Time Series Analysis via Matrix Estimation

Devavrat Shah

Anish Agarwal

Muhammad J Amjad

Dennis Shen

Massachusetts Institute of Technology

Questions from Retail

Question 1:

Estimate demand (rate) for Umbrellas at Target store in Sunnyvale

Question 2:

Estimate future demand for Umbrellas at Target store in Sunnyvale

Question 3:

What would *demand* for Umbrellas at Target store in Sunnyvale be if we did (not) introduce the mobile checkout

Questions from Retail and Time Series Analysis

Question 1: demand rate estimation

estimating latent state of a time-series with missing values

Question 2: future demand

forecasting state of time-series using historical (+ other time-series)

Question 3: demand with(out) intervention

comparing with synthetic control for time-series of interest using other time-series

Rating Matrix A

Observation

ground truth: $A_{ij}, \ \forall (i,j) \in [n] \times [m]$ noisy observation for a subset E of entries: $Y_{ij}, \ \text{for} \ (i,j) \in E$ subject to some `noise' model: $Y_{ij} \sim A_{ij}, \ \forall \ i,j$.

Goal

produce an estimation \hat{A}_{ij} for all $(i,j) \in [n] \times [m]$ so that the *prediction error*

$$MSE(\hat{A}) = \frac{1}{nm} \mathbb{E} \left[\sum_{i,j} (\hat{A}_{ij} - A_{ij})^{2} \right]$$

is small

Latent Variable Model

row i has associated *latent* features $x_1(i) \in \mathcal{X}_1$ column j has associated *latent* features $x_2(j) \in \mathcal{X}_2$ entry corresponding to user i and movie j in A

$$A_{ij} = f(x_1(i), x_2(j))$$
 where $f: \mathcal{X}_1 \times \mathcal{X}_2 \to \mathbb{R}$

That is, Y_{ij} is such that

$$\mathbb{E}[Y_{ij}|x_1(i),x_2(j)] = A_{ij} = f(x_1(i),x_2(j))$$

Canonical representation due to Row-Column Exchangeability [Hoover 79, 82], [Aldous 81, 82, 85], [Lovasz-Szegedy 08], ...

Goal

given (partial) observation of matrix $Y=[Y_{ij}]$ produce an estimation $\hat{A}=[\hat{A}_{ij}]$ so that the prediction error $\mathrm{MSE}(\hat{A})$ is small

Performance Metric

(random) fraction p of matrix $Y = [Y_{ij}]$ that needs to be observed so that estimator is consistent, i.e.

$$\lim_{n,m\to\infty} \mathrm{MSE}(\hat{A}) = 0$$

Model complexity

Feature space: $[0,1]^d$

Function space: bilinear, Lipschitz continuous

Noise model

Additive: $Y_{ij} = f(x_1(i), x_2(j)) + \eta_{ij}, \quad \mathbb{E}[\eta_{ij}] = 0$

Generic: $\mathbb{E}[Y_{ij}] = f(x_1(i), x_2(j)) \quad Y_{ij} \in [-B, B]$

Sample complexity

Number of samples observed

[very large number of remarkable results are not reported here]

Result	Sample Complexity	Noise Model	Function Class	Guarantee
KMO10	$\Omega(nd\log n)$	Additive	bilinear(rank d)	MSE to 0
C15	$\Omega(n^{2-\frac{2}{d+2}})$	Generic	Lipschitz	MSE to 0
LLSS16	$\tilde{\Omega}(n^{3/2})$	Additive	Lipschitz	MSE to 0
BCLS17	$\omega(nd^5)$	Generic	bilinear(rank d)	MSE to 0

This Talk

Answer to all three time-series questions

estimating latent state of a time-series with missing values forecasting state of time-series using historical (+ other time-series) comparing with synthetic control for time-series of interest

Via Matrix Estimation (ME)

we'll assume access to Matrix Estimation (ME) as a *black-box* (BB-ME) transform all three questions to Matrix Estimation and some post-processing

"Ground Truth" of interest: $f(t), \ t \in \mathbb{R}$, for example

$$f(t) = \sum_{k=1}^K \alpha_k \sin(\omega_k t) + \beta_k \cos(\omega_k t)$$

$$f(t) = \sum_{k=1}^K \alpha_k t^{\beta_k} \quad \text{or} \quad f(t) = \sum_{k=1}^K \alpha_k f(t-k) \quad \text{or, their combination....}$$

Observation: $X(t),\ t\in\{0,1,\ldots,T\}$ s. t. if observed (w.p. p) $\mathbb{E}[X(t)]=f(t)\ (\text{+ independence, conditions on "noise"})$

Goal: produce estimate $\hat{X}(t)$ so that

$$\mathrm{MSE}(\hat{X}, f)$$
 is small

An Example:

"Ground Truth" of interest: $f(t), \ t \in \mathbb{R}$ as described before

Observation: w.p. 0.1, observe X(t) where for some

$$X(t) \sim \operatorname{Poisson}(f(t))$$

Goal: produce estimate $\hat{X}(t)$ so that

$$MSE(\hat{X}, f)$$
 is small

An Example:

"Ground Truth" of interest: $f(t), \ t \in \mathbb{R}$ as described before

Observation: w.p. 0.1, observe X(t) where for some $C \geq 1$

$$X(t) \sim \min \left(C, \operatorname{Poisson}(f(t)) \right)$$

$$g(t) = \mathbb{E}\left[\min(C, \text{Poisson}(f(t)))\right]$$

Goal: produce estimate $\hat{X}(t)$ so that

$$MSE(\hat{X}, g)$$
 is small

Algorithm:

Transform to Matrix, Do Matrix Estimation, Undo Transformation

$$X(1) \ X(L+1) \ X(T-L+1) \ X(2) \ X(L+2) \ X(T-L+2) \ \vdots \ \vdots \ X(L) \ X(2L) \ X(T)$$

Theorem (Informal):

The matrix satisfies Latent Variable Model with Lipschitz function.

For L large enough (depending upon model params) with $L^2 \ll T$ the resulting estimator is consistent as long as the fraction of observed data, p, is large enough (+ good Matrix Estimation Black-Box).

For example:

Sum of harmonics with period in $\{1,\dots,n\}$, $T=\omega(n^2)$ is sufficient Contrast with $T=\omega(n)$ in the best case for additive noise "Quadratic" loss may be min'l cost of "university" w.r.t. model/noise (?!)

mixture of periodic, trend and auto-regressive with additive zero-mean noise and randomly missing values

mixture of periodic, trend and auto-regressive with Poisson "noise" and randomly missing values

mixture of periodic, trend and auto-regressive with Poisson "noise" and randomly missing values

"Ground Truth" of interest: $f(t), \ t \in \mathbb{R}$, for example

$$f(t) = \sum_{k=1}^K \alpha_k \sin(\omega_k t) + \beta_k \cos(\omega_k t)$$

$$f(t) = \sum_{k=1}^K \alpha_k t^{\beta_k} \quad \text{or} \quad f(t) = \sum_{k=1}^K \alpha_k f(t-k) \quad \text{or, their combination....}$$

Observation: $X(t),\ t\in\{0,1,\ldots,T\}$ s. t. if observed (w.p. p) $\mathbb{E}[X(t)]=f(t)\ (\text{+ independence, conditions on "noise"})$

Goal: produce estimate $\hat{X}(T+1)$ so that

$$\mathbb{E}\left[\left(\hat{X}(T+1) - X(T+1)\right)^2\right] \text{ is small}$$

Algorithm:

Transform to Matrix, Do Matrix Estimation, Regression, Prediction

$$X(1) \ X(L+1) \ X(2) \ X(L+2) \ \vdots \ \vdots \ X(L) \ X(2L)$$

Algorithm:

Transform to Matrix, Do Matrix Estimation, Regression, Prediction

$$X(k)$$
 $X(L+k)$ $X(k+1)$ $X(k+1)$

$$1 \le k \le L$$

Algorithm:

Transform to Matrix, Do Mettrix Estimatation Regression, Prediction

BB-ME

Algorithm:

Transform to Matrix, Do Matrix Estimation, Regression, Prediction

$$[{\rm X(T-L+2)} \ \dots \ {\rm X(T)}] \qquad V(T+1)$$
 Project on Coln Space of M^k Inner product with β^k
$$\hat{X}(T+1)$$

where
$$k = (T+1 \mod L) + 1$$

Theorem (Informal):

For L large enough (depending upon model params) with $L^2 \ll T$ the expectation of the transformed matrix obeys approx "linear regression" structure in addition to Latent Variable Model. For additive symmetric noise model with good Matrix Estimation Black-Box

$$\mathbb{E}\left[(\hat{X}(T+1) - X(T+1))^2\right] \le C\sigma^2/p$$

where σ^2 is noise variance, C is a universal constant

mixture of periodic, trend and auto-regressive with additive zero-mean noise and randomly missing values

Google Flu Trend in Peru

Answer 3: Synthetic Control

Answer 3: Synthetic Control

Algorithm:

Grey Matrix through BB-ME

Regression

Target: Blue

Features: Denoised Grey

Restriction: pre-intervention

3 4 2 2 3 1 3 • • • 1 5 • • 6 1 4 3 3 2

pre-intervention

post-intervention

Prediction (Synthetic control)

Predict Blue post-intervention using post-intervention denoised Grey

Answer 3: Synthetic Control

Theorem (Informal):

If the matrix satisfies Latent Variable Model then the synthetic control estimates true non-intervention outcome such that the mean-squared error decays as $\widetilde{O}\big(T_0^{-1/2}/p\big)$ where p is the fraction of observed data

Popular factor model from Econometrics literature (cf. Abadie et al): satisfy low-rank (rank 2) structure and a (very) special instance of Latent Variable Model.

Did Terrorism have impact on Economy (of Basque Country)?

Did Terrorism have impact on Economy (of Basque Country)?

Did Terrorism have impact on Economy (of Basque Country)?

Summary

Matrix Estimation

A remarkable method with applications beyond obvious

Time Series Analysis

Matrix Estimation provides "universal" solution

Going forward

"Time Series Prediction DataBase" using such algorithm