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Motivation: Recommendations in online platforms

▶ Learning algorithms used to recommend alternatives to users.
▶ Common assumption: arrivals not influenced by decisions.

▶ This talk is about learning with positive externalities: A positive experience
attracts more users of the same type
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A simple setting

Suppose there are two types of users of a platform:

▶ blue users like blue items (but not red items)
▶ red users like red items (but not blue items)
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What could go wrong?

Positive rewards can be self-reinforcing:

Suppose a red-red match made early on. Then:
▶ more red type users likely to arrive

, and

▶ blue items less likely to generate positive reward.
So the platformmight learn to prefer red-red matches.

If E[ blue-blue match reward ] > E[ red-red match reward ],
then this is a suboptimal outcome.
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Our results: Summary

▶ In the presence of positive exernalities, optimal algorithms for the classical
multiarmed bandit can fail spectacularly.

▶ In our model, we instead develop an optimal algorithm via balanced
exploration.
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Model
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Themodel: Standard bandit

▶ m: Number of arms (“items”)

▶ T : (Discrete) time horizon; one user arrives per time step
▶ µa: probability of unit reward when arm a pulled (Bernoulli)
▶ a∗: best arm (for simplicity, assume unique)
▶ Ta(t): number of times arm a pulled (“recommended”) up to time t
▶ Sa(t): number of times arm a generates reward up to time t

Goal: maximize expected total reward (ETRT).

We study performance asymptotic in T.
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Themodel: Positive externalities

Let θa be initial “bias” of arm a.

We assume the user arriving at time t likes arm a independently with probability:

λa(t) =
f (θa + Sa(t))∑
b f (θb + Sb(t))

.

P(reward at t| arm a pulled) = µa if user t likes a, otherwise zero.

f is the externality function: it determines the strength of the positive externality.

For now let’s assume f (x) = x. (Generally we consider f (x) = xα, α ≥ 0.)
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The baseline oracle
Since we study performance that is asymptotic in T, natural to consider a
baseline oracle that always chooses arm a∗.

Proposition
The oracle earns ETR∗

T = µa∗T − Ω(ln T ).

Intuition:
Second term comes from needing to remove any
initial bias toward suboptimal arms, since:

P(user t likes a∗) ≈ 1−
∑

a ̸=a∗ θa

O(t) +
∑

a̸=a∗ θa
.
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Regret

Measure performance of any algorithm against baseline oracle
as expected regret RT:

RT = ETR∗
T − ETRT.
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Performance of benchmark policies
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UCB and the standard bandit

The UCB(γ) (“upper confidence bound”) algorithm is a benchmark algorithm
for the standard multiarmed bandit (MAB) problem.

At time t, UCB(γ) pulls the arm a with largest:

empirical mean reward up to t +

√
γ ln t

Ta(t − 1)
.

Well-known fact for standard MAB:
UCB(γ) achieves regret (against always playing a∗) of O(ln T ), and this is
optimal.
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UCBwith positive externalities

The red-blue example suggests, though, that UCB-like algorithmsmay not
explore enough.

We show UCB(γ) has linear expected regret RT = Θ(T ).

In fact, the situation is much worse:

Proposition
For UCB(γ):

lim
T→∞

P(Sa∗(T ) = 0) > 0.

In other words: positive probability of never receiving a reward on arm a∗!

(Same result holds for any super-logarithmic externality function f.)
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Random explore-then-exploit

Why does UCB fail? It stops exploring too quickly.

A simple benchmark that explores more:
▶ Explore uniformly at random for some fixed time τ .
▶ Commit to empirical best arm at τ for rest of horizon.

This is random explore-then-exploit (REE).
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Random explore-then-exploit

The performance of REE (with optimized τ ) is somewhat better than UCB:

Proposition
For REE, RT = O(T c), where c < 1.

Analysis of REE proceeds by viewing each arm as a generalized urn process.

Model arms as independent continuous-time branching processes, in which
branches occur at rate 1/m.

The jump chain of the combined process exactly captures positive externalities.
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An optimal algorithm
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What’s going wrong?

UCB and REE highlight the failure modes in this model:

▶ If we do not explore enough, then we risk missing the optimal arm entirely,
because arriving users simply don’t like it.

▶ If we explore at random, then even if we identify the optimal arm, too
much regret is incurred in undoing the bias on suboptimal arms.

We develop an algorithm that uses structured exploration to overcome these
challenges.
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Balanced exploration

The balanced exploration algorithm is as follows:
Fix τ = Θ(ln T ).
▶ For t ≤ τ , pull the arm with lowest cumulative reward Sa(t − 1) (ties

broken at random).
▶ For t > τ , pull the arm with highest mean reward Sa(τ)/Ta(τ) at time τ .

Proposition
Balanced exploration has regret RT = O(ln2 T ).
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Lower bound

To get intuition into why balanced exploration works,
easiest to study the matching lower bound.

Proposition
Any policy must have expected regret RT = Ω(ln2 T ).
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Lower bound
Intuition for lower bound:
▶ When each arm is explored for at least τ steps, it is as if the initial bias on

each arm is proportional to τ .

▶ Recall that if initial bias is θ, and arm a∗ always pulled, then:

P(user t likes a∗) = 1−
∑

a̸=a∗ θa

Θ(t) +
∑

a ̸=a∗ θa
.

▶ So from timeΘ(τ) onwards, if a∗ correctly identified, incur regret that is
Ω(τ ln T ).

▶ Any algorithmwith τ that is smaller than O(ln T ) is guaranteed to incur
high regret, via a standard change of measure argument; therefore we
must have τ = Ω(ln T ), and the result follows.
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The strength of positive externalities
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The complete picture
Suppose f (x) = x α, α ≥ 0.

α = 0 0 < α < 1 α = 1 α > 1

UCB O(ln T ) Ω(T ) Ω(T ) Ω(T )

REE O(ln T ) Ω
(

T1−α ln
α

1−α T
)

Ω
(

T
µb

µb+θa∗µa∗
)

Ω(T )

Balanced exp. O(ln T ) O(T1−α lnα T ) O(ln2 T ) O(lnα T )

Lower bound Ω(ln T ) Ω(T1−α lnα T ) Ω(ln2 T ) Ω(lnα T )
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Conclusion
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Looking ahead

In our model:
1. More general reward distributions
2. Dependence of regret on m (number of arms)

More broadly:
1. Personalization and contextual bandits
2. Other objectives
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