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Large population games: traffic routing

• Traffic subject to congestion delays
• cars and packets follow shortest path
• Congestion game =cost (delay) 

depends only on congestion on edges

Traffic streams change 
e.g., popular sites may change
Changes in system setup



Repeated games
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• Player’s value/cost additive over periods, while playing
• Players try to learn what is best from past data
What can we say about the outcome? 
How long do they have to stay to ensure OK social welfare?



Result: routing, limit for very small users

Theorem  (Roughgarden-T’02):
In any network with continuous, non-decreasing cost 

functions and small users

cost of Nash with 
rates ri for all i

cost of opt with 
rates 2ri for all i≤

Nash equilibrium: stable solution where no player had 
incentive to deviate.

cost of worst Nash equilibrium
“socially optimum” cost

Price of Anarchy=



Examples of price of anarchy bounds

• Monotone increasing congestion costs
Nash cost ≤ opt of double traffic rate (Roughgarden-T’02)

• affine congestion cost (Roughgarden-T’02) 4/3 price of anarchy

• Atomic game (players with >0 traffic) with linear delay (Awerbuch-
Azar-Epstein & Christodoulou-Koutsoupias’05)

⇒ 2.5 price of anarchy
These bounds are tight



Price of anatrchy in auctions
• First price is auction Hassidim, Kaplan, Mansour, Nisan EC’11) 

Price of anarchy 1.58…
• All pay auction price of anarchy 2
• First position auction (GFP) is price of anarchy 2
• Variants with second price (see also Christodoulou, Kovacs, Schapira  

ICALP’08) price of anarchy 2
Other applications include: 
- public goods
- Fair sharing (Kelly, Johari-Tsitsiklis) price of anarchy 1.33
- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13)



Repeated game that is (slowly) changing 
[Lykouris, Syrgkanis, T.]

Dynamic population model:
At each step t each player i

is replaced with an arbitrary new player with probability p

In a population of N players, each step, Np players replaced 
in expectation
• Population changes all the time: need to adjust!
• players stay long enough to be able to learn (1/p steps)
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Learning in Repeated Game

• What is learning?
• Does learning lead to finding Nash equilibrium?

Robinson’51:
• fictitious play = best respond to past history of other players
Goal: “pre-play” as a way to learn to play Nash. 



Outcome of Fictitious Play in Repeated Game

• Does learning lead to finding Nash equilibrium?
mostly not

Theorem: Marginal distribution of each player actions 
converges to Nash in
Robinson’51: In two player 0-sum games 
Miyasawa’61: In generic payoff 2 by 2 games



Learning outcome
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Maybe here they don’t 
know how to play, who are 
the other players, …

By here they have a 
better idea…



No-regret without stability: learning 

time

No regret: for any fixed action 𝑥𝑥:
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regret
(cost ∈ [0,1]):



Outcome of no-regret learning in a fixed game

Limit distribution 𝜎𝜎 of play (action vectors a=(𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑛𝑛))
• all players i have no regret for all strategies x

𝐸𝐸𝑎𝑎∼𝜎𝜎 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎 ≥ 𝐸𝐸𝑎𝑎∼𝜎𝜎(𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖))

Hart & Mas-Colell: Long term average play is (coarse) correlated 
equilibrium

Players update independently, but correlate on shared history



Today: approximate no-regret
For any fixed action 𝑥𝑥 (with d options) : 

∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ ∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 ) + 𝑇𝑇𝑙𝑙𝑐𝑐𝑙𝑙 𝑑𝑑

In fact, much better bound applies! 
Foster, Li, Lykouris, Sridharan, T NIPS’16

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ (1 + 𝜖𝜖)�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖(𝑥𝑥, 𝑎𝑎−𝑖𝑖𝑡𝑡 ) +
log d
𝜖𝜖

Same algorithms! MWU (Hedge), Regret Matching, etc.
T=time, d=# strategies 



No-regret learning as a behavioral model?

• Er’ev and Roth’96 
lab experiments  with 2 person coordination game

• Fudenberg-Peysakhovich EC’14
lab experiments with seller-buyer game 
recency biased learning

• Nekipelov-Syrgkanis-Tardos EC’15
Bidding data on Bing-Ad-Auctions

• Nisan-Noti WWW’17
Lab experiment with ad-auction games



Quality of Learning Outcome
Price of Anarchy [Koutsoupias-
Papadimitriou’99]

𝑃𝑃𝑐𝑐𝑃𝑃 = max
𝑎𝑎 𝑁𝑁𝑎𝑎𝑁𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝑎𝑎)
𝑂𝑂𝑂𝑂𝑡𝑡

Assuming no-regret learners in fixed 
game: [Blum, Hajiaghayi, Ligett, Roth’08, 
Roughgarden’09]

𝑃𝑃𝑐𝑐𝑃𝑃 = lim
𝑇𝑇→∞

∑𝑡𝑡=1𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝑎𝑎𝑡𝑡)
𝑇𝑇 𝑂𝑂𝑂𝑂𝑡𝑡



Proof Technique: Smoothness (Roughgarden’09)
Consider optimal solution: player i does action 𝑎𝑎𝑖𝑖∗ in optimum
Nash: costi a ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 (𝒂𝒂𝒊𝒊∗,𝑎𝑎−𝑖𝑖) (doesn’t need to know 𝑎𝑎𝑖𝑖∗)

A game is (λ,μ)-smooth (λ > 0; μ< 1): if for all strategy vectors a 

�
𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖(𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖) ≤ 𝜆𝜆 𝑂𝑂𝑃𝑃𝑇𝑇 + 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝑎𝑎)

Then:  A Nash equilibrium a has

If Opt much cheaper than a, some player will want to deviate to 𝑎𝑎𝑖𝑖∗

�
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𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎 ≤

cost(a) ≤ 𝜆𝜆
1−𝜇𝜇

Opt



Learning and price of anarchy
Use approx no-regret learning: 
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ (1 + 𝜖𝜖)∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑖𝑖∗, 𝑎𝑎−𝑖𝑖𝑡𝑡 + 𝑃𝑃𝐴𝐴

A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1): 
∑𝑡𝑡 ∑𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑖𝑖∗, 𝑎𝑎−𝑖𝑖𝑡𝑡 ≤ 𝜆𝜆 ∑𝑡𝑡 𝑂𝑂𝑂𝑂𝑡𝑡 + 𝜇𝜇 ∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝑎𝑎𝑡𝑡)

A approx. no-regret sequence 𝑎𝑎𝑡𝑡 has

Note the convergence speed! 𝑃𝑃𝐴𝐴 = log 𝑑𝑑
𝜖𝜖

, so error n
T
⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑
𝜖𝜖(1− 1+𝜖𝜖 𝜇𝜇)

Foster, Li, Lykouris, Sridharan, T, NIPS’16

1
𝑇𝑇
∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝑎𝑎𝑡𝑡) ≤ (1+𝜖𝜖)𝜆𝜆

1−(1+𝜖𝜖)𝜇𝜇
Opt + n

T 1− 1+𝜖𝜖 𝜇𝜇
AR



Learning in Dynamic Game: 
[Lykouris, Syrgkanis, T. ‘16]

Dynamic population model:
At each step t each player i

is replaced with an arbitrary new player with probability p

How should they learn from data?
No regret?  

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑡𝑡 ≤ (1 + 𝜖𝜖)�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖𝑡𝑡 + 𝑃𝑃𝐴𝐴
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Need for adaptive learning

Example routing
• Strategy = path
• Best “fixed” strategy in hindsight very weak in 

changing environment
• Learners should/can adapt to the changing 

environment 

time
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Adapting result to dynamic populations

Inequality we “wish to have”

�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑎𝑎𝑡𝑡;𝑣𝑣𝑡𝑡 ≤�
𝑡𝑡

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖(𝑎𝑎𝑖𝑖∗𝑡𝑡 ,𝑎𝑎−𝑖𝑖𝑡𝑡 ;𝑣𝑣𝑡𝑡)

where 𝑎𝑎𝑖𝑖∗𝑡𝑡 is the optimum strategy for the players at time t.

with stable population = no regret for 𝑎𝑎𝑖𝑖∗

Too much to hope for in dynamic case: 
• sequence 𝑎𝑎∗𝑡𝑡 of optimal solutions changes too much. 
• No hope of learners not to learn this well! 



Change in Optimum Solution 

True optimum is too sensitive
• Example using matching
• The optimum solution
• One person leaving
• Can change the solution for everyone

• Np changes each step → No time to 
learn!! (we have p>>1/N)



Adaptive Learning

Theorem Approximate Regret [Foster,Li,Lykouris,Sridharan,T. NIPS’16] 
for all player i, strategy 𝑥𝑥𝑡𝑡 sequence that changes k times

∑𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖(𝑎𝑎𝑡𝑡 , 𝑣𝑣𝑡𝑡) ≤ ∑𝑡𝑡 1 + 𝜖𝜖 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 𝑥𝑥𝑡𝑡 ,𝑎𝑎−𝑖𝑖𝑡𝑡 ; 𝑣𝑣𝑡𝑡 +𝑂𝑂(k
𝜖𝜖

log𝑑𝑑)

Using any of MWU (Hedge), Regret Matching, etc. mixed with a bit of recency bias
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Theorem (high level)
If a game satisfies a “smoothness property” 
The welfare optimization problem admits an approximation algorithm whose 
outcome �𝑎𝑎∗ is stable to changes in one player’s type
Then any adaptive learning outcome is approximately efficient

Proof idea: use this approximate solution as �𝒂𝒂∗ in Price of Anarchy proof
With  �𝒂𝒂∗not changing much, learners have time to learn not to regret following �𝒂𝒂∗

23

PoA = lim
𝑇𝑇→∞

∑𝑡𝑡=1𝑇𝑇 𝑐𝑐𝑙𝑙𝑁𝑁𝑡𝑡(𝑎𝑎𝑡𝑡,𝑣𝑣𝑡𝑡)
∑𝑡𝑡=1𝑇𝑇 𝑂𝑂𝑂𝑂𝑡𝑡(𝑣𝑣𝑡𝑡)

close to PoA



Result (Lykouris, Syrgkanis, T’16) :

In many smooth games welfare close to Price of Anarchy even when the 
rate of change is high, 𝒑𝒑 ≈ 𝟏𝟏

𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
with n players, assuming adaptive no-

regret learners
- Worst case change of player type  ⇒ need for learning players
- Bound 𝜶𝜶 ⋅ 𝜷𝜷 ⋅ 𝜸𝜸 depends on 

- 𝜶𝜶 price of anarchy bound as game gets large, goes to 1 in
auctions, goes to 4/3 in linear congestion games 

- 𝜸𝜸 loss due to regret error   goes to 1 as 𝑂𝑂 → 0
- 𝜷𝜷 loss in opt for stable solutions         goes to 1 as 𝑂𝑂 → 0 & game is large

24



Stable ≈ Optimum in Matching

True optimum is too sensitive
• Use greedy allocation: assign large values first 

(loss of factor of 2)
• Use coarse approximation of value, e.g., 

power of 2 only 
• Potential function argument:

increase in log value of allocation only m log 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚 ,
decrease due to departures 



Use Differential Privacy → Stable Solutions

Joint privacy [Kearns et al. ’14, Dwork et al. ‘06]
A randomized algorithm is jointly differentially private if 

• when input from player i changes 
• the probability of change in solution of players other than i is 

smaller than 𝝐𝝐

• Turn a sequence of randomized solutions to a randomized 
sequence with small number of changes using Coupling Lemma

• and handling “failure probabilities” of private algorithms
26



Sample Application

Theorem 1. Matching markets (unit demand) [Lykouris, Syrgkanis,T’16]
if all values are [𝜌𝜌,1]
∑𝑡𝑡 𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡;𝑣𝑣𝑡𝑡 ≥ 1

4 1+𝜖𝜖
∑𝑡𝑡 OPT 𝑣𝑣𝑡𝑡

with 𝑂𝑂 = 𝑂𝑂 𝜌𝜌2𝜖𝜖2

𝑂𝑂𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚,1/𝜌𝜌,1/𝜖𝜖
assuming players use no regret learning with parameter 𝜖𝜖 > 0

p = participant turnover probability 
𝜌𝜌= min item value
OPT(𝑣𝑣𝑡𝑡) value of efficient outcome with player values 𝑣𝑣𝑡𝑡
SW(𝑎𝑎𝑡𝑡 , 𝑣𝑣𝑡𝑡) value of game outcome with player values 𝑣𝑣𝑡𝑡

27



Conclusions

Learning in games:
• Good way to adapt to opponents
• No need for common prior
• Takes advantage of opponent playing badly.

Learning players do well even in dynamic environments
• Stable approx. solution + good PoA bound ⇒ good efficiency with 

dynamic population

28
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