
Reinforcement Learning
Hidden Theory, and New Super-Fast Algorithms

Tutorial for the Simons Institute program on Real-Time Decision Making

March 7 & 9, 2018

Sean P. Meyn

Based on joint research with Vivek Borkar ... Adithya M. Devraj

Department of Electrical and Computer Engineering — University of Florida

http://ccc.centers.ufl.edu/

References

[1] V. S. Borkar. Stochastic
Approximation: A Dynamical
Systems Viewpoint.

Hindustan Book Agency and
Cambridge University Press, Delhi,
India and Cambridge, UK, 2008.

[2] A. M. Devraj and S. P. Meyn,
Fastest convergence for Q-learning.

ArXiv, July 2017.

Tutorial, and extended version of Zap

Q-learning. Advances in Neural Information

Processing Systems (NIPS). Dec. 2017.

More references can be found there, and here: Bibliography

Part I: SA & ML Theory
Survey of basic theory: Borkar’s monograph [1] and our tutorial [2]

1 Stochastic Approximation: Algorithm & Motivation
Basic Algorithm
Monte-Carlo
Reinforcement Learning
Empirical Risk Minimization

2 ODE Methods
Representation in Continuous Time
A Menu of ODEs
ODE Solidarity: Proof of Convergence
SDE Solidarity and Algorithm Performance

3 Optimizing Stochastic Approximation
SA for Σn

Stochastic Newton Raphson

Part II : Zap Q-learning

E[f(θ,W)]
θ=θ∗

= 0

Stochastic Approximation

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W)]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

– we may only know something about the structure of the problem

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]

1 / 46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W)]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

– we may only know something about the structure of the problem

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]

1 / 46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W)]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

– we may only know something about the structure of the problem

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]

1 / 46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W)]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

– we may only know something about the structure of the problem

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]

1 / 46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
Why?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W)]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

– we may only know something about the structure of the problem

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite: typical in Q-learning [Devraj & M 2017]

1 / 46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:

θ(n+ 1) = θ(n) + αnf(θ(n),W (n+ 1))

The stepsize satisfies

To ensure we can reach anywhere:
∑

αn =∞
To attenuate noise:

∑
α2
n <∞

usually we will take αn = 1/n

Written this way:

θ(n+ 1) = θ(n) + αn[f̄(θ(n)) + ∆(n+ 1)]

Interpreted as a noisy Euler approximation to the ODE

d

dt
xt = f̄(xt)

2 / 46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:

θ(n+ 1) = θ(n) + αnf(θ(n),W (n+ 1))

The stepsize satisfies

To ensure we can reach anywhere:
∑

αn =∞
To attenuate noise:

∑
α2
n <∞

usually we will take αn = 1/n

Written this way:

θ(n+ 1) = θ(n) + αn[f̄(θ(n)) + ∆(n+ 1)]

Interpreted as a noisy Euler approximation to the ODE

d

dt
xt = f̄(xt)

2 / 46

Stochastic Approximation: Algorithm & Motivation Basic Algorithm

What is Stochastic Approximation?
What?

Basic algorithm of Robbins & Monro 1951:

θ(n+ 1) = θ(n) + αnf(θ(n),W (n+ 1))

The stepsize satisfies

To ensure we can reach anywhere:
∑

αn =∞
To attenuate noise:

∑
α2
n <∞

usually we will take αn = 1/n

Written this way:

θ(n+ 1) = θ(n) + αn[f̄(θ(n)) + ∆(n+ 1)]

Interpreted as a noisy Euler approximation to the ODE

d

dt
xt = f̄(xt)

2 / 46

Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = c(X), where X is a random variable:

η =

∫
c(x) fX(x) dx

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑

i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =
n+1∑

i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞

3 / 46

Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = c(X), where X is a random variable

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑

i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =

n+1∑

i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞

3 / 46

Stochastic Approximation: Algorithm & Motivation Monte-Carlo

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = c(X), where X is a random variable

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑

i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =

n+1∑

i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞

3 / 46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

≡ eligibility vectors

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

4 / 46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Φ(n) = (state, action)

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

≡ eligibility vectors

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

4 / 46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

≡ eligibility vectors

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

4 / 46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

≡ eligibility vectors

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

4 / 46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn} ≡ eligibility vectors

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

4 / 46

Stochastic Approximation: Algorithm & Motivation Reinforcement Learning

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn} ≡ eligibility vectors

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

4 / 46

Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W)].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46

Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W)].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46

Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W)].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46

Stochastic Approximation: Algorithm & Motivation Empirical Risk Minimization

Empirical Risk Minimization
Goal: find θ∗ that minimizes J(θ) = E[g(θ,W)].

Settle for empirical risk: Jn(θ) =
1

n

n∑

k=1

g(θ,Wk)

Methods to compute minimizer θ∗n quickly
focus of current research – e.g., [14].

However, don’t forget the original problem:

θ∗n − θ∗
dist≈ 1√

n
N(0,Σ∗) Formula for covariance below

The same conclusion would be reached using stochastic approximation
(with careful design).

5 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations

Continuous time interpolation

The starting point of all approximations:

1 Timescale: t0 = 0 and tn+1 = tn + αn for n ≥ 0.

2 Continuous time process: Xt = θ(n) for t = tn;
defined elsewhere by linear interpolation.

6 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations

Continuous time interpolation

The starting point of all approximations:

1 Timescale: t0 = 0 and tn+1 = tn + αn for n ≥ 0.

2 Continuous time process: Xt = θ(n) for t = tn;
defined elsewhere by linear interpolation.

For tn > tk,

Xtn = Xtk +
∑

j

f(Xtj ,W (j + 1)) δtj , δtj = tj − tj−1

= Xtk +

∫ tn

tk

f̄(Xs) ds+ E(tk, tn)

6 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations

Continuous time interpolation

The starting point of all approximations:

1 Timescale: t0 = 0 and tn+1 = tn + αn for n ≥ 0.

2 Continuous time process: Xt = θ(n) for t = tn;
defined elsewhere by linear interpolation.

For tn > tk,

Xtn = Xtk +
∑

j

f(Xtj ,W (j + 1)) δtj , δtj = tj − tj−1

= Xtk +

∫ tn

tk

f̄(Xs) ds+ E(tk, tn)

Properties of the noise follow from assumptions on f and W .

6 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations

Continuous time interpolation

The starting point of all approximations:

1 Timescale: t0 = 0 and tn+1 = tn + αn for n ≥ 0.

2 Continuous time process: Xt = θ(n) for t = tn;
defined elsewhere by linear interpolation.

3 Time horizon T � 0: Construct increasing subsequence {Tn} so that

T = lim
n→∞

(Tn+1 − Tn)

Analysis restricted to each time interval:

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t) , Tn ≤ t < Tn+1

6 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations
Properties of the noise follow from assumptions on f and W .

Continuous time process: Xt = θ(n) for t = tn:

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t) , Tn ≤ t < Tn+1

For αk = k−1,

E(tm, tn) =
n∑

k=m+1

[
f(θ(k),W (k + 1))− f̄(θ(k))

]
αk +O(m−2)

For nice Markovian W , f Lipschitz in θ and “nice” in W :

E(tm, tn) = M(tn)−M(tm) + J (tm, tn)

where M is a martingale, and the “junk term” can be disposed of.

7 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations
Properties of the noise follow from assumptions on f and W .

Continuous time process: Xt = θ(n) for t = tn:

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t) , Tn ≤ t < Tn+1

For αk = k−1,

E(tm, tn) =

n∑

k=m+1

[
f(θ(k),W (k + 1))− f̄(θ(k))

]
αk +O(m−2)

For nice Markovian W , f Lipschitz in θ and “nice” in W :

E(tm, tn) = M(tn)−M(tm) + J (tm, tn)

where M is a martingale, and the “junk term” can be disposed of.

7 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations
Properties of the noise follow from assumptions on f and W .

Continuous time process: Xt = θ(n) for t = tn:

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t) , Tn ≤ t < Tn+1

For αk = k−1,

E(tm, tn) =

n∑

k=m+1

[
f(θ(k),W (k + 1))− f̄(θ(k))

]
αk +O(m−2)

For nice Markovian W , f Lipschitz in θ and “nice” in W :

E(tm, tn) = M(tn)−M(tm) + J (tm, tn)

where M is a martingale, and the “junk term” can be disposed of.

7 / 46

ODE Methods Representation in Continuous Time

ODE and SDE Approximations !! Comments for the experts

Properties of the noise follow from assumptions on f and W .

Continuous time process: Xt = θ(n) for t = tn:

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t) , Tn ≤ t < Tn+1

E(tm, tn) =

n∑

k=m+1

[
f(θ(k),W (k + 1))− f̄(θ(k))

]
αk +O(m−2)

= M(tn)−M(tm) + J (tm, tn)

Markovian W : what is nice?

J (tm, tn) = Simple junk−
n∑

k=m+1

αk[Hk −Hk−1]

Need nice solutions to “Poisson’s equation”: Hk = h(θ(k),W (k+1)) [6, 7].

8 / 46

ODE Methods A Menu of ODEs

ODE and SDE Approximations

Boundedness of {θn} [1, Ch. 3]
Follows from stability of the homogeneous ODE,

d

dt
ξt = f̄∞(ξt) , f̄∞(x) = lim

r→∞
r−1f̄(rx) Borkar-M. Theorem

“ODE at ∞”

Convergence of {θn} to θ∗ [1, Ch. 2]
Xt ≈ xkt for large k and all t, where

d

dt
xkt = f̄(xkt) , xkTk = XTk

Variance analysis ≡ SDE approximation [1, Ch. 8]

YT ≈ Y0 +

∫ T

0
(A+ 1

2I)Ys ds+BT

Yt = et/2(Xt − θ∗) Ytn ≈
√
n(θ(n)− θ∗) since tn ≈ log(n).

9 / 46

ODE Methods A Menu of ODEs

ODE and SDE Approximations

Boundedness of {θn} [1, Ch. 3]
Follows from stability of the homogeneous ODE,

d

dt
ξt = f̄∞(ξt) , f̄∞(x) = lim

r→∞
r−1f̄(rx) Borkar-M. Theorem

Convergence of {θn} to θ∗ [1, Ch. 2]
Xt ≈ xkt for large k and all t, where

d

dt
xkt = f̄(xkt) , xkTk = XTk

Variance analysis ≡ SDE approximation [1, Ch. 8]

YT ≈ Y0 +

∫ T

0
(A+ 1

2I)Ys ds+BT

Yt = et/2(Xt − θ∗) Ytn ≈
√
n(θ(n)− θ∗) since tn ≈ log(n).

9 / 46

ODE Methods A Menu of ODEs

ODE and SDE Approximations

Boundedness of {θn} [1, Ch. 3]
Follows from stability of the homogeneous ODE,

d

dt
ξt = f̄∞(ξt) , f̄∞(x) = lim

r→∞
r−1f̄(rx) Borkar-M. Theorem

Convergence of {θn} to θ∗ [1, Ch. 2]
Xt ≈ xkt for large k and all t, where

d

dt
xkt = f̄(xkt) , xkTk = XTk

Variance analysis ≡ SDE approximation [1, Ch. 8]

YT ≈ Y0 +

∫ T

0
(A+ 1

2I)Ys ds+BT

Yt = et/2(Xt − θ∗) Ytn ≈
√
n(θ(n)− θ∗) since tn ≈ log(n).

9 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗ In one word: Euler scheme for solving an ODE is robust

Comparison

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

xnt = XTn +

∫ t

Tn

f̄(xns) ds , Tn ≤ t < Tn+1

Assumptions

d
dtxt = f̄(xt) is globally asymptotically stable

f̄ is Lipschiz continuous, Lipschitz constant L

Nice noise: lim
n→∞

max
Tn≤t≤Tn+1

‖E(Tn, t)‖ = 0.

The sequence {θn} is bounded (Lyapunov condition, or check ODE at ∞)

10 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗ In one word: Euler scheme for solving an ODE is robust

Comparison

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

xnt = XTn +

∫ t

Tn

f̄(xns) ds , Tn ≤ t < Tn+1

Assumptions

d
dtxt = f̄(xt) is globally asymptotically stable

f̄ is Lipschiz continuous, Lipschitz constant L

Nice noise: lim
n→∞

max
Tn≤t≤Tn+1

‖E(Tn, t)‖ = 0.

The sequence {θn} is bounded (Lyapunov condition, or check ODE at ∞)

10 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Comparison

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

xnt = XTn +

∫ t

Tn

f̄(xns) ds , Tn ≤ t < Tn+1

Assumptions

d
dtxt = f̄(xt) is globally asymptotically stable

f̄ is Lipschiz continuous, Lipschitz constant L

Nice noise: lim
n→∞

max
Tn≤t≤Tn+1

‖E(Tn, t)‖ = 0.

The sequence {θn} is bounded (Lyapunov condition, or check ODE at ∞)

10 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Comparison

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

xnt = XTn +

∫ t

Tn

f̄(xns) ds , Tn ≤ t < Tn+1

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ L
∫ t

Tn

ens ds+ Ēn , Tn ≤ t < Tn+1

=⇒ ent ≤ Ēn exp([Tn+1 − Tn]L) Bellman Gronwall Lemma

11 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Comparison

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

xnt = XTn +

∫ t

Tn

f̄(xns) ds , Tn ≤ t < Tn+1

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ L
∫ t

Tn

ens ds+ Ēn , Tn ≤ t < Tn+1

=⇒ ent ≤ Ēn exp([Tn+1 − Tn]L) Bellman Gronwall Lemma

11 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Comparison

Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

xnt = XTn +

∫ t

Tn

f̄(xns) ds , Tn ≤ t < Tn+1

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ L
∫ t

Tn

ens ds+ Ēn , Tn ≤ t < Tn+1

=⇒ ent ≤ Ēn exp([Tn+1 − Tn]L) Bellman Gronwall Lemma

11 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ Ēn exp([Tn+1 − Tn]L) vanishes

=⇒ Xt ≈ xnt for large n and all t

Interpolates estimates Solves ODE

Fix large T , and note implications:

1 xnTn+1− ≈ θ∗ for all n by GAS

2 xn+1
Tn+1

= XTn+1 ≈ xnTn+1− ≈ θ∗ for large n

3 xn+1
t ≈ θ∗ for large n and all t by GAS

4 Xt ≈ xnt ≈ θ∗ for large n and all t

Convergence: lim
k→∞

θk = lim
k→∞

Xtk = θ∗

12 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ Ēn exp([Tn+1 − Tn]L) vanishes

=⇒ Xt ≈ xnt for large n and all t

Interpolates estimates Solves ODE Fix large T , and note implications:

1 xnTn+1− ≈ θ∗ for all n by GAS

2 xn+1
Tn+1

= XTn+1 ≈ xnTn+1− ≈ θ∗ for large n

3 xn+1
t ≈ θ∗ for large n and all t by GAS

4 Xt ≈ xnt ≈ θ∗ for large n and all t

Convergence: lim
k→∞

θk = lim
k→∞

Xtk = θ∗

12 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ Ēn exp([Tn+1 − Tn]L) vanishes

=⇒ Xt ≈ xnt for large n and all t

Interpolates estimates Solves ODE Fix large T , and note implications:

1 xnTn+1− ≈ θ∗ for all n by GAS

2 xn+1
Tn+1

= XTn+1 ≈ xnTn+1− ≈ θ∗ for large n

3 xn+1
t ≈ θ∗ for large n and all t by GAS

4 Xt ≈ xnt ≈ θ∗ for large n and all t

Convergence: lim
k→∞

θk = lim
k→∞

Xtk = θ∗

12 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ Ēn exp([Tn+1 − Tn]L) vanishes

=⇒ Xt ≈ xnt for large n and all t

Interpolates estimates Solves ODE Fix large T , and note implications:

1 xnTn+1− ≈ θ∗ for all n by GAS

2 xn+1
Tn+1

= XTn+1 ≈ xnTn+1− ≈ θ∗ for large n

3 xn+1
t ≈ θ∗ for large n and all t by GAS

4 Xt ≈ xnt ≈ θ∗ for large n and all t

Convergence: lim
k→∞

θk = lim
k→∞

Xtk = θ∗

12 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ Ēn exp([Tn+1 − Tn]L) vanishes

=⇒ Xt ≈ xnt for large n and all t

Interpolates estimates Solves ODE Fix large T , and note implications:

1 xnTn+1− ≈ θ∗ for all n by GAS

2 xn+1
Tn+1

= XTn+1 ≈ xnTn+1− ≈ θ∗ for large n

3 xn+1
t ≈ θ∗ for large n and all t by GAS

4 Xt ≈ xnt ≈ θ∗ for large n and all t

Convergence: lim
k→∞

θk = lim
k→∞

Xtk = θ∗

12 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ Ēn exp([Tn+1 − Tn]L) vanishes

=⇒ Xt ≈ xnt for large n and all t

Interpolates estimates Solves ODE Fix large T , and note implications:

1 xnTn+1− ≈ θ∗ for all n by GAS

2 xn+1
Tn+1

= XTn+1 ≈ xnTn+1− ≈ θ∗ for large n

3 xn+1
t ≈ θ∗ for large n and all t by GAS

4 Xt ≈ xnt ≈ θ∗ for large n and all t

Convergence: lim
k→∞

θk = lim
k→∞

Xtk = θ∗

12 / 46

ODE Methods ODE Solidarity: Proof of Convergence

Algorithm and Convergence Analysis
Convergence of {θn} to θ∗

Error: ent = ‖Xt − xnt ‖ and Ēn = max
Tn≤t≤Tn+1

‖E(Tn, t)‖:

ent ≤ Ēn exp([Tn+1 − Tn]L) vanishes

=⇒ Xt ≈ xnt for large n and all t

Interpolates estimates Solves ODE Fix large T , and note implications:

1 xnTn+1− ≈ θ∗ for all n by GAS

2 xn+1
Tn+1

= XTn+1 ≈ xnTn+1− ≈ θ∗ for large n

3 xn+1
t ≈ θ∗ for large n and all t by GAS

4 Xt ≈ xnt ≈ θ∗ for large n and all t

Convergence: lim
k→∞

θk = lim
k→∞

Xtk = θ∗

12 / 46

ODE Methods SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Ytn ≈
√
n(θ(n)− θ∗) since tn ≈ log(n).

Same starting point: Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

Linearize: f̄(x) ≈ A(x− θ∗), for x ≈ θ∗.

Nice noise gives FCLT: e(t−Tn)/2E(Tn, t)
dist≈ Bt −BTn

and with a bit of work:

Yt
dist≈ YTn +

∫ t

Tn

(A+ 1
2I)Ys ds+Bt −BTn

13 / 46

ODE Methods SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Ytn ≈
√
n(θ(n)− θ∗) since tn ≈ log(n).

Same starting point: Xt = XTn +

∫ t

Tn

f̄(Xs) ds+ E(Tn, t)

Linearize: f̄(x) ≈ A(x− θ∗), for x ≈ θ∗.

Nice noise gives FCLT: e(t−Tn)/2E(Tn, t)
dist≈ Bt −BTn

and with a bit of work:

Yt
dist≈ YTn +

∫ t

Tn

(A+ 1
2I)Ys ds+Bt −BTn

13 / 46

ODE Methods SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Yt
dist≈ YTn +

∫ t

Tn

(A+ 1
2I)Ys ds+Bt −BTn

B Brownian motion, Bt ∼ N(0, tΣ∆).
Translating back to reality: (under assumptions I won’t list)

Central Limit Theorem
√
nθ̃(n) converges in distribution to N(0,Σ), whose covariance is the

solution to the Lyapunov equation:

(A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆ = 0

The covariance is finite if Realλ(A) < −1
2

Questions for algorithm design:
1 How do we fix an algorithm if it fails this condition?
2 How can we optimize Σ?

3 Does this lead to improved algorithms for reinforcement learning?

14 / 46

ODE Methods SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Yt
dist≈ YTn +

∫ t

Tn

(A+ 1
2I)Ys ds+Bt −BTn

B Brownian motion, Bt ∼ N(0, tΣ∆).
Translating back to reality: (under assumptions I won’t list)

Central Limit Theorem
√
nθ̃(n) converges in distribution to N(0,Σ), whose covariance is the

solution to the Lyapunov equation:

(A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆ = 0

The covariance is finite if Realλ(A) < −1
2

Questions for algorithm design:
1 How do we fix an algorithm if it fails this condition?
2 How can we optimize Σ?

3 Does this lead to improved algorithms for reinforcement learning?

14 / 46

ODE Methods SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Central Limit Theorem
√
nθ̃(n) converges in distribution to N(0,Σ), whose covariance is the

solution to the Lyapunov equation:

(A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆ = 0

The covariance is finite if Realλ(A) < −1
2

Questions for algorithm design:

1 How do we fix an algorithm if it fails this condition?

2 How can we optimize Σ?

3 Does this lead to improved algorithms for reinforcement learning?

14 / 46

ODE Methods SDE Solidarity and Algorithm Performance

SDE Approximations
Linear SDE for Yt = et/2(Xt − θ∗)

Central Limit Theorem
√
nθ̃(n) converges in distribution to N(0,Σ), whose covariance is the

solution to the Lyapunov equation:

(A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆ = 0

The covariance is finite if Realλ(A) < −1
2

Questions for algorithm design:

1 How do we fix an algorithm if it fails this condition?

2 How can we optimize Σ?

3 Does this lead to improved algorithms for reinforcement learning?

14 / 46

Optimizing Stochastic Approximation SA for Σn

Asymptotic Covariance
Recursion for uncorrelated noise

Consider a linear model with θ̃(n) := θ(n)− θ∗:

θ̃(n+ 1) = θ̃(n) + 1
n [Aθ̃(n) + ∆(n+ 1)]

{∆(n)} uncorrelated, zero mean, covariance Σ∆.

Approximate
√
n+ 1 ≈ √n(1 + (2n)−1):

√
n+ 1θ̃(n+ 1) ≈ √nθ̃(n) + 1

n [(A+ 1
2I)
√
nθ̃(n) +

√
n∆(n+ 1)]

Covariance recursion:

Σn+1 = (n+ 1)E
[
θ̃(n+ 1)θ̃(n+ 1)T

]

≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}

15 / 46

Optimizing Stochastic Approximation SA for Σn

Asymptotic Covariance
Recursion for uncorrelated noise

Consider a linear model with θ̃(n) := θ(n)− θ∗:

θ̃(n+ 1) = θ̃(n) + 1
n [Aθ̃(n) + ∆(n+ 1)]

{∆(n)} uncorrelated, zero mean, covariance Σ∆.

Approximate
√
n+ 1 ≈ √n(1 + (2n)−1):

√
n+ 1θ̃(n+ 1) ≈ √nθ̃(n) + 1

n [(A+ 1
2I)
√
nθ̃(n) +

√
n∆(n+ 1)]

Covariance recursion:

Σn+1 = (n+ 1)E
[
θ̃(n+ 1)θ̃(n+ 1)T

]

≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}

15 / 46

Optimizing Stochastic Approximation SA for Σn

Asymptotic Covariance
Recursion for uncorrelated noise

Consider a linear model with θ̃(n) := θ(n)− θ∗:

θ̃(n+ 1) = θ̃(n) + 1
n [Aθ̃(n) + ∆(n+ 1)]

{∆(n)} uncorrelated, zero mean, covariance Σ∆.

Approximate
√
n+ 1 ≈ √n(1 + (2n)−1):

√
n+ 1θ̃(n+ 1) ≈ √nθ̃(n) + 1

n [(A+ 1
2I)
√
nθ̃(n) +

√
n∆(n+ 1)]

Covariance recursion:

Σn+1 = (n+ 1)E
[
θ̃(n+ 1)θ̃(n+ 1)T

]

≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}

15 / 46

Optimizing Stochastic Approximation SA for Σn

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃(n)θ̃(n)T] , √

nθ̃(n) ≈ N(0,Σ)

SA recursion for covariance:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}

A = d
dθ f̄ (θ∗)

Conclusions

1 If Reλ(A) ≥ −1
2 for some eigenvalue then Σ is (typically) infinite

2 If Reλ(A) < −1
2 for all, then Σ = limn→∞Σn is the unique solution

to the Lyapunov equation:

0 = (A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆

16 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Ruppert-Polyak averaging is also optimal, but first two bullets are missing.

17 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Ruppert-Polyak averaging is also optimal, but first two bullets are missing.

17 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Ruppert-Polyak averaging is also optimal, but first two bullets are missing.

17 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon Stochastic Gauss-Newton, Ruppert [9]

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Ruppert-Polyak averaging is also optimal, but first two bullets are missing.

17 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Example: return to Monte-Carlo

θ(n+ 1) = θ(n) +
g

n+ 1

(
−θ(n) +X(n+ 1)

)

18 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Example: return to Monte-Carlo

θ(n+ 1) = θ(n) +
g

n+ 1

(
−θ(n) +X(n+ 1)

)

∆(n) = X(n)− E[X(n)]

18 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)

18 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)

0 1 2 3 4 5 g

σ2
∆

Σ =
σ2
∆

2

g2

g − 1/2

Asymptotic variance as a function of g

18 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)

Example: X(n) = W 2(n), W ∼ N(0, 1), σ2
∆ = 2

0 1 2 3 4 5 g

σ2
∆

Σ =
σ2
∆

2

g2

g − 1/2

Asymptotic variance as a function of g

18 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)

Example: X(n) = W 2(n), W ∼ N(0, 1), σ2
∆ = 2

0 1 2 3 4 5 6 7 8 9 10 104

0.6

0.7

0.8

0.9

1

1.1

g = 0.1
g = 0.5

g = 10
g = 20

g = 1
R-P

θ(k)

k

SA estimates of E[W 2], W ∼ N(0, 1)

18 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

0 1 2 3 4 5 g

σ2
∆

Σ =
σ2
∆

2

g2

g − 1/2

Central Limit Theorem optimal g∗ = 1

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0

0.1

0.2

0.3

g
=

g
∗

=
1

R
-P

-6 -4 -2 0 2 4 6

T = 103 T = 104 T = 105
√

T θ̃(T)

Ruppert-Polyak:

Also has optimal asymptotic covariance

turn up the gain, with

Theoretical

� ∈ (0.5, 1):

θ̄(n + 1) = θ̄(n) +
1

(n + 1)�
−θ̄(n) + X(n + 1)

θ(n) =
1

n

n∑

k=1

θ̄(k)

Experimental

19 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

0 1 2 3 4 5 g

σ2
∆

Σ =
σ2
∆

2

g2

g − 1/2

Central Limit Theorem sub-optimal g > 1

Theoretical Experimental

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

-15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

-15 -10 -5 0 5 10 15 20 25
0

0.05

0.1

-20 -10 0 10 20 30
0

0.05

0.1

-20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0

0.1

0.2

0.3

g
=

g
∗

=
1

g
=

10
g

=
20

R
-P

-6 -4 -2 0 2 4 6

T = 103 T = 104 T = 105
√

T θ̃(T)

19 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

0 1 2 3 4 5 g

σ2
∆

Σ =
σ2
∆

2

g2

g − 1/2

Central Limit Theorem fails g ≤ 1/2

-20 -10 0 10 20
0

0.02

0.04

0.06

-30 -20 -10 0 10 20 30
0

0.02

0.04

0.06

-40 -30 -20 -10 0 10 20 30 40
0

0.02

0.04

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

-15 -10 -5 0 5 10 15
0

0.05

0.1

g
=

0
.4

g
=

0
.5

Theoretical Experimental

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0

0.1

0.2

0.3

g
=

g
∗

=
1

R
-P

-6 -4 -2 0 2 4 6

T = 103 T = 104 T = 105
√

T θ̃(T)

19 / 46

Optimizing Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Impact on algorithm design : new Q-learning algorithms

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Next time

20 / 46

Part II: Fastest SA and Zap Q-Learning
Hidden theory implications for reinforcement learning

4 Fastest Stochastic Approximation
Algorithm Performance Revisited
Zap Stochastic Newton-Raphson

5 Reinforcement Learning
RL & SA
MDP Theory
Q-Learning

6 Zap Q-Learning
Watkin’s algorithm
Optimal stopping

7 Conclusions & Future Work

8 References

Part I : Basics

θ(t)

t

Fastest Stochastic Approximation

Fastest Stochastic Approximation

What is Stochastic Approximation?
Recap

Basic algorithm of Robbins & Monro 1951, with matrix gain:

θ(n+ 1) = θ(n) + αnGnf(θ(n),W (n+ 1))

Interpreted as a noisy Euler approximation to the ODE

d

dt
xt = Gf̄(xt)

Usually we take αn = 1/n
Matrices {Gn} used to

Optimize asymptotic covariance

Improve dynamics (inspired by Newton-Raphson)

22 / 46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.
Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.

Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.
Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46

Fastest Stochastic Approximation Algorithm Performance Revisited

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

Latter metric is most valuable for algorithm design.
Recall last time: G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon Do you see the resemblance?

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

23 / 46

Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Resembles Newton-Rapshon?
This doesn’t look much like Newton-Raphson:

d

dt
xt = −A−1f̄(xt) , A =

d

dθ
f̄ (θ∗)

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open

24 / 46

Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate deterministic Newton-Raphson)

Requires Ân ≈ A(θn) :=
d

dθ
f̄ (θn)

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open

24 / 46

Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open

24 / 46

Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open

24 / 46

Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open

24 / 46

Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open

24 / 46

Fastest Stochastic Approximation Zap Stochastic Newton-Raphson

Optimal Asymptotic Covariance and Zap SNR

Zap SNR (designed to emulate Newton-Raphson)

θ(n+ 1) = θ(n) + αn[−Ân]−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap SNR

d

dt
xt = −[A(xt)]

−1f̄ (xt), A(x) =
d

dx
f̄ (x)

Not necessarily stable
General conditions for convergence is open

24 / 46

Reinforcement Learning
and Stochastic Approximation

Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

25 / 46

Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Φ(n) = (state, action)

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

25 / 46

Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

25 / 46

Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

25 / 46

Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation

25 / 46

Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor restrict to finite state and action space here

Value function:

h∗(x) = min
U

∞∑

n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

26 / 46

Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor restrict to finite state and action space here

Value function:

h∗(x) = min
U

∞∑

n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

26 / 46

Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor restrict to finite state and action space here

Value function:

h∗(x) = min
U

∞∑

n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

26 / 46

Reinforcement Learning Q-Learning

Q-function
Trick to swap expectation and minimum

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

27 / 46

Reinforcement Learning Q-Learning

Q-function
Trick to swap expectation and minimum

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

27 / 46

Reinforcement Learning Q-Learning

Q-function
Trick to swap expectation and minimum

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

27 / 46

Reinforcement Learning Q-Learning

Q-function
Trick to swap expectation and minimum

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

27 / 46

Reinforcement Learning Q-Learning

Q-function
Trick to swap expectation and minimum

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q∗(x, u) = min
U

∞∑

n=0

βnE[c(X(n), U(n)) | X(0) = x, U(0) = u]

One-to-one mapping between cost functions and Q-functions.
Notation:

Q∗ = Q∗(c)

28 / 46

Reinforcement Learning Q-Learning

Q-function
Trick to swap expectation and minimum

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q∗(x, u) = min
U

∞∑

n=0

βnE[c(X(n), U(n)) | X(0) = x, U(0) = u]

One-to-one mapping between cost functions and Q-functions.
Notation:

Q∗ = Q∗(c)

28 / 46

Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

where the input U is randomized state feedback

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

29 / 46

Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

That is,
0 = E[F (Q∗,Φ(n+ 1)) | Φ(0) . . . Φ(n)] ,

with Φ(n+ 1) = (X(n+ 1), X(n), U(n)).

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

where the input U is randomized state feedback

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

29 / 46

Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

where the input U is randomized state feedback

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

29 / 46

Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

where the input U is randomized state feedback

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

29 / 46

Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un) and

ψn(x, u) = 1{x = xn, u = un} (complete basis)

Asymptotic covariance is typically infinite

30 / 46

Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un) and

ψn(x, u) = 1{x = xn, u = un} (complete basis)

Asymptotic covariance is typically infinite

30 / 46

Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un) and

ψn(x, u) = 1{x = xn, u = un} (complete basis)

Asymptotic covariance is typically infinite

30 / 46

Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un) and

ψn(x, u) = 1{x = xn, u = un} (complete basis)

Asymptotic covariance is typically infinite

30 / 46

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap Q-Learning

Zap Q-Learning

Asymptotic Covariance of Watkins’ Q-Learning
Improvements are needed!

1
4

65
3 2

Histogram of parameter estimates after 106 iterations.

1000 200 300 400 486.6
0

10

20

30

40

n = 106

Histogram for θ

θ*

n(15)

(15)

Example from Devraj & M 2017

31 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,Φ(n+ 1))

]

:= E
[
ζn
[
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

]]

A(θ) = d
dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]

φθ(X(n+ 1)) := arg min
u

Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn[−Ân]−1f(θ(n),Φ(n+ 1)); Ân = Ân−1 + γn(An − Ân−1);

An+1 :=
d

dθ
f (θn,Φ(n+ 1))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

Stable?

32 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,Φ(n+ 1))

]

:= E
[
ζn
[
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

]]

A(θ) = d
dθ f̄ (θ);

At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]

φθ(X(n+ 1)) := arg min
u

Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn[−Ân]−1f(θ(n),Φ(n+ 1)); Ân = Ân−1 + γn(An − Ân−1);

An+1 :=
d

dθ
f (θn,Φ(n+ 1))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

Stable?

32 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,Φ(n+ 1))

]

:= E
[
ζn
[
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

]]

A(θ) = d
dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]

φθ(X(n+ 1)) := arg min
u

Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn[−Ân]−1f(θ(n),Φ(n+ 1)); Ân = Ân−1 + γn(An − Ân−1);

An+1 :=
d

dθ
f (θn,Φ(n+ 1))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

Stable?

32 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,Φ(n+ 1))

]

:= E
[
ζn
[
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

]]

A(θ) = d
dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]

φθ(X(n+ 1)) := arg min
u

Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn[−Ân]−1f(θ(n),Φ(n+ 1)); Ân = Ân−1 + γn(An − Ân−1);

An+1 :=
d

dθ
f (θn,Φ(n+ 1))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

Stable?

32 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,Φ(n+ 1))

]

:= E
[
ζn
[
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

]]

A(θ) = d
dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]

φθ(X(n+ 1)) := arg min
u

Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn[−Ân]−1f(θ(n),Φ(n+ 1)); Ân = Ân−1 + γn(An − Ân−1);

An+1 :=
d

dθ
f (θn,Φ(n+ 1))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

Stable?

32 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,Φ(n+ 1))

]

:= E
[
ζn
[
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

]]

A(θ) = d
dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]

φθ(X(n+ 1)) := arg min
u

Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn[−Ân]−1f(θ(n),Φ(n+ 1)); Ân = Ân−1 + γn(An − Ân−1);

An+1 :=
d

dθ
f (θn,Φ(n+ 1))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

Stable?
32 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

ODE Analysis: change of variables q = Q∗(ς)
Functional Q∗ maps cost functions to Q-functions:

q(x, u) = ς(x, u) + β
∑

x′
Pu(x, x′) min

u′
q(x′, u′)

ODE for Zap-Q

qt = Q∗(ςt),
d

dt
ςt = −ςt + c

⇒ convergence, optimal covariance, ...

33 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap SNR for Q-Learning

ODE Analysis: change of variables q = Q∗(ς)
Functional Q∗ maps cost functions to Q-functions:

q(x, u) = ς(x, u) + β
∑

x′
Pu(x, x′) min

u′
q(x′, u′)

ODE for Zap-Q

qt = Q∗(ςt),
d

dt
ςt = −ςt + c

⇒ convergence, optimal covariance, ...

33 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain γn = n−0.85 Discount factor: β = 0.99

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

34 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain γn = n−0.85 Discount factor: β = 0.99

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

34 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain γn = n−0.85 Discount factor: β = 0.99

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

34 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain γn = n−0.85 Discount factor: β = 0.99

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

34 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2

n = 104 n = 106

Theoritical pdf Experimental pdf Empirical: 1000 trials

-800 -600 -400 -200 0 200 400 600 800-800 -600 -400 -200 0 200 400 600 800-600 -500 -400 -300 -200 -100 0 100 200 -200 -150 -100 -50 0 50 100 150 200

Wn =
√

nθ̃n

Entry #18: n = 104 n = 106Entry #10:

CLT gives good prediction of finite-n performance

35 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2Local Convergence: θ(0) initialized in neighborhood of θ∗

g = 500
g = 1500

Speedy
Poly

g = 5000

Polyak-Ruppert

B0 10 20 30 40 50
0

1

2

0 20 40 60 80 100 120 140 160
0

0.5

Zap-Q:
Zap-Q: ≡ α0 85

n

γn ≡
γn

αn

W
at

ki
ns

Be
llm

an
 E

rro
r

H
is

to
gr

am
s

n
=

10
6

g = 500
g = 1500

Speedy
Poly

g = 5000

g = 500
g = 1500

Speedy
Poly

g = 5000

103 104 105 106
100

101

102

103

104

103 104 105 106 n

Polyak-Ruppert

Polyak-RuppertB

B

n

0 10 20 30 40 50
0

1

2

0 20 40 60 80 100 120 140 160
0

0.5

Zap-Q:
Zap-Q: ≡ α0 85

n

γn ≡
γn

αn

Zap-Q:
Zap-Q: ≡ α0 85

n

γn ≡
γn

αn

W
at

ki
ns

W
at

ki
ns

Be
llm

an
 E

rro
r

Be
llm

an
 E

rro
r

H
is

to
gr

am
s

n
=

10
6

2σ confidence intervals for the Q-learning algorithms

36 / 46

Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Optimize Walk to Cafe

1
4

65
3 2Local Convergence: θ(0) initialized in neighborhood of θ∗

g = 500
g = 1500

Speedy
Poly

g = 5000

Polyak-Ruppert

B0 10 20 30 40 50
0

1

2

0 20 40 60 80 100 120 140 160
0

0.5

Zap-Q:
Zap-Q: ≡ α0 85

n

γn ≡
γn

αn

W
at

ki
ns

Be
llm

an
 E

rro
r

H
is

to
gr

am
s

n
=

10
6

g = 500
g = 1500

Speedy
Poly

g = 5000

g = 500
g = 1500

Speedy
Poly

g = 5000

103 104 105 106
100

101

102

103

104

103 104 105 106 n

Polyak-Ruppert

Polyak-RuppertB

B

n

0 10 20 30 40 50
0

1

2

0 20 40 60 80 100 120 140 160
0

0.5

Zap-Q:
Zap-Q: ≡ α0 85

n

γn ≡
γn

αn

Zap-Q:
Zap-Q: ≡ α0 85

n

γn ≡
γn

αn

W
at

ki
ns

W
at

ki
ns

Be
llm

an
 E

rro
r

Be
llm

an
 E

rro
r

H
is

to
gr

am
s

n
=

10
6

2σ confidence intervals for the Q-learning algorithms
36 / 46

Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Asymptotic covariance is in�nite

λ > −1

2
Real λi(A)

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Authors observed slow convergence
Proposed a matrix gain sequence

(see refs for details)

Asymptotic covariance is in�nite

λ > −1

2
Real λi(A)

{Gn}
i

0 1 2 3 4 5 6 7 8 9 10
-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-0.525-30 -25 -20 -15 -10 -5
-10

-5

0

5

10

Re (λ(GA))

C
o

(λ
(G

A
))

λi(GA)Real λi(A)

37 / 46

Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Asymptotic covariance is in�nite

λ > −1

2
Real λi(A)

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Authors observed slow convergence
Proposed a matrix gain sequence

(see refs for details)

Asymptotic covariance is in�nite

λ > −1

2
Real λi(A)

{Gn}

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-0.525-30 -25 -20 -15 -10 -5
-10

-5

0

5

10

Re (λ(GA))

C
o

(λ
(G

A
))

λi(GA)Real λi(A)

37 / 46

Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Asymptotic covariance is in�nite

λ > −1

2
Real λi(A)

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Authors observed slow convergence
Proposed a matrix gain sequence

(see refs for details)

Asymptotic covariance is in�nite

λ > −1

2
Real λi(A)

{Gn}

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-0.525-30 -25 -20 -15 -10 -5
-10

-5

0

5

10

Re (λ(GA))

C
o

(λ
(G

A
))

λi(GA)Real λi(A)

Eigenvalues of A and GA for the finance example

Favorite choice of gain in [25] barely meets the criterion Re(λ(GA)) < −1
2

37 / 46

Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100. Parameterized Q-function: Qθ with θ ∈ R10

Zap-Q

G-Q
-1000 0 1000 2000 3000 -600 -400 -200 0 200 400 600 800

-250 -200 -150 -100 -50 0 50 100 -200 -100 0 100 200 300

Theoritical pdf Experimental pdf Empirical: 1000 trialsWn =
√

nθ̃n

Entry #1: n = 2 × 106 Entry #7: n = 2 × 106

38 / 46

Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100.
Parameterized Q-function: Qθ with θ ∈ R10

Histograms of the average reward obtained using the different algorithms:

1 1.05 1.1 1.15 1.2 1.25
0

20

40

60

80

100

1 1.05 1.1 1.15 1.2 1.25
0

100

200

300

400

500

600

1 1.05 1.1 1.15 1.2 1.25
0

5

10

15

20

25

30

35 G-Q(0)
G-Q(0)

Zap-Q
Zap-Q ρ = 0.8

ρ = 1.0

g = 100
g = 200

Zap-Q ρ = 0.85

n = 2 × 104 n = 2 × 105 n = 2 × 106

Zap-Q � G-Q

39 / 46

Conclusions

Conclusions & Future Work

Conclusions & Future Work
Conclusions

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

The success of Zap Q-Learning is due to two factors:

Choice of gain for optimal asymptotic variance (validated in simulations)

Luck: Newton-Raphson is globally stable

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Reduced complexity algorithms with adaptive optimization of algorithm
parameters (stay tuned for revision on arXiv)

40 / 46

Conclusions & Future Work

Conclusions & Future Work
Conclusions

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

The success of Zap Q-Learning is due to two factors:

Choice of gain for optimal asymptotic variance (validated in simulations)

Luck: Newton-Raphson is globally stable

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Reduced complexity algorithms with adaptive optimization of algorithm
parameters (stay tuned for revision on arXiv)

40 / 46

Conclusions & Future Work

Conclusions & Future Work
Conclusions

The success of Zap Q-Learning is due to two factors:

Choice of gain for optimal asymptotic variance (validated in simulations)

Luck: Newton-Raphson is globally stable

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Reduced complexity algorithms with adaptive optimization of algorithm
parameters (stay tuned for revision on arXiv)

40 / 46

Conclusions & Future Work

Thank you!

thankful

41 / 46

References

Control Techniques
FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer
More information available at http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

References

42 / 46

http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html

References

Selected References I

[1] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press (jointly), Delhi, India and Cambridge, UK,
2008.

[2] A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv , July 2017.

[3] M. Benäım. Dynamics of stochastic approximation algorithms. In Séminaire de
Probabilités XXXIII, pages 1–68, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[4] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000.

[5] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics. Springer-Verlag, Berlin, 1990.

[6] P. J. Schweitzer. Perturbation theory and finite Markov chains. J. Appl. Prob., 5:401–403,
1968.

[7] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Cambridge Mathematical Library.

[8] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

43 / 46

https://arxiv.org/abs/1707.03770

References

Selected References II

[9] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[10] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

[11] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika (in Russian). translated in Automat. Remote Control, 51 (1991), pages
98–107, 1990.

[12] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[13] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

[14] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, pages 451–459. Curran Associates, Inc., 2011.

44 / 46

References

Selected References III

[15] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[16] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, Cambridge, UK, 1989.

[17] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[18] R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9–44, 1988.

[19] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[20] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th
Internat. Conf. on Neural Info. Proc. Systems, pages 1064–1070. MIT Press, 1997.

[21] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems, 2011.

[22] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

45 / 46

References

Selected References IV

[23] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

[24] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840–1851, 1999.

[25] D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and
Applications, 16(2):207–239, 2006.

[26] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33–57, 1996.

[27] J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233–246, 2002.

[28] A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79–110, 2003.

[29] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In IEEE
Conference on Decision and Control, pages 3598–3605, Dec. 2009.

46 / 46

	Stochastic Approximation and Learning
	Part I: SA & ML Theory
	Stochastic Approximation: Algorithm & Motivation
	Basic Algorithm
	Monte-Carlo
	Reinforcement Learning
	Empirical Risk Minimization

	ODE Methods
	Representation in Continuous Time
	A Menu of ODEs
	ODE Solidarity: Proof of Convergence
	SDE Solidarity and Algorithm Performance

	Optimizing Stochastic Approximation
	SA for n
	Stochastic Newton Raphson

	Fastest Stochastic Approximation and Zap Q-Learning
	Fastest Stochastic Approximation
	Algorithm Performance Revisited
	Zap Stochastic Newton-Raphson

	Reinforcement Learning
	RL & SA
	MDP Theory
	Q-Learning

	Zap Q-Learning
	Watkin's algorithm
	Optimal stopping

	Conclusions & Future Work
	References

