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the dispatch problem
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(stochastic) model for ridesharing
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@ K units (cars) across n stations (closed network)
@ system state & Sn,K = {(Xi)ie[n]’ 27:1 Xj = K}
® | — j passengers arrive via Poisson process with rate ¢;;
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(stochastic) model for ridesharing
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@ passenger requests ride if offered price is acceptable
@ matched to idle unit, which then travels to destination
@ trips have independent travel-times (for this talk, trip-times = zero)
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(stochastic) model for ridesharing
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@ myopic customers: abandon system if unit unavailable

aim: minimize long-term average rate of missed requests (w/ fixed prices)
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main control lever for this talk
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@ dispatch: choose ‘nearby’ car to serve demand

assumption: allowed to use any unit within given 'ETA target’
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bipartite matching with externalities

Supply Demand

@ A 1O (1) —m
e—p o
N @/ @) —

Z¢k’la UJ’—Z¢1H Note Z)\izzuju

K =1/ =% =%

@ to meet all demand at 1/, we need A1 + Ao > uy/

@ how well can we handle stochastic fluctuations?
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intermezzo: the many schools of modeling

all models are innacurate; the question drives the model

what do we want to answer?
@ what is the correct structure of dispatch policies?
@ what is the value of state-dependent control (‘real-time’)?
@ what is the role of information?

@ can we separate pricing and dispatch?
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iIntermezzo: the joy of theory

connections to deep theoretical questions in algorithms and control

two amazing recent theoretical advances
@ optimal control of input-queued switches (Maguluri & Srikant 2016)
@ the k-server conjecture (Bubeck, Cohen, Lee, Lee, Madry 2017)

intriguing connections between the approaches. ..
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formal problem

@ n stations, K units, Poisson(¢jc) demand arrivals

> connectedness: [¢ji] is irreducible.
> non-triviality: 3(j, k) such that ¢j > 0 and (k,j) ¢ E

e compatibility E: (/,j) € E = supply at i can serve demand at j
» self-compatibility: (j,j) € E forall j € V

objective

max Zwa(x) < Z Gij Xii(qii(x)) )

dispatch rules g (i)
N , =\/.J

ij request served under g(x)
long-run avg under ¢
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formal problem

@ n stations, K units, Poisson(¢jc) demand arrivals

@ compatibility E: (/,j) € E = supply at i can serve demand at j

objective

EE Er(x) Z ®iixij (g (X))

Iy

challenges

@ exponential size of policy
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formal problem

@ n stations, K units, Poisson(¢jc) demand arrivals

@ compatibility E: (/,j) € E = supply at i can serve demand at j

objective

EE Er(x) Z ®iixij (g (X))

Iy

challenges
@ exponential size of policy

@ non-convex problem: even with state-independent g

Sid Banerjee (Cornell ORIE) dispatch March 28, 2018 8 /22



what can we show

X Erx) | ®ixii(q5(X))
iy

theorem [B, Freund & Lykouris 2017]

flow relaxation gives state-independent dispatch policy which is

o 1+ ”;(1 approximate (with instantaneous trips)

@1+ 0 (#) approximate (with travel-times)
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what can we show

max Erx) Z iixij(qij(X))

Iy

theorem [B, Freund & Lykouris 2017]

flow relaxation gives state-independent dispatch policy which is
1

e 1+ 2= approximate (with instantaneous trips)

K
©e1+0 (#) approximate (with travel-times)

@ extends to pricing, rebalancing controls, most objectives
@ large-supply/large-market optimality: factor goes to 1 as system scales
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what can we show

X Erx) | ®ixii(q5(X))
iy

theorem [B, Freund & Lykouris 2017]

flow relaxation gives state-independent dispatch policy which is

o 1+ ”}_(1 approximate (with instantaneous trips)

@1+ 0 (ﬁ) approximate (with travel-times)

theorem [B, Kanoria & Qian 2018]

family of state-dependent dispatch policies which are

o 1+ e (%) approximate (for large K, instantaneous trips)

@ convex program gives optimal exponent
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state-independent dispatch: proof roadmap

relaxation + resource augmentation
step 1: elevated flow relaxation (EFR): relax objective into a flow program
@ optimize over fraction of i — j requests accepted

@ encode conservation laws: flow balance, Little's law
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state-independent dispatch: proof roadmap

relaxation + resource augmentation

step 1: elevated flow relaxation (EFR): relax objective into a flow program
@ optimize over fraction of i — j requests accepted
@ encode conservation laws: flow balance, Little's law

step 2: show EFR is tight under state-independent dispatch policies, in the
‘infinite-unit system’ (i.e., K — o)
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state-independent dispatch: proof roadmap

relaxation + resource augmentation

step 1: elevated flow relaxation (EFR): relax objective into a flow program
@ optimize over fraction of i — j requests accepted
@ encode conservation laws: flow balance, Little's law

step 2: show EFR is tight under state-independent dispatch policies, in the
‘infinite-unit system’ (i.e., K — o)

step 3: construct sequence of product-form Markov chains for finite K
based on the optimal infinite-unit policy

@ bound the normalization constant for these chains to get result
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In summary

theorem [B, Freund & Lykouris 2017]
state-independent control policies g (from EFR) in K-unit system gives

K

OBJk(G=) > aknOPTx , where ak, = K+n—1
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In summary

theorem [B, Freund & Lykouris 2017]
state-independent control policies g (from EFR) in K-unit system gives

K

OBJk(Goo) > axnOPTk K¥n—1

., where ak, =

main takeaways

new techniques for state-independent control of closed networks
@ extends to more complex settings
(travel-times, multi-objective, pooling, reservations)
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In summary

theorem [B, Freund & Lykouris 2017]

state-independent control policies G (from EFR) in K-unit system gives

OBJK(JOO) > OéKnOPTK : where AKn =

_K
K+n—1
main takeaways

new techniques for state-independent control of closed networks

@ extends to more complex settings
(travel-times, multi-objective, pooling, reservations)

@ needs demand-rate and price-elasticity estimates

@ guarantees are tight for state-independent dispatch policies

how do we go beyond this?
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model: bipartite matching with externalities

Supply Demand

@ A 1O (1) —m
e—p o 0T
N @/ @) —

Zqﬁku, W—Zﬁbj,, Note SN = 3 iy

k!—=1' ieVv jlev’

@ to meet all demand at 1/, we need A1 + Ao > uy/
[
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alternate view: walking in the simplex

@ State X(t) = (X;(t));eyv: number of units in each station i
» state space: X(t) € Qx = {x:x>0,1Tx = K}
» normalized state space: Q £ Q;
» avoid request drop < avoid hitting boundary

(0,0,1)

x1+x2+x3=1
x;i >0
(1; 0' 0) (O, 1, 0) xl = 0

Stay away from boundary of (!
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alternate view: walking in the simplex

@ State X(t) = (X;(t));eyv: number of units in each station i
» state space: X(t) € Qx = {x:x>0,1Tx = K}
» normalized state space: Q £ Q;
» avoid request drop < avoid hitting boundary

(0,0,1)

x1+x2+x3=1
x;i >0
(1; 0' 0) (O, 1, 0) xl = 0

Stay away from boundary of (!

new performance metric: request-drop exponent

v(§) = — limk 00 = log (fraction of requests dropped under 7x(q))
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complete resource pooling (strong Hall's condition)

VJ C \//, Z Aj > Z,uj/ (*)

ico(J) j'ed
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complete resource pooling (strong Hall's condition)

VSTV, > N> up (%)

ico(J) j'ed

@ Hall's theorem: there exists a policy such that no demand is
dropped in fluid limit < the assumption holds
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complete resource pooling (strong Hall's condition)

VSTV, > N> up (%)

ico(J) j'ed

@ Hall's theorem: there exists a policy such that no demand is
dropped in fluid limit < the assumption holds

proposition

if (x) holds with equality, exponential decay in request-drops is impossible

@ what if (x) holds with strict inequality?
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the MaxWeight policy
MaxWeight policy: greedily dispatch from argmax;c g Xi(t)

Supply Demand

TN ey mm——

- @4@ _—
X3(t) -é A3 @/ @ — Uy

_—

@ minimizes delay in open queueing networks in heavy traffict

'Dai & Lin 2005, Meyn 2009, Maguluri & Srikant 2016, etc.
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the MaxWeight policy
MaxWeight policy: greedily dispatch from argmax;c g Xi(t)

Supply Demand

TN ey mm——

- @4@ _—
X3(t) -é A3 @/ @ — Uy

_—

@ minimizes delay in open queueing networks in heavy traffict

@ sub-optimal in our setting: compared with always dispatch from 1

'Dai & Lin 2005, Meyn 2009, Maguluri & Srikant 2016, etc.
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scaled MaxWeight: a family of policies

idea: give each location a weight w;
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scaled MaxWeight: a family of policies

idea: give each location a weight w;
Xi(t)

Wi

® SMW(w): for demand at j/, dispatch from argmax;c(;
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scaled MaxWeight: a family of policies

idea: give each location a weight w;

o w; >0,) ;cyw=1

® SMW(w): for demand at j/, dispatch from argmax;c(;

@ previous example: wy; — 0

Queue -
lengths !
eng Wy

1

1

1

1

1
Wy

Xi(t)

Wi

Scaled
queue
lengths

. X,(6)/w;
-: X3(t)/ws

how does SMW(w) perform?
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main result: achievability

theorem [B, Kanoria & Qian 2018]

if (%) is satisfied, then SMW(w) for any w € relint(£2) results in exponential
decay of dropped-requests; in particular

JeJg

2 jrga 2okea(d) Pirk
y(SMW (w)) = min (1] ,w) log :
o) Zj’ej Zkeau) PDj k

where J £ {J C V') jres 2angas) itk > 0}
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main result: converse

theorem [B, Kanoria & Qian 2018]

for any instance satisfying (%), let 7" = supy, wereline(@) 7(W)
then any state dependent policy satisfies

1

— liminf — log (fraction of dropped requests with K supplies) < ~*,
K—oo K

corollary

there is an SMW policy that achieves a demand drop exponent as close as
desired to the optimal one.
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implications of our results

@ scaled MaxWeight: one policy to rule them alll
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implications of our results

@ scaled MaxWeight: one policy to rule them alll

@ can adapt to available system information

» if we know nothing, use vanilla MaxWeight; resulting exponent is
within factor n of optimal

» if we know ¢ perfectly, solve for optimal w*

» if we have partial information . ..

@ separation of pricing and dispatch: slowly changing pricing + real-time
dispatch sufficient in many cases
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brief proof outline

technical difficulty

@ compared to heavy traffic: n-dimensional problem

@ compared to open networks: no state-space ordering

we use a large-deviations analysis with policy-dependent Lyapunov fn
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proof highlight: custom Lyapunov function

@ SMW pushes the state towards w

@ construct a Lyapunov function L,,(x) > 0 such that L,,(w) = 0, and
L, =1 on 0f2, and L is scale invariant about w

@ SMW(w) performs steepest descent w.r.t. Ly,

Lw(X)=1—min Xi

iev w;
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summary
@ stochastic models for dispatch: interesting insights + cool new theory!

@ near-optimal state-independent dispatch via flow relaxations

@ state-dependent SMW policies lead to exponentially decreasing
fraction of dropped requests

can adapt to available information
pricing-dispatch separation principles

open questions
@ state-dependent dispatch with travel-times
@ elementary proofs of exponential decay?
@ adapting policy to changing information
°

dispatch for pooling
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