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Part I: SA & ML Theory
Survey of basic theory: Borkar’s monograph [1] and our tutorial [2]

1 Stochastic Approximation: Algorithm & Motivation
Basic Algorithm
Monte-Carlo
Reinforcement Learning
Empirical Risk Minimization

2 ODE Methods
Representation in Continuous Time
A Menu of ODEs
ODE Solidarity: Proof of Convergence
SDE Solidarity and Algorithm Performance

3 Optimizing Stochastic Approximation
SA for Σn

Stochastic Newton Raphson

Part II : Zap Q-learning



E[f(θ,W)]
θ=θ∗

= 0

Stochastic Approximation



Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W )]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

– we may only know something about the structure of the problem

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]
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Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:

θ(n+ 1) = θ(n) + αnf(θ(n),W (n+ 1))

The stepsize satisfies

To ensure we can reach anywhere:
∑

αn =∞
To attenuate noise:

∑
α2
n <∞

usually we will take αn = 1/n

Written this way:

θ(n+ 1) = θ(n) + αn[f̄(θ(n)) + ∆(n+ 1)]

Interpreted as a noisy Euler approximation to the ODE

d

dt
xt = f̄(xt)
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Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = c(X), where X is a random variable:

η =

∫
c(x) fX(x) dx

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑

i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =
n+1∑

i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞
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Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

≡ eligibility vectors

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
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Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W )].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46



Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W )].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46



Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W )].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46



Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W )].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46



ODE Methods Representation in Continuous Time

ODE and SDE Approximations

Continuous time interpolation

The starting point of all approximations:

1 Timescale: t0 = 0 and tn+1 = tn + αn for n ≥ 0.

2 Continuous time process: Xt = θ(n) for t = tn;
defined elsewhere by linear interpolation.
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For tn > tk,

Xtn = Xtk +
∑

j

f(Xtj ,W (j + 1)) δtj , δtj = tj − tj−1

= Xtk +

∫ tn

tk

f̄(Xs) ds+ E(tk, tn)
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2 Continuous time process: Xt = θ(n) for t = tn;
defined elsewhere by linear interpolation.

3 Time horizon T � 0: Construct increasing subsequence {Tn} so that

T = lim
n→∞

(Tn+1 − Tn)

Analysis restricted to each time interval:

Xt = XTn +

∫ t
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ODE Methods Representation in Continuous Time

ODE and SDE Approximations
Properties of the noise follow from assumptions on f and W .

Continuous time process: Xt = θ(n) for t = tn:

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t) , Tn ≤ t < Tn+1

For αk = k−1,

E(tm, tn) =
n∑

k=m+1

[
f(θ(k),W (k + 1))− f̄(θ(k))

]
αk +O(m−2)

For nice Markovian W , f Lipschitz in θ and “nice” in W :

E(tm, tn) = M(tn)−M(tm) + J (tm, tn)

where M is a martingale, and the “junk term” can be disposed of.
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ODE Methods Representation in Continuous Time

ODE and SDE Approximations !! Comments for the experts

Properties of the noise follow from assumptions on f and W .

Continuous time process: Xt = θ(n) for t = tn:

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t) , Tn ≤ t < Tn+1

E(tm, tn) =

n∑

k=m+1

[
f(θ(k),W (k + 1))− f̄(θ(k))

]
αk +O(m−2)

= M(tn)−M(tm) + J (tm, tn)

Markovian W : what is nice?

J (tm, tn) = Simple junk−
n∑

k=m+1

αk[Hk −Hk−1]

Need nice solutions to “Poisson’s equation”: Hk = h(θ(k),W (k+1)) [6, 7].
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ODE Methods A Menu of ODEs

ODE and SDE Approximations

Boundedness of {θn} [1, Ch. 3]
Follows from stability of the homogeneous ODE,

d

dt
ξt = f̄∞(ξt) , f̄∞(x) = lim

r→∞
r−1f̄(rx) Borkar-M. Theorem

“ODE at ∞”

Convergence of {θn} to θ∗ [1, Ch. 2]
Xt ≈ xkt for large k and all t, where

d

dt
xkt = f̄(xkt ) , xkTk = XTk

Variance analysis ≡ SDE approximation [1, Ch. 8]

YT ≈ Y0 +

∫ T

0
(A+ 1

2I)Ys ds+BT

Yt = et/2(Xt − θ∗) Ytn ≈
√
n(θ(n)− θ∗) since tn ≈ log(n).
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ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗ In one word: Euler scheme for solving an ODE is robust

Comparison

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

xnt = XTn +

∫ t

Tn

f̄(xns ) ds , Tn ≤ t < Tn+1

Assumptions

d
dtxt = f̄(xt) is globally asymptotically stable

f̄ is Lipschiz continuous, Lipschitz constant L

Nice noise: lim
n→∞

max
Tn≤t≤Tn+1

‖E(Tn, t)‖ = 0.

The sequence {θn} is bounded (Lyapunov condition, or check ODE at ∞)
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ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
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ODE Methods SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Ytn ≈
√
n(θ(n)− θ∗) since tn ≈ log(n).

Same starting point: Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

Linearize: f̄(x) ≈ A(x− θ∗), for x ≈ θ∗.

Nice noise gives FCLT: e(t−Tn)/2E(Tn, t)
dist≈ Bt −BTn

and with a bit of work:

Yt
dist≈ YTn +

∫ t

Tn

(A+ 1
2I)Ys ds+Bt −BTn
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SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Yt
dist≈ YTn +

∫ t

Tn

(A+ 1
2I)Ys ds+Bt −BTn

B Brownian motion, Bt ∼ N(0, tΣ∆).
Translating back to reality: (under assumptions I won’t list)

Central Limit Theorem
√
nθ̃(n) converges in distribution to N(0,Σ), whose covariance is the

solution to the Lyapunov equation:

(A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆ = 0

The covariance is finite if Realλ(A) < −1
2

Questions for algorithm design:
1 How do we fix an algorithm if it fails this condition?
2 How can we optimize Σ?

3 Does this lead to improved algorithms for reinforcement learning?
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Optimizing Stochastic Approximation SA for Σn

Asymptotic Covariance
Recursion for uncorrelated noise

Consider a linear model with θ̃(n) := θ(n)− θ∗:

θ̃(n+ 1) = θ̃(n) + 1
n [Aθ̃(n) + ∆(n+ 1)]

{∆(n)} uncorrelated, zero mean, covariance Σ∆.

Approximate
√
n+ 1 ≈ √n(1 + (2n)−1):

√
n+ 1θ̃(n+ 1) ≈ √nθ̃(n) + 1

n [(A+ 1
2I)
√
nθ̃(n) +

√
n∆(n+ 1)]

Covariance recursion:

Σn+1 = (n+ 1)E
[
θ̃(n+ 1)θ̃(n+ 1)T

]

≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}
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Optimizing Stochastic Approximation SA for Σn

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃(n)θ̃(n)T] , √

nθ̃(n) ≈ N(0,Σ)

SA recursion for covariance:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}

A = d
dθ f̄ (θ∗)

Conclusions

1 If Reλ(A) ≥ −1
2 for some eigenvalue then Σ is (typically) infinite

2 If Reλ(A) < −1
2 for all, then Σ = limn→∞Σn is the unique solution

to the Lyapunov equation:

0 = (A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆
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Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Ruppert-Polyak averaging is also optimal, but first two bullets are missing.
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Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Example: return to Monte-Carlo

θ(n+ 1) = θ(n) +
g

n+ 1

(
−θ(n) +X(n+ 1)

)
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Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

∆(n) = X(n)− E[X(n)]Normalization for analysis:
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Optimal Asymptotic Covariance
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Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Impact on algorithm design : new Q-learning algorithms
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Part II: Fastest SA and Zap Q-Learning
Hidden theory implications for reinforcement learning
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Fastest Stochastic Approximation

What is Stochastic Approximation?
Recap

Basic algorithm of Robbins & Monro 1951, with matrix gain:

θ(n+ 1) = θ(n) + αnGnf(θ(n),W (n+ 1))

Interpreted as a noisy Euler approximation to the ODE

d

dt
xt = Gf̄(xt)

Usually we take αn = 1/n
Matrices {Gn} used to

Optimize asymptotic covariance

Improve dynamics (inspired by Newton-Raphson)
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Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.
Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46



Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.

Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46



Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.
Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46



Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.
Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46



Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Resembles Newton-Rapshon?
This doesn’t look much like Newton-Raphson:

d

dt
xt = −A−1f̄(xt) , A =

d

dθ
f̄ (θ∗)

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open
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d

dθ
f(θ(n), X(n))
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Reinforcement Learning
and Stochastic Approximation



Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
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Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor restrict to finite state and action space here

Value function:

h∗(x) = min
U

∞∑

n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}
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Reinforcement Learning Q-Learning

Q-function
Trick to swap expectation and minimum

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)
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Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

where the input U is randomized state feedback

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.
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Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un) and

ψn(x, u) = 1{x = xn, u = un} (complete basis)

Asymptotic covariance is typically infinite
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Zap Q-Learning

Asymptotic Covariance of Watkins’ Q-Learning
Improvements are needed!

1
4

65
3 2

Histogram of parameter estimates after 106 iterations.
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Example from Devraj & M 2017
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Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,Φ(n+ 1))

]

:= E
[
ζn
[
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

]]

A(θ) = d
dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]

φθ(X(n+ 1)) := arg min
u

Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn[−Ân]−1f(θ(n),Φ(n+ 1)); Ân = Ân−1 + γn(An − Ân−1);

An+1 :=
d

dθ
f (θn,Φ(n+ 1))

= ζn
[
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Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

ODE Analysis: change of variables q = Q∗(ς)
Functional Q∗ maps cost functions to Q-functions:

q(x, u) = ς(x, u) + β
∑

x′
Pu(x, x′) min

u′
q(x′, u′)

ODE for Zap-Q

qt = Q∗(ςt),
d

dt
ςt = −ςt + c

⇒ convergence, optimal covariance, ...
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Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain γn = n−0.85 Discount factor: β = 0.99

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n
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Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2

n = 104 n = 106

Theoritical pdf Experimental pdf Empirical: 1000 trials
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Wn =
√

nθ̃n

Entry #18:  n = 104 n = 106Entry #10:  

CLT gives good prediction of finite-n performance
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Example: Optimize Walk to Cafe
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Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10
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Favorite choice of gain in [25] barely meets the criterion Re(λ(GA)) < −1
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Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100. Parameterized Q-function: Qθ with θ ∈ R10
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Entry #1:  n = 2 × 106 Entry #7:  n = 2 × 106
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Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100.
Parameterized Q-function: Qθ with θ ∈ R10

Histograms of the average reward obtained using the different algorithms:
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Conclusions

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

The success of Zap Q-Learning is due to two factors:

Choice of gain for optimal asymptotic variance (validated in simulations)

Luck: Newton-Raphson is globally stable

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Reduced complexity algorithms with adaptive optimization of algorithm
parameters (stay tuned for revision on arXiv)
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Conclusions & Future Work

Thank you!

thankful
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