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Questions from Retail

Question 1:

Estimate demand (rate) for Umbrellas at Target store in Sunnyvale

Question 2:

Estimate future demand for Umbrellas at Target store in Sunnyvale

Question 3:

What would demand for Umbrellas at Target store in Sunnyvale be
if we did (not) introduce the mobile checkout



Questions from Retail and Time Series Analysis

Question 1: demand rate estimation

estimating latent state of a time-series with missing values

Question 2: future demand

forecasting state of time-series using historical (+ other time-series)

Question 3: demand with(out) intervention

comparing with synthetic control for time-series of interest
using other time-series



Matrix Estimation (ME)
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Matrix Estimation (ME)

Observation
ground truth: Aij, \V/(i,j) - [n] X [m]
noisy observation for a subset E of entries: Yq;j, for (i, ]) c kb

subject to some “noise’ model: Y;'j ~ Aij, vV 1,7.

Goal
produce an estimation Aij for all (i, ]) - [n] X [m]

so that the prediction error

MSE(A) = 1 4:[2 (A;j — Aij)ﬂ

nm —
2V

Is small



Matrix Estimation (ME)

Latent Variable Model

row i has associated /atent features 5131(2) c Xy
column j has associated /atent features To (]) c Ao

entry corresponding to user i and movie j in A
Aij — f(éUl(Z),ZEQ(])) where f : Xl X XQ — R

Thatis, Y;; is such that

D [Yf,;j\xl(i),:vg(jﬂ = Aij = f(21(2), 22(7))

Canonical representation due to Row-Column Exchangeability

[Hoover 79, 82], [Aldous 81, 82, 85], [Lovasz-Szegedy 08], ...



Matrix Estimation (ME)

Goal

given (partial) observation of matrix Y = [Yw]
produce an estimation A = [Az'j]

so that the prediction error MSE(A) is small

Performance Metric

(random) fraction P of matrix ¥ = [YL ] that needs to be observed

so that estimator is consistent, i.e.

AN

lim MSE(A) =0

N, 1M —> 00



Matrix Estimation (ME)

Model complexity

Feature space:|0, 1]°

Function space: bilinear, Lipschitz continuous

Noise model

Additive: V;: = f(z1(2),22(7)) + nij, Elni] =

Generic: ":[Yij] = f(ajl<l)7 L2 (]))

Sample complexity

Number of samples observed




Matrix Estimation (ME)

[very large number of remarkable results are not reported here]

Result
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(Yndlogn)  Additive
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Function Class

bilinear(rank d)
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This Talk

Answer to all three time-series questions

estimating latent state of a time-series with missing values

forecasting state of time-series using historical (+ other time-series)

comparing with synthetic control for time-series of interest

Via Matrix Estimation (ME)

we'll assume access to Matrix Estimation (ME) as a black-box (BB-ME)
transform all three questions to Matrix Estimation

and some post-processing



Answer 1: Time Series Imputation

“Ground Truth” of interest: f(t), t € R, for example

K

F(t) = apsin(wit) + B cos(wt)

k=1

K K
f(t) = Z apt?c or f(t) = Z oy f(t — k) or, their combination....
k=1 k=1

Observation: X (t), t € {0,1,...,T}s. t.if observed (w.p. p)

£ X (t)] = f(t) (+ independence, conditions on “noise”)

Goal: produce estimate X(t) so that

MSE(X, f) is small



Answer 1: Time Series Imputation

An Example:

“Ground Truth” of interest: f(t), t € R as described before

Observation: w.p. 0.1, observe X(t) where for some

X(t) ~ Poisson(f(t))

Goal: produce estimate X(t) so that

MSE(X, f) is small



Answer 1: Time Series Imputation

An Example:

“Ground Truth” of interest: f(t), t € R as described before

Observation: w.p. 0.1, observe X(t) where for some (' > 1

X (t) ~ min ((J, Poisson( f(t)))

g(t) = E| min(C, Poisson(f(t))]

Goal: produce estimate X(t) so that

MSE(X, g) is small



Answer 1: Time Series Imputation

Algorithm:

Transform to Matrix, Do Matrix Estimation, Undo Transformation

X(1) X(2) ... X(L)

X(L+1) ... X(2L)

X(T-L+1) ... X(T)

3
I

X(L) X

X(1) X(L+1)
X(2) X(L+2)

(2L)

X(T-L+1)
X(T-L+2)

X(T)




Answer 1: Time Series Imputation

Theorem (Informal):
The matrix satisfies Latent Variable Model with Lipschitz function.
For L large enough (depending upon model params) with < T
the resulting estimator is consistent as long as the fraction of observed

data, p, is large enough (4+ good Matrix Estimation Black-Box).

For example:

Sum of harmonics with period in {1,....,n}, " = w(nz) is sufficient
Contrast with [ = w(n) in the best case for additive noise

“Quadratic” loss may be min’l cost of “university” w.r.t. model/noise (?!)



Answer 1: Time Series Imputation

Imputation RMSE vs p
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Answer 1: Time Series Imputation

Time Series of Poisson Random Variables, p =0.90
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mixture of periodic, trend and auto-regressive

with Poisson “noise’ and randomly missing values



Answer 1: Time Series Imputation

Imputation Metrics for Time Series of Poisson Random Variables
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Answer 2: Time Series Forecasting

“Ground Truth” of interest: f(t), t € R, for example

K
= Z oy, sin(wgt) + Br cos(wyt)
k=1
Z atPe or  f(1) Z ap f(t — or, their combination....

Observation: X (t), t € {0,1,...,T}s. t.if observed (w.p. p)

*C[X(t)] — f(t) (+ independence, conditions on “noise”)

Goal: produce estimate X(T -+ 1) so that

2 (X (T4 1) = X(T'+ 1)) is small



Answer 2: Time Series Forecasting

Algorithm:

Transform to Matrix, Do Matrix Estimation, Regression, Prediction

X(1) X(2) ... X(L)[|X(L+1) ... X(2L)| oo .. ..

X(1) X(L+1)
X(2) X(L+2)

3
I

X(L) X(2L)




Answer 2: Time Series Forecasting

Algorithm:

Transform to Matrix, Do Matrix Estimation, Regression, Prediction

X(K) ... X(L+k-D)X(L+k)...X(2L+k-1)

X(k+1) X(L+k+1)

g
I

X(L+k-1) X(2L+k-1)




Answer 2: Time Series Forecasting

Algorithm:
Transform to Matrix, Do MitrxHestnmatorR étagssmoon , Hredadatioon

BB-ME
Xk e MF 1<k<L
Features
kE __
M™ = ~ Linear
! Regression

o
N 4
fooe oW

6k




Answer 2: Time Series Forecasting

Algorithm:

Transform to Matrix, Do Matrix Estimation, Regression, Prediction

[X(T-L42) ... X(T)] V(T +1)

Project on Coln Inner product

Space of MF with ﬁk

X(T+1)

where k:(T—I—l modL)—l—l



Answer 2: Time Series Forecasting

Theorem (Informal):

For L large enough (depending upon model params) with < T

the expectation of the transformed matrix obeys approx “linear regression”

structure in addition to Latent Variable Model. For additive symmetric

noise model with good Matrix Estimation Black-Box

[(X(T+1) = X(T+1))?| < Co?/p

2 . . . . .
where o0~ is noise variance, C is a universal constant



Answer 2: Time Series Forecasting

Prediction RMSE vs p
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Answer 2: Time Series Forecasting

Google Flu Trend Prediction (Peru) RMSE vs p, Google Flu Trends Prediction (Peru)
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Answer 3: Synthetic Control
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Answer 3: Synthetic Control

Algorithm: s 4 S o .
Grey Matrix through BB-ME
Regression 3 ee° | :5 e e e ¢
Target: Blue
Features: Denoised Grey

Restriction: pre-intervention pre-intervention post-intervention

Prediction (Synthetic control)

Predict Blue post-intervention

using post-intervention denoised Grey



Answer 3: Synthetic Control

Theorem (Informal):

If the matrix satisfies Latent Variable Model

then the synthetic control estimates true non-intervention outcome

such that the mean-squared error decays as 5(T0_1/2/p)

where p is the fraction of observed data

Popular factor model from Econometrics literature (cf. Abadie et al):

satisfy low-rank (rank 2) structure and a (very) special instance of

Latent Variable Model.



Answer 3: Synthetic Control

Did Terrorism have impact on Economy (of Basque Country)?

Basque Country study
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Answer 3: Synthetic Control

Did Terrorism have impact on Economy (of Basque Country)?

Missing at random: Basque Country Study
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Answer 3: Synthetic Control

Did Terrorism have impact on Economy (of Basque Country)?

1 Basque country study
T T T T T T

10

0}

-2 H = Basque Country (Pais Vasco) .
- Synthetic Basque (no de-noising)

_4 | |

1955 1960 1965 1970 1975 1980 1985 1990 1995

year

real per-capita GDP (1986 USD, thoudsand)
N &S




Summary

Matrix Estimation

A remarkable method with applications beyond obvious

Time Series Analysis

Matrix Estimation provides “universal” solution

Going forward

“Time Series Prediction DataBase” using such algorithm



