Q-Learning
	Fastest Stochastic Approximation
	Algorithm Performance Revisited
	Zap Stochastic Newton-Raphson

	Reinforcement Learning
	RL & SA
	MDP Theory
	Q-Learning

	Zap Q-Learning
	Watkin's algorithm
	Optimal stopping

	Conclusions & Future Work
	References

