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the dispatch problem

input: ride request (source, destn)
output: match to ‘nearby’ car
aim: minimize missed requests
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(stochastic) model for ridesharing

K units (cars) across n stations (closed network)
system state ∈ Sn,K = {(xi )i∈[n]|

∑n
i=1 xi = K}

i → j passengers arrive via Poisson process with rate φij
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(stochastic) model for ridesharing

passenger requests ride if offered price is acceptable
matched to idle unit, which then travels to destination
trips have independent travel-times (for this talk, trip-times = zero)
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(stochastic) model for ridesharing

myopic customers: abandon system if unit unavailable

aim: minimize long-term average rate of missed requests (w/ fixed prices)
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main control lever for this talk

dispatch: choose ‘nearby’ car to serve demand

assumption: allowed to use any unit within given ‘ETA target’
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bipartite matching with externalities

23
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i∈V
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j ′∈V ′

µj ′ .

to meet all demand at 1′, we need λ1 + λ2 ≥ µ1′

how well can we handle stochastic fluctuations?

Sid Banerjee (Cornell ORIE) dispatch March 28, 2018 5 / 22



intermezzo: the many schools of modeling

all models are innacurate; the question drives the model

what do we want to answer?
what is the correct structure of dispatch policies?
what is the value of state-dependent control (‘real-time’)?
what is the role of information?
can we separate pricing and dispatch?
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intermezzo: the joy of theory

connections to deep theoretical questions in algorithms and control

two amazing recent theoretical advances
optimal control of input-queued switches (Maguluri & Srikant 2016)
the k-server conjecture (Bubeck, Cohen, Lee, Lee, Madry 2017)

intriguing connections between the approaches. . .
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formal problem

n stations, K units, Poisson(φjk) demand arrivals
I connectedness: [φjk ] is irreducible.
I non-triviality: ∃(j , k) such that φjk > 0 and (k, j) /∈ E

compatibility E : (i , j) ∈ E ⇒ supply at i can serve demand at j
I self-compatibility: (j , j) ∈ E for all j ∈ V

objective

max
dispatch rules ~q

∑
x
π~q(x)︸ ︷︷ ︸

long-run avg under ~q

( ∑
e=(i ,j)

φij χij(qij(x))︸ ︷︷ ︸
ij request served under q(x)

)
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formal problem
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objective

max
~q

Eπ~q(X)

∑
ij

φijχij(qij(X))


challenges

exponential size of policy

non-convex problem: even with state-independent ~q
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what can we show

max
~q

Eπ~q(X)

∑
ij

φijχij(qij(X))


theorem [B, Freund & Lykouris 2017]
flow relaxation gives state-independent dispatch policy which is

1 + n−1
K approximate (with instantaneous trips)

1 + O
(

1√
K

)
approximate (with travel-times)

theorem [B, Kanoria & Qian 2018]
family of state-dependent dispatch policies which are

1 + e−Θ(K) approximate (for large K , instantaneous trips)
convex program gives optimal exponent
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state-independent dispatch: proof roadmap

relaxation + resource augmentation
step 1: elevated flow relaxation (EFR): relax objective into a flow program

optimize over fraction of i → j requests accepted
encode conservation laws: flow balance, Little’s law

step 2: show EFR is tight under state-independent dispatch policies, in the
‘infinite-unit system’ (i.e., K →∞)
step 3: construct sequence of product-form Markov chains for finite K
based on the optimal infinite-unit policy

bound the normalization constant for these chains to get result
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in summary

theorem [B, Freund & Lykouris 2017]
state-independent control policies ~q∞ (from EFR) in K -unit system gives

OBJK (~q∞) ≥ αKnOPTK , where αKn = K
K+n−1

main takeaways
new techniques for state-independent control of closed networks

extends to more complex settings
(travel-times, multi-objective, pooling, reservations)
needs demand-rate and price-elasticity estimates
guarantees are tight for state-independent dispatch policies
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in summary

theorem [B, Freund & Lykouris 2017]
state-independent control policies ~q∞ (from EFR) in K -unit system gives

OBJK (~q∞) ≥ αKnOPTK , where αKn = K
K+n−1

main takeaways
new techniques for state-independent control of closed networks

extends to more complex settings
(travel-times, multi-objective, pooling, reservations)
needs demand-rate and price-elasticity estimates
guarantees are tight for state-independent dispatch policies

how do we go beyond this?
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model: bipartite matching with externalities

23

1
𝟏

𝟑

𝟐

𝟏’

𝟑′

𝟐’

Supply Demand

𝝁𝟏′

𝝁𝟐′

𝝁𝟑′

𝝀𝟏

𝝀𝟐

𝝀𝟑

λi ,
n′∑

k ′=1′
φk ′i , µj ′ ,

n∑
i=1

φj ′i , Note
∑
i∈V

λi =
∑
j ′∈V ′

µj ′ .

to meet all demand at 1′, we need λ1 + λ2 ≥ µ1′

Sid Banerjee (Cornell ORIE) dispatch March 28, 2018 12 / 22



alternate view: walking in the simplex

State X (t) = (Xi (t))i∈V : number of units in each station i
I state space: X (t) ∈ ΩK , {x : x ≥ 0, 1Tx = K}
I normalized state space: Ω , Ω1
I avoid request drop ⇐ avoid hitting boundary

𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 = 𝟏
𝒙𝒊 ≥ 𝟎

(𝟎, 𝟎, 𝟏)

(𝟏, 𝟎, 𝟎) (𝟎, 𝟏, 𝟎) 𝒙𝟏 = 𝟎

𝒙𝟐 = 𝟎 𝒙𝟑 = 𝟎

𝛀

Stay away from boundary of Ω!

𝛀

new performance metric: request-drop exponent

γ(~q) = − limK→∞
1
K log

(
fraction of requests dropped under πK (~q)

)
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complete resource pooling (strong Hall’s condition)

Assumption

∀J ⊂ V ′,
∑

i∈∂(J)

λi >
∑
j ′∈J

µj ′ (?)

Hall’s theorem: there exists a policy such that no demand is
dropped in fluid limit ⇔ the assumption holds

proposition
if (?) holds with equality, exponential decay in request-drops is impossible

what if (?) holds with strict inequality?
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the MaxWeight policy

MaxWeight policy: greedily dispatch from argmaxi∈∂(j ′)Xi (t)
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𝟑

𝟐

𝟏’

𝟑′

𝟐’

Supply

𝝁𝟏′

𝝁𝟐′

𝝁𝟑′

minimizes delay in open queueing networks in heavy traffic1

sub-optimal in our setting: compared with always dispatch from 1

1Dai & Lin 2005, Meyn 2009, Maguluri & Srikant 2016, etc.
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scaled MaxWeight: a family of policies

idea: give each location a weight wi

wi > 0,
∑

i∈V wi = 1

SMW(w): for demand at j ′, dispatch from argmaxi∈∂(j ′)
Xi (t)
wi

previous example: w1 → 0

𝑋3(𝑡)

𝑋2(𝑡)

𝑋1(𝑡)

𝑤1

𝑤2

𝑤3

𝑋3(𝑡)/𝑤3

𝑋2(𝑡)/𝑤2

𝑋1(𝑡)/𝑤1
Queue 
lengths

Scaled 
queue 
lengths

how does SMW(w) perform?
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main result: achievability

theorem [B, Kanoria & Qian 2018]
if (?) is satisfied, then SMW(w) for any w ∈ relint(Ω) results in exponential
decay of dropped-requests; in particular

γ(SMW (w)) = min
J∈J

(1T∂(J)w) log

(∑
j ′ /∈J

∑
k∈∂(J) φj ′k∑

j ′∈J
∑

k /∈∂(J) φj ′k

)

where J ,

{
J ( V ′ :

∑
j ′∈J

∑
k /∈∂(J) φj ′k > 0

}
Supply Demand

Numerator 
in log()

Denominator 
in log()J

Jc

∂J

(∂J)c
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main result: converse

theorem [B, Kanoria & Qian 2018]

for any instance satisfying (?), let γ∗ , supw:w∈relint(Ω) γ(w)
then any state dependent policy satisfies

− lim inf
K→∞

1
K

log (fraction of dropped requests with K supplies) ≤ γ∗,

corollary
there is an SMW policy that achieves a demand drop exponent as close as
desired to the optimal one.
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implications of our results

scaled MaxWeight: one policy to rule them all!

can adapt to available system information
I if we know nothing, use vanilla MaxWeight; resulting exponent is

within factor n of optimal
I if we know φ perfectly, solve for optimal w∗

I if we have partial information . . .

separation of pricing and dispatch: slowly changing pricing + real-time
dispatch sufficient in many cases
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brief proof outline

technical difficulty

compared to heavy traffic: n-dimensional problem
compared to open networks: no state-space ordering

we use a large-deviations analysis with policy-dependent Lyapunov fn
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proof highlight: custom Lyapunov function

𝒘

𝒙

SMW pushes the state towards w
construct a Lyapunov function Lw(x) ≥ 0 such that Lw(w) = 0, and
Lw = 1 on ∂Ω, and L is scale invariant about w
SMW(w) performs steepest descent w.r.t. Lw

Lw(X ) = 1−min
i∈V

Xi

wi
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summary
stochastic models for dispatch: interesting insights + cool new theory!
near-optimal state-independent dispatch via flow relaxations
state-dependent SMW policies lead to exponentially decreasing
fraction of dropped requests

I can adapt to available information
I pricing-dispatch separation principles

open questions
state-dependent dispatch with travel-times
elementary proofs of exponential decay?
adapting policy to changing information
dispatch for pooling
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