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Part I: SA & ML Theory

Survey of basic theory: Borkar's monograph [1] and our tutorial [2]

@ Stochastic Approximation: Algorithm & Motivation
@ Basic Algorithm
@ Monte-Carlo
@ Reinforcement Learning
@ Empirical Risk Minimization
© ODE Methods
@ Representation in Continuous Time
@ A Menu of ODEs
@ ODE Solidarity: Proof of Convergence
@ SDE Solidarity and Algorithm Performance
© Optimizing Stochastic Approximation
@ SA for ¥,
@ Stochastic Newton Raphson

Zap Q-learning
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Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

F(07) =E[f(0,W)]

0=0*

=0
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Why?

A simple goal: Find the solution 6* to
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What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to
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What makes this hard?

@ The function f and the distribution of the random vector W may not
be known
— we may only know something about the structure of the problem
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Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

fer) =W, =0

What makes this hard?

@ The function f and the distribution of the random vector W may not
be known
— we may only know something about the structure of the problem

@ Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of 0
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Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution 6* to

fy=Elfe.wy| =0
What makes this hard?
@ The function f and the distribution of the random vector W may not
be known
— we may only know something about the structure of the problem
@ Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of
© The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]
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Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:
On+1)=0(n)+ anf(f(n), W(n+1))
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Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:
O(n+1)=0(n)+ anf(f(n), W(n+1))

The stepsize satisfies
@ To ensure we can reach anywhere: g ay = 00

e To attenuate noise: Za% < 00
usually we will take o, = 1/n
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Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:
O(n+1)=0(n)+ anf(f(n), W(n+1))

The stepsize satisfies
@ To ensure we can reach anywhere: g ay = 00

e To attenuate noise: Za% < 00
usually we will take o, = 1/n

Written this way:
O(n+1) =0(n) + an[f(O(n)) + A(n+ 1)]
Interpreted as a noisy Euler approximation to the ODE
d _

&xt = f(xt)
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Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example

Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean 7 = ¢(X), where X is a random variable:

1= [ cla) fx(o) ds
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Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example

Example: Monte-Carlo

Monte-Carlo Estimation
Estimate the mean 7 = ¢(X), where X is a random variable J

SA interpretation: Find §* solving 0 = E[f (0, X )] = E[c¢(X) — 0]

LS ux

1=1

Algorithm:  6(n

SI}—‘
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Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example

Example: Monte-Carlo

Ya, =00, Y a2 <oo

Monte-Carlo Estimation J

Estimate the mean 7 = ¢(X), where X is a random variable

SA interpretation: Find §* solving 0 = E[f (0, X )] = E[c¢(X) — 0]

Algorithm:  6(n % i (X
n+;:1
= (n+10(n+1)=>» ¢(X(i)) =nb(n)+c(X(n+1))
i=1

— m+1)8(n+1)=(n+1)0(n)+[c(X(n+1)) —0(n)]

SA Recursion: O(n+1)=60(n)+ anf(f(n),X(n+1))
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Stochastic Approximation: Algorithm & Motivation

SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

h* =7
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Stochastic Approximation: Algorithm & Motivation

SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

®(n) = (state, action)

h* =7

D¢
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Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h",®(n+1))¢], 0 =7
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Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(A”, ®(n+1))G], 0 =1

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,}
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SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h’,®(n+1))], 0 =7

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,} = eligibility vectors
Examples are TD- and Q-Learning
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Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h",®(n+1))¢], 0 =7

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,} = eligibility vectors
Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
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Stochastic Approximation: Algorithm & Motivation

Empirical Risk Minimization

Goal: find 6" that minimizes J(0) = E[g(6, W)].

DA
5/46



Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find 6" that minimizes J(0) = E[g(6, W)].

n

1
Settle for empirical risk: Jn(0) = - Zg(@, Wi)
k=1

Methods to compute minimizer 6}, quickly
focus of current research — e.g., [14].
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Empirical Risk Minimization
Goal: find 6" that minimizes J(0) = E[g(6, W)].

n

1
Settle for empirical risk: Jn(0) = - Zg(@, Wi)
k=1

Methods to compute minimizer 6}, quickly
focus of current research — e.g., [14].

However, don't forget the original problem:

dist 1
(9;; — 0" =~ —N(O, E*) Formula for covariance below

NG
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Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find 6" that minimizes J(0) = E[g(6, W)].

n

1
Settle for empirical risk: Jn(0) = - Zg(@, Wi)
k=1

Methods to compute minimizer 6}, quickly
focus of current research — e.g., [14].

However, don't forget the original problem:

dist 1
0 — 0" = —N(O E*) Formula for covariance below

n \/ﬁ

The same conclusion would be reached using stochastic approximation
(with careful design).
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Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.
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Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.

For t,, > ty,

th = th -+ Z f(tha W(] + 1)) 6tj ’ 5tj = t-7 B tj_l
J

tn
- th + f(Xs) ds + g(tk>tn)

173
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Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.

For t,, > tg,

Xpp = Xop + 3 F(Xep, WG+ 1) 60, 0y =t —tja
j

tn
:th + f(Xs) d8+g(tk:tn)

12
Properties of the noise follow from assumptions on f and W.
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Representation in Continuous Time
ODE and SDE Approximations

Continuous time interpolation
The starting point of all approximations:
@ Timescale: tp =0 and t,,41 = t,, + ay, for n > 0.

@ Continuous time process: X; = 0(n) for t = t,;
defined elsewhere by linear interpolation.

© Time horizon T > 0: Construct increasing subsequence {7}, } so that

T = lim (T — Tn)

Analysis restricted to each time interval:
t -
Xt = XTn + f(Xs) ds + g(Tn,t) s Tn <t< Tn+1
Tn
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Representation in Continuous Time
ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 0(n) for t = t,:

t
Xt = XTn + f(Xs) ds + g(Tn,t) s Tn <t< Tn+1
Tn
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Representation in Continuous Time
ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 0(n) for t = t,:
t —
Xe=Xp, + | f(Xo)ds+E(Tn,t), Tn<t<Tht
Tn

For oy = k1,

n

E(tmitn) = > [F(Ok), W(k + 1)) — F(B(k))] oy, + O(m™?)

k=m+1
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Representation in Continuous Time
ODE and SDE Approximations

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 6(n) for t = t,:

t
X; = XTn —|—/ f(Xs) ds + S(Tn,t) , Tn<t<T,p
T

For oy = k1,
Eltmtn) = Y [F(O(R), W (k +1)) = F(6(R))] o + O(m ™)
k=m+1
For nice Markovian W, f Lipschitz in 8 and “nice” in W:
E(tm,tn) = M(ty) — M(tym) + T (tm, tn)

where M is a martingale, and the “junk term” can be disposed of.
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ODE Methods Representation in Continuous Time

ODE and SDE Approximations Il Comments for the experts

Properties of the noise follow from assumptions on f and W.

Continuous time process: X; = 6(n) for t = t,:

t
X = XTn —|—/ f(XS) ds + 5(Tn,t) , T, <t< Tn+1
Tn
n

Eltmita) = Y [fOK),W(k+1)) = F(O(K))] g + O(m™?)

k=m+1
= M(ty) — M(tm) + T (tm, tn)
Markovian W: what is nice?

n

J(tm, tn) = Simple junk — Z Oék[%k — ,kal]
k=m+1

Need nice solutions to “Poisson’s equation”: Hy = h(6(k), W(k+1)) [6, 7].
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Glenlont:
ODE and SDE Approximations

e Boundedness of {6,,} [1, Ch. 3]
Follows from stability of the homogeneous ODE,

%ft = foo(ft) s foo(:)j) = lim ’I“_lf(Tl') Borkar-M. Theorem

“ODE at o0"
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Glenlont:
ODE and SDE Approximations

e Boundedness of {6,,}
Follows from stability of the homogeneous ODE,

—ft &), fe(x) = lim 1 f(rz)

=00

° Convergence of {6,,} to 6*
X, ~ af for large k and all t, where
k k

dtxt = f(ﬂft) ) xljg“k = X7,

[1, Ch. 3]

Borkar-M. Theorem

[1, Ch. 2]
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Glenlont:
ODE and SDE Approximations

e Boundedness of {6,,} [1, Ch. 3]
Follows from stability of the homogeneous ODE,
7& foo(&) ‘]Foo(a:) = hﬁm 7’71_}?(7'1‘) Borkar-M. Theorem
° Convergence of {0,} to 6* [1, Ch. 2]

X, ~ af for large k and all t, where

Lok = by, oh = Xn

@ Variance analysis = SDE approximation [1, Ch. §]

T
YTzYO—i—/ (A+ 3I)Y,ds+ Br
0

Y, = et/2(X; — 0%) Yy, ~/n(0(n) — 0%) since t, ~ log(n).
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(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis

Convergence of {6,,} to 6* In one word: Euler scheme for solving an ODE is robust

Comparison
t
X=X, + f(Xs)ds + E(Tp,t)
Ty
t —
v =X, + | f(x})ds, Tn <t<Thn
Ty
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(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis

Convergence of {6,,} to 6* In one word: Euler scheme for solving an ODE is robust

Comparison
t

Xi=Xp, + | f(Xs)ds+E(Ty,t)
Tn
t —
v =X, + | f(x})ds, Tn <t<Thn
Tn

Assumptions
° %xt = f(=;) is globally asymptotically stable

e f is Lipschiz continuous, Lipschitz constant L
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(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison
t

Xi=Xp, + | f(Xs)ds+E(Ty,t)
Tn
t —
v =X, + | f(x})ds, Tn <t<Thn
Tn

Assumptions
° %xt = f(=;) is globally asymptotically stable
e f is Lipschiz continuous, Lipschitz constant L

@ Nice noise: lim  max ||E(T,,t)| =0.
n=300 Ty <t<Tp 41

@ The sequence {0, } is bounded (Lyapunov condition, or check ODE at ~c)

V.
10/ 46




(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison

t
Xe=Xp, + | f(Xs)ds+ E(Tn,t)
Tn

t
xy = Xrp, + . f(zl) ds, T, <t<Tyu

Error: e = || X — 27| and £" = g e IE(Th, t)]|:

11/46



(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison

t
Xe=Xp, + | f(Xs)ds+ E(Tn,t)
Tn

t
v =X, + | f(x})ds, Tn <t<Thn
Tn
Error: e = || X — 27| and £" = g e IE(Th, t)]|:
t —
e;‘SL/ ey ds—+E", T, <t<Tpi1
Tn
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(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Comparison

t
X =Xg, + f(Xs)ds + E(Tp,t)
Tn

t
v =X, + | f(x})ds, Tn <t<Thn
Tn
Error: e} = | X — o} d&" = e E(T,,t)]:
rror: ef! = [| Xy — 2| an Tngr?;¥n+l 1E(T, 1)
t —
e;‘SL/ ey ds—+E", T, <t<Tpi1
Tn
= e <&"exp([Thy1 — Tu]L) Bellman Gronwall Lemma

11/46



(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" =  max || E(Ty,t)]:
TnStSTTH—l

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy

&
T Tart Tana
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Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" =  max || E(Ty,t)]:
TnStSTTH—l

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy FlX Iarge T, and note Impllcations

&

T Tart Tana
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(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" =  max || E(Ty,t)]:
TnStSTTH—l

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE X,

o«

Fix large T, and note implications:
(1) :c%m_ ~ 0* for all n by GAS

T Tart Tana
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(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" =  max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

T Tart Tana
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Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" =  max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE (_\X,‘ FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

© 2! ~ 0* for large n and all t by GAS

Ta Tart Ton
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Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" =  max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE (_\X,‘ FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

© 2! ~ 0* for large n and all t by GAS

¢
T T Tt Q X: =~} ~ 0" for largen and all t

12/46



(olp] JVIIHLE  ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {6,,} to 6"

Error: e = || Xy —2%| and E" =  max || E(Ty,t)]:
TnStSTnJrl

e < E"exp([Ths1 — Tn]L) vanishes
= Xy, ~ux} forlargen and all t

X, Interpolates estimates o, Sohes ODE Xy FlX Iarge T, and note Impllcations
n ~ 0%
(1) Ty, R 0* for all n by GAS

e xn—i—l :XT

~ Tl —
Tt s XX, A 0% for large n

© 2! ~ 0* for large n and all t by GAS

¢
T T Tt Q X: =~} ~ 0" for largen and all t

Convergence:  lim 0 = lim X, = 6"
k—o0 k—o0

12/46



SDE Solidarity and Algorithm Performance
SDE Approximations

Linear SDE for Y; = et/Q(Xt —0")
Vi, =~ v/n(f(n) — 6%) since t,, = log(n).
t
@ Same starting point: Xy = Xp, + f(Xs)ds + E(Ty,t)
Tn
e Linearize: f(z)~ A(x — 6*), for x ~ 0*.

@ Nice noise gives FCLT: e(t_T”)/25(Tn, t) %’ By — B,
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(o[p] M VIIILEE  SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Y; = e"’/Q(Xt —0")

Vi, =~ v/n(f(n) — 6%) since t,, = log(n).
t
@ Same starting point: Xy = Xp, + f(Xs)ds + E(Ty,t)
Tn
e Linearize: f(z)~ A(x — 6*), for x ~ 0*.

@ Nice noise gives FCLT: e(t_T")/25(Tn, t) %’ By — B,

and with a bit of work:

. t
v, ¥ vy, +/ (A+11)Y.ds+ B, - Br,
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(o[p] M VIIILEE  SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Y; = et/Q(Xt —0")

. t
v, & vy, +/ (A+11)Y.ds+ B, - Br,
Tn

B Brownian motion, B; ~ N(0,tXA).
Translating back to reality: (under assumptions | won't list)
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SDE Solidarity and Algorithm Performance
SDE Approximations

Linear SDE for Y; = et/Q(Xt —0")

. t
v, & vy, +/ (A+11)Y.ds+ B, - Br,
Tn

B Brownian motion, B; ~ N(0,tXA).
Translating back to reality: (under assumptions | won't list)

Central Limit Theorem

/nf(n) converges in distribution to N (0, %), whose covariance is the
solution to the Lyapunov equation:

(A+3)S+ A+ 3)"+ZA =0

The covariance is finite if Real \(A4) < —%

14 /46




(o[p] M VIIILEE  SDE Solidarity and Algorithm Performance

SDE Approximations

Linear SDE for V; = e/?(X; — 0%)

Central Limit Theorem

/nf(n) converges in distribution to N (0, X), whose covariance is the
solution to the Lyapunov equation:

(A+iDT+2(A+3)"+Za=0

The covariance is finite if Real A(4) < —3

Questions for algorithm design:

@ How do we fix an algorithm if it fails this condition?
@ How can we optimize X7
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(o[p] M VIIILEE  SDE Solidarity and Algorithm Performance

SDE Approximations

Linear SDE for V; = e/?(X; — 0%)

Central Limit Theorem

/nf(n) converges in distribution to N (0, X), whose covariance is the
solution to the Lyapunov equation:

(A+iDT+2(A+3)"+Za=0

The covariance is finite if Real A(4) < —3

Questions for algorithm design:

@ How do we fix an algorithm if it fails this condition?
@ How can we optimize X7

© Does this lead to improved algorithms for reinforcement learning?

14 /46




Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with (n) := 0(n) — 6*:

O(n+1)=0(n)+ L[A0(n) + A(n +1)]

{A(n)} uncorrelated, zero mean, covariance Y.

15/46



Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with (n) := (n) — 6*:

O(n+1)=0(n)+ L[A0(n) + A(n +1)]
{A(n)} uncorrelated, zero mean, covariance Y.

Approximate \/n + 1 ~ /n(1+ (2n)~1):
Vi +10(n+1) = /nf(n) + L[(A+ 31)v/nb(n) + vVnA(n +1)]
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Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

Recursion for uncorrelated noise

Consider a linear model with (n) := (n) — 6*:

O(n+1)=0(n)+ L[A0(n) + A(n +1)]
{A(n)} uncorrelated, zero mean, covariance Y.

Approximate \/n + 1 ~ /n(1+ (2n)~1):
Vi +10(n +1) = Vaf(n) + L[(A+ 51)vnb(n) + VnA(n + 1)]
Covariance recursion:
Sn+1 = (n+ DE[O(n + )9( +1)7]

z2n+%{ N, +3%, (A—i—%I)T—FEA}
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Optimizing Stochastic Approximation SA for 3,

Asymptotic Covariance

£ = lim B, = lim nE[0(n)d(n)"], Vnb(n) =~ N(0,%)

n—o0

SA recursion for covariance:

Snit & S+ H{(A+ 3080+ Su(A+ 3D+ 24 |

A=LF(0%)
Conclusions

Q If ReA(4) > —% for some eigenvalue then X is (typically) infinite

Q If ReA(4) < —% for all, then ¥ = lim,,_,, Xy, is the unique solution
to the Lyapunov equation:

0=(A+iNS+S(A+31)"+ s
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

0(n-+1) = 0(n) + — G f(On), X(n)

17 /46



Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

0(n-+1) = 0n) + — <G f(0(n), X (1)

Assume it converges, and linearize:

1

9(n+1)%9(n)+n+1

G(AO(n) + A(n+1)), A=

17 /46



Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

1
f(n+1)=0(n)+ man(G(n),X(n))
Assume it converges, and linearize:

1
n—+1

O(n+1) =~ 6(n) + G(AG(n) + A(n + 1)), A=

If G = G*:= —A"! then
@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon  Stochastic Gauss-Newton, Ruppert [9]
o Itisoptimal: X*=G*TAGT < XC any other G
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Introduce a d x d matrix gain sequence {G,, }:

0(n-+1) = 0(n) + — G f(On), X(n)

Assume it converges, and linearize:

1

9(n+1)%9(n)+n+1

G(AO(n) + A(n+1)), A=

If G =G*:=—A""! then
@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon  Stochastic Gauss-Newton, Ruppert [9]
o Itisoptimal: X*=G*TAGT < XC any other G
Ruppert-Polyak averaging is also optimal, but first two bullets are missing.
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance
Example: return to Monte-Carlo

O(n+1) = 0(n) + HLH (—e(n) FX(n+ 1))
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Example: return to Monte-Carlo
g

O(n+1) = 0(n) + (—e(n) FX(n+ 1))
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance
Normalization for analysis: A(n) = X(n) — E[X(n)]

O(n+1) = 0(n) + HLH (—é(n) NG 1))
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Normalization for analysis: A(n) = X(n) — E[X(n)]

O(n+1) = 0(n) + HLH (—é(n) NG 1))

Asymptotic variance as a function of g
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Normalization for analysis: A(n) = X(n) — E[X(n)]
f(n+1) = 6(n) + n%l (—é(n) T A+ 1))
Example: X (n) = W2(n), W ~ N(0,1), 0% =2

oQ:

2 :
O'Af ,,,,,

Asymptotic variance as a function of g
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Optimizing Stochastic Approximation Stochastic Ni Rapk

Optimal Asymptotic Covariance

Normalization for analysis: A(n) = X(n) — E[X(n)]
G(n+1) =0(n) + RLH (—é(n) NG 1))
Example: X(n) = W2(n), W ~ N(0,1), 0% =2

‘
9 k1010

SA estimates of E[W?2], W ~ N(0,1)

18/46



Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

2
. . . ° ? ? 59
Central Limit Theorem optimal ¢* =1
——— Theoretical Experimental
0 _ 3 . 4
- . VTH(T) T =10 . =10
” 02 02
RSN 01 01
[ ) i .“'II.L.
> -6 -4 -2 o 2 4 6 8
03 03
ﬂ_' 02 02
Qlﬁ 01 01
0 0
-6 -4 -2 o 2 4 6 8

Ruppert-Polyak: turn up the gain, with o € (0 5,1):

On+1)=0(n)+ —— [ O(n) + X(n+ 1)]

(n +1)9

6(n) = Z Also has optimal asymptotic covariance

k=1

:\»—‘

o = = =z 9ace
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ing Stochastic Approximation

Optimal Asymptotic Covariance >=% ()

TA
Central Limit Theorem sub-optimal g > 1
——— Theoretical Experimental
0, . 3 . 4

T VTO(T) T =10 . T =10
*” 02 02
> g o
[ ) )
> -6 -4 -2 0 2 4 6 8 B3 -4 -2 o 2 4 6 8

03 03
Q_‘ 02 02
Qlﬁ 01 01

U~6 -4 -2 0 2 4 6 8 0-6 -4 -2 0 2 4 6 8

g=10

g=20

u]
o)
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imizing Stochastic Approximation

Optimal Asymptotic Covariance s (L)

Central Limit Theorem fails g < 1/2

——— Theoretical Experimental
- VTO(T) T=10° T =10" T=10°
03 03 03
” 02 02
*
= 01 01
Il
> -6 -4 2 0 2 4 6 8 E
03
Q_‘ 02
m‘ 0.1
[
-6 -4 -2 o 2 4 6 8
i
S
Il
=
2
S
Il
>

= 9ac
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Optimizing Stochastic Approximation

Optimal Asymptotic Covariance

Impact on algorithm design : new Q-learning algorithms

.
o
2
=

L
c
©

£

v

o}

Watkins, Speedy Q-learning,

1 2 3 4 5 6 7 8 9 4, 10 %105

Next time
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Part Il: Fastest SA and Zap Q-Learning

Hidden theory implications for reinforcement learning

@ Fastest Stochastic Approximation
o Algorithm Performance Revisited
@ Zap Stochastic Newton-Raphson

© Reinforcement Learning
e RL & SA
@ MDP Theory
@ Q-Learning

O Zap Q-Learning
@ Watkin's algorithm
@ Optimal stopping

@ Conclusions & Future Work
© References

Basics
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Fastest Stochastic Approximation

What is Stochastic Approximation?
Recap

Basic algorithm of Robbins & Monro 1951, with matrix gain:
0(n+1)=0(n) + anGnf(0(n), W(n+1))
Interpreted as a noisy Euler approximation to the ODE

%Sﬂt = Gf(xt)

Usually we take o, = 1/n
Matrices {G} used to

@ Optimize asymptotic covariance

@ Improve dynamics (inspired by Newton-Raphson)

22/46



Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
@ Finite-n bound:

P{l6(n)[| > e} < exp(—I(e,n)),  I(e,n) = O(ne?)
@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T} . Vnb(n) =~ N(0,%)

n—oo
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Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
@ Finite-n bound:

PUIOM)] = €} < exp(—I(e,n)),  I(e,n) = O(ne?)

@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T}, Vnb(n) ~ N(0,%)

n—oo

Latter metric is most valuable for algorithm design.
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Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
© Finite-n bound:

PUIOM)] = €} < exp(—I(e,n)),  I(e,n) = O(ne?)

@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T}, Vnb(n) ~ N(0,%)

n—oo

Latter metric is most valuable for algorithm design.
Recall last time: G = G* := —A~! then

@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon
o Itisoptimal: ¥* = G*LAG T < 2C any other G
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Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, 6(n) := 0(n) — 6"
© Finite-n bound:

PUIOM)] = €} < exp(—I(e,n)),  I(e,n) = O(ne?)

@ Asymptotic covariance:

Y = lim nE[é(n)é(n)T}, Vnb(n) ~ N(0,%)

n—oo

Latter metric is most valuable for algorithm design.
Recall last time: G = G* := —A~! then

@ Resembles Monte-Carlo estimate
@ Resembles Newton-Rapshon Do you see the resemblance?
o Itisoptimal: ¥* = G*LAG T < 2C any other G

23/46



D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Resembles Newton-Rapshon?
This doesn't look much like Newton-Raphson:

_ d -
=A@, A= T 0)
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D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate deterministic Newton-Raphson)

Requires A, ~ A(6),) := die f(6,)

24 / 46



o Gt iesie i it
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))

An - An—l + ’Yn(An - 121\71—1)7 An = C%f(@(n),X(n))
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D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))
. ~ ~ d

Ap=An_1+m(4n — Ap), A, = = (0(n), X(n))

A, ~ A(6,) requires high-gain, In 00, n — oo
a

n
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D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))

~ ~ ~ d
An A n n_An— ) = T35
1+ (A 1) A, T

~

n

Always: a;, = 1/n. Numerics that follow: v, = (1/n)?, p €

(6(n), X(n))

A, =~ A(6,,) requires high-gain, In 00, n — oo
a

(0.5,1)
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D Sl e e N
Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

0(n +1) = 0(n) + an[— A, f(0(n), X (n))

—~ —~ —~ d

Ap=An_1+m(4n — Ap), A, = = (0(n), X(n))

A, ~ A(6,) requires high-gain, In 00, n — oo
a

n

Always: oy, = 1/n. Numerics that follow: 7, = (1/n)”, p € (0.5,1)

ODE for Zap SNR

d

S =A@ @), AW@) =1 F (@)
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Fastest Stochastic Approximation WAL ERT N Rap}

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

O(n+1) = 0(n) + an[— A, F(0(n), X (n))

A=Ayt nldn = A), Ay = 25 F(6(), X ()
En ~ A(6,,) requires high-gain, Z—Z — 00, n — 00
Always: oy, = 1/n. Numerics that follow: v, = (1/n)?, p € (0.5,1) )
ODE for Zap SNR
Sa= A @), AW = @) |

@ Not necessarily stable
@ General conditions for convergence is open 26



Reinforcement Learning
and Stochastic Approximation



SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

h* =7
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SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h",®(n+1)) | ®(0) ... 2(n)],

h* =7
®(n) = (state, action)

D¢
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G ED
SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(h",®(n+1))¢], 0 =7
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G ED
SA and RL Design

Functional equations in Stochastic Control

Always of the form

0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7
Galerkin relaxation:
0=E[F(A”, ®(n+1))G], 0 =1

Necessary Ingredients:
o Parameterized family {h? : § € R?}
e Adapted, d-dimensional stochastic process {(,,}
Examples are TD- and Q-Learning
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G ED
SA and RL Design

Functional equations in Stochastic Control
Always of the form
0=E[F(h*,®(n+1))| ®(0) ... d(n)], h* =7

Galerkin relaxation:
0=E[F(",®(n+1)))], g* =7

Necessary Ingredients:
o Parameterized family {n? : § € R%}
e Adapted, d-dimensional stochastic process {(,,}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

25/46



TP U=
Stochastic Optimal Control

MDP Model
X is a controlled Markov chain, with input U
o For all states = and sets A,
P{X(n+1) € A| X(n) ==z, U(n) = u,and prior history} = P, (z, A)

@ c: Xx U — R is a cost function

@ (8 < 1 a discount factor restrict to finite state and action space here
v
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TP U=
Stochastic Optimal Control

MDP Model
X is a controlled Markov chain, with input U
o For all states = and sets A,
P{X(n+1) € A| X(n) ==z, U(n) = u,and prior history} = P, (z, A)
@ ¢: Xx U—Ris a cost function

@ (8 < 1 a discount factor restrict to finite state and action space here
v

Value function:

() = min 3 BE[e(X (n), U(n)) | X(0) =]
n=0
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MDP Theory

Stochastic Optimal Control

MDP Model
X is a controlled Markov chain, with input U

@ For all states x and sets A,
P{X(n+1) € A| X(n) ==z, U(n) = u,and prior history} = P, (z, A)
@ c: Xx U — R is a cost function

@ (8 < 1 a discount factor restrict to finite state and action space here
v

Value function: .
W () = min 3" BEle(X(n), U(n)) | X(0) = 2]
n=0

Bellman equation:

h*(z) = mu%n{c(:v,u) + BER* (X (n+1)) | X(n) =z, U(n) =ul}




Q-Learning
@-function

Trick to swap expectation and minimum

Bellman equation:

h*(z) = m&n{c(:c,u) + BER (X(n+1)) | X(n) =2, Un) =u]}
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Q-Learning
@-function

Trick to swap expectation and minimum

Bellman equation:
h*(z) = m&n{c(m,u) + BER* (X (n+1)) | X(n) =z, U(n) =ul}
Q-function:

Q" (,u) i= cla, u) + BE[N (X (n +1)) | X(n) =2, U(n) =1
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Q-Learning
@-function

Trick to swap expectation and minimum

Bellman equation:
h*(z) = m&n{c(:c,u) + BER* (X(n+1)) | X(n) =z, U(n) =ul}
Q-function:

Q" (,u) i= cla, u) + BE[N (X (n +1)) | X(n) =2, U(n) =

h(2) = min Q" (z,u)

27/46



Reinforcement Learning ORI RETTI

@-function

Trick to swap expectation and minimum

Bellman equation:
h*(z) = m&n{c(:c,u) + BER (X(n+1)) | X(n) =2, Un) =u]}
Q-function:
Q" (z,u) :=c(z,u) + BEL (X(n+ 1)) | X(n) =z, U(n) = ul
W (@) = min Q" (z,u)

Another Bellman equation:

Q*(z,u) = c¢(z,u) + BE]

O

(X(n+1)) | X(n) =2, Uln) = ul

*(x) = muin Q*(x,u)

D |
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CHEEL T
@-function

Trick to swap expectation and minimum

Another Bellman equation:

Q*(z,u) = c(x,u) + PE[

O

(X(n+1) | X(n) =2z, Uln) = ul

*(x) = muin Q*(x,u)

D |

Q" (z,u) = mUiHZB"E[C(X(n), U(n)) | X(0) = 2,U(0) = u]
n=0
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Q-Learning
@-function

Trick to swap expectation and minimum

Another Bellman equation:

Q*(z,u) = c(x,u) + PE[

O

(X(n+1) | X(n) =2z, Uln) = ul

*(x) = muin Q*(x,u)

D |

Q" (z,u) = mUiHZB"E[C(X(n), U(n)) | X(0) = 2,U(0) = u]
n=0

One-to-one mapping between cost functions and Q-functions.
Notation:

Q" =2 ()
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Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0
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Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0

That is,
0=E[F(Q",®(n+1)) | ®(0) ... ®(n)],

with ®(n + 1) = (X (n + 1), X (n), U(n)).
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Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0

Q-Learning
Find 6* that solves

E[(c(X(n),U(n)) + BQ" (X (n +1)) = Q" ((X(n),U(n)))¢a] = 0

where the input U is randomized state feedback
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Reinforcement Learning ORI RETTI

(-Learning and Galerkin Relaxation

Dynamic programming
Find function @* that solves

E[e(X(n),U(n)) + Q" (X (n +1)) = Q"(X(n),U(n)) | Fu] =0

Q-Learning
Find 6* that solves

E[(c(X(n),U(n)) + BQ" (X (n +1)) = Q" ((X(n),U(n)))¢a] = 0

where the input U is randomized state feedback

The family {Q%} and eligibility vectors {¢,,} are part of algorithm design.

V.
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Watkins' ()-learning

Find 6* that solves

E[(c(X(n), U(n)) + BQ" (X(n+1)) = Q" (X(n), U(n)))¢] = 0

o = = = =z 9ace
30/46



CHEEL T
Watkins' ()-learning

Find 6* that solves

E[(c(X (n),U(n)) + BQ” (X(n+1)) = Q" ((X(n),U(n)))¢a] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {(,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
o (, =v(X,,Uy) and
° Yp(z,u) =1z =a",u=1u"} (complete basis)
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CHEEL T
Watkins' ()-learning

Find 6* that solves

E[(c(X (n),U(n)) + BQ” (X(n+1)) = Q" ((X(n),U(n)))¢a] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {(,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
o (, =v(X,,Uy) and
° Yp(z,u) =1z =a",u=1u"} (complete basis)

Asymptotic covariance is typically infinite
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Q-Learning
Watkins' ()-learning

Big Question: Can we Zap Q-Learning?
Find 6* that solves

E[(c(X (n),U(n)) + BQ” (X(n+1)) = Q" ((X(n),U(n)))¢a] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {(,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
o (, =v(X,,Uy) and
° Yp(z,u) =1z =a",u=1u"} (complete basis)

Asymptotic covariance is typically infinite
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Zap Q-Learning

Watkins, Speedy Q-learning,

f Polyak-Ruppert Averaging



Zap Q-Learning

Asymptotic Covariance of Watkins' Q-Learning 1
Improvements are needed! 4 51
N o
32
Histogram of parameter estimates after 10° iterations.
40 :
IA
% Histogram for 6,,(15) |
i H
|
n = 10° Hl
20} 1]
:A
10} 0*(15) !
:A
0 N N N N N N I
200 300 400 1486.6

Example from Devraj & M 2017
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =E[f(0,D(n+1))]
= E[Gu [e(X (n), U(n)) + BQ(X (n + 1)) — Q°(X (n),U(n))]]
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0= J(6) =
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0= J(6) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
(be(X(n +1)):= argjnin QG(X(n +1),u)
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
(be(X(n +1)):= argjnin QG(X(n +1),u)

Algorithm:

e(n + 1): a(n) + an[f‘:{n} lf(e(n)vé(n"i_ 1))7 fln — ;l\,,,| + Am(fln 7 }1,,,1):
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
qb‘g(X(n +1)):= argjnin QG(X(n +1),u)

Algorithm:

O(n+1)=0(n) +an A, FON), ®(n+1)); A, = A, + (A, A )
Apyqi= %f (0, ®(n+1))
= (u [BY(X (n+ 1), 6" (X (n + 1)) — ¥(X(n),U(n))] "
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

0=f(0) =

A(6) = E[Gu [Bo(X (n +1),¢° (X (n + 1)) — (X (n), U(n))] "]
qb‘g(X(n +1)):= argjnin QG(X(n +1),u)

Algorithm:

e(n + 1): a(n) + an{f‘:l\/l} lf(e(n)vé(n—i_ 1))7 fl/: - “Alnfl + 7’//(‘4/7 o 441271):

Apy1 = %f (0, ®(n+1))
= Gu[BU(X (n+1), ¢ (X (n + 1)) — (X (n),U(n))]"

Stable?
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

ODE Analysis: change of variables ¢ = Q*(<)
Functional Q* maps cost functions to Q-functions:

(e, u) = s(,0) + B Y Pule, 2’y ming (e, o)

xl
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Zap Q-learning
Zap Q-Learning = Zap SNR for Q-Learning

ODE Analysis: change of variables ¢ = Q*(<)
Functional Q* maps cost functions to Q-functions:

q(x,u) = s(2,u) + B ) Pu(w,2") ming(a’,u')

xl

ODE for Zap-Q

d
@ = Q% (), %9& = —¢G+cC

= convergence, optimal covariance, ...
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Zap Q-Learning

T
Example: Optimize Walk to Cafe ?i 5 ﬁ
3
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2

Convergence with Zap gain 7, = n~ 98 Discount factor: 8 = 0.99

Watkins' algorithm has infinite asymptotic covariance with a,, = 1/n

\

100 W‘:M’v«i“;» Watkins, Speedy Q-learning,

- f Polyak-Ruppert Averaging

80 e

Bellman Error

\ 60
\ 40
SN~ ) .
¥ ‘g\‘ 20 |
Sy & 4
7 Lap o o
74 0 1 2 3 4 5 6 7 8 9, 10 .10°

Convergence of Zap-Q Learning
Discount factor: 5 = 0.99
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Convergence with Zap gain 7, = n= 0% Discount factor: 8 = 0.99

Watkins' algorithm has infinite asymptotic covariance with a,, = 1/n

Watkins, Speedy Q-learning,
f Polyak-Ruppert Averaging

Bellman Error

Convergence of Zap-Q Learning
Discount factor: 5 = 0.99
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—0.85 2

Convergence with Zap gain v, =n Discount factor: 8 = 0.99

Watkins' algorithm has infinite asymptotic covariance with a,, = 1/n

Optimal scalar gain is approximately «,, = 1500/n

S
g 100 Watkins, Speedy Q-learning,
Ll f Polyak-Ruppert Averaging
S 8 =
R S Watkins, g = 1500
\ = 60
\ \ ] |
. @ i
. . \ 40 J‘w
"*‘Jv«’”l'w
Wi Py

. — VT A
, Yn = Qp o »#MA«.\».\,ANMMWMM.NM\,,,

2 3 4 5 6 7 8 9, 10 108
Convergence of Zap-Q Learning
Discount factor: 5 = 0.99

34/46



Zap Q-Learning
Zap Q-Learning

Example: Optimize Walk to Cafe

—— Theoritical pdf

6
3 “

—— Experimental pdf

mmm Empirical: 1000 trials
g
Entry #18:

n=10*

200 -150 -100 -50 O 50 100 150 200

n = 10°

Entry#10:  n = 10*
CLT gives good prediction of finite-n performance

-800 -600 -400 200 O 200 400 600 800

n=10°

DA
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Local Convergence: 6(0) initialized in neighborhood of 6*

05 2
. B Speedy 2 NEEEM g = 500 ‘ Polyak-Ruppert
I Poly < g = 1500 W Z2p-Q: Y =
= g = 5000 W Zap-Q: Yo = o)
1
A .

60 80 100 120 140 160 0 20 30 40 50 3

Bellman Error
_, Histograms n = 108

5]
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Local Convergence: 6(0) initialized in neighborhood of 6*
051 2
I Speedy 2 I g = 500 Polyak-Ruppert
[ Poly < W g = 1500 W Zap-Q: 7 = O
= W g - 5000 I Zap-Q: 7 = ap

Bellman Error
Histograms n = 10°
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Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00
Parameterized Q-function: QY with § € R'9

-10 T T T T
1
ach xox Real \;(A) i Real\ > ——  for every eigenvalue A
-10* x
x Asymptotic covariance is infinite

-107Y x 1
167 Xy
—107} X
-10° -

0 1 2 3 4 5 6 7 8 9 10

37/46



CLEE
Zap Q-Learning

Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00
Parameterized Q-function: QY with § € R'9

-10 T T
1
ach xox Real \;(A) i Real A > ——  for every eigenvalue A
-10* x
x Asymptotic covariance is infinite

-107Y x 1
-107 * x Authors observed slow convergence
16! & Proposed a matrix gain sequence

o . L L L {Gn}  (seerefsfor details)
-1 1 2 3 4 5 6 7 8 9 10
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Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00

Parameterized Q-function: QY with § € R'9

-10 : : : : 10 r T T T
et XX Real \;(A) 3 \i(GA) x
X x ~5 x x
-10" x ECD
-107 x § ox x
. o]
e X .
s x x
-107 X x
_10° ' L L L ~10 | ' ' L L H
0 1 2 3 4 5 7 8 9 10 -30 -25 -20 -15 -10 -5  _0.525
H Re (A(GA))

Eigenvalues of A and G A for the finance example

Favorite choice of gain in [25] barely meets the criterion Re(A(GA)) < —3
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Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance
State space: R!00. Parameterized Q-function: Q% with # € R0

W, = \/ﬁen —— Theoritical pdf —— Experimental pdf — mmmm Empirical: 1000 trials

Zap-Q

-250 -200 -150 -100 -50 ] 50 100 -200 -100 0 100 200 300
-1000 0 1000 2000 3000 -600 -400 -200 0 200 400 600 800
Entry#1: n = 2 x 10° Entry#7: n = 2 x 10°
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Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R!00.
Parameterized Q-function: QY with # € R0

Histograms of the average reward obtained using the different algorithms:

stn=2x10* ol 1 =2 x 10° ol =2 x10°  =mGQo) g=100
30 w0 500 G-Q(0) g =200
400 [ Zap-Q p=1.0

& o0 I Zap-Q p =08

40 [0 Zap-Q p=0.85

Zap-Q > G-Q
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@ The asymptotic covariance is an awesome design tool.

It is also predictive of finite-n performance.

Example: g* = 1500 was chosen based on asymptotic covariance
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@ The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.
Example: g* = 1500 was chosen based on asymptotic covariance
@ The success of Zap Q-Learning is due to two factors:

o Choice of gain for optimal asymptotic variance (validated in simulations)
o Luck: Newton-Raphson is globally stable
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Conclusions & Future Work

Conclusions

@ The success of Zap Q-Learning is due to two factors:

e Choice of gain for optimal asymptotic variance (validated in simulations)
o Luck: Newton-Raphson is globally stable

@ Future work:

o Q-learning with function-approximation
o Obtain conditions for a stable algorithm in a general setting

o Optimal stopping time problems

o Reduced complexity algorithms with adaptive optimization of algorithm
parameters (stay tuned for revision on arXiv)
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