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Large population games: traffic routing

e Traffic subject to congestion delays Traffic streams change
e cars and packets follow shortest path e.g., popular sites may change
e Congestion game =cost (delay) Changes in system setup

depends only on congestion on edges



Repeated games
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e Player’s value/cost additive over periods, while playing
e Players try to learn what is best from past data

What can we say about the outcome?

How long do they have to stay to ensure OK social welfare?



Result: routing, limit for very small users

Theorem (Roughgarden-T'02):

In any network with continuous, non-decreasing cost
functions and small users

cost of Nash with cost of opt with
rates r for all i < rates 2r for all i

Nash equilibrium: stable solution where no player had
incentive to deviate.

cost of worst Nash equilibrium
“socially optimum’ cost

Price of Anarchy=




Examples of price of anarchy bounds

* Monotone increasing congestion costs
Nash cost < opt of double traffic rate (Roughgarden-T'02)
e affine congestion cost (Roughgarden-T'02) 4/3 price of anarchy

e Atomic game (players with >0 traffic) with linear delay (Awerbuch-
Azar-Epstein & Christodoulou-Koutsoupias’05)

—> 2.5 price of anarchy
These bounds are tight



Price of anatrchy in auctions

e First price is auction Hassidim, Kaplan, Mansour, Nisan EC'11)
Price of anarchy 1.58...

* All pay auction price of anarchy 2

e First position auction (GFP) is price of anarchy 2

 Variants with second price (see also Christodoulou, Kovacs, Schapira
ICALP’08) price of anarchy 2

Other applications include:

- public goods

- Fair sharing (Kelly, Johari-Tsitsiklis) price of anarchy 1.33
- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13)



Repeated game that is (slowly) changing
Lykouris, Syrgkanis, T.]

Dynamic population model:

At each step t each player i
is replaced with an arbitrary new player with probability p

In a population of N players, each step, Np players replaced
In expectation

e Population changes all the time: need to adjust!
e players stay long enough to be able to learn (1/p steps)



Learning in Repeated Game

* What is learning?
* Does learning lead to finding Nash equilibrium?

Robinson’51:
e fictitious play = best respond to past history of other players
Goal: “pre-play” as a way to learn to play Nash.



Outcome of Fictitious Play in Repeated Game

e Does learning lead to finding Nash equilibrium?
mostly not

Theorem: Marginal distribution of each player actions
converges to Nash in

Robinson’51: In two player O-sum games
Miyasawa’61: In generic payoff 2 by 2 games



Learning outcome
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Maybe here they don’t
know how to play, who are
the other players, ...

By here they have a
better idea...



No-regret without stability: learning
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No regret: for any fixed action x:(cost € [0,1]):

/regret
2 cost;(a') < 2 cost;(x, aii) +error

t t

error < VT (if o(T) called no-regret)



Outcome of no-regret learning in a fixed game

Limit distribution o of play (action vectors a=(aq, a,, ..., a,;))
* all players i have no regret for all strategies x

EaNU(costi (a)) > E, _s(cost;(x,a_;))

Hart & Mas-Colell: Long term average play is (coarse) correlated
equilibrium

Players update independently, but correlate on shared history



Today: approximate no-regret

For any fixed action x (with d options) :

Y. cost;(a*) < Y, cost;(x, afi) + VTlog d

In fact, much better bound applies!
Foster, Li, Lykouris, Sridharan, T NIPS’16

. logd
z cost;(a®) < (1 + €) z cost;(x,a’;)
t

t
Same algorithms! MWU (Hedge), Regret Matching, etc.

€

T=time, d=# strategies




No-regret learning as a behavioral model?

* Er'ev and Roth’96
lab experiments with 2 person coordination game
* Fudenberg-Peysakhovich EC'14
lab experiments with seller-buyer game
recency biased learning
* Nekipelov-Syrgkanis-Tardos EC’15
Bidding data on Bing-Ad-Auctions
* Nisan-Noti WWW’17
Lab experiment with ad-auction games



Quality of

Price of Anarchy
Papadimitriou’99]

Koutsoupias-

cost(a)

PoA = max

aNash Opt

_earning Outcome

Assuming no-regret learners in fixed
game: [Blum, Hajiaghayi, Ligett, Roth’08,
Roughgarden’09]

PoA = lim L1 cost(a’)
T—00 T Opt

Lykouris, Syrgkanis, T. 2016] dynamic population

T
PoA = lim

t=

L cost(at,vh)

Uinds ZZ:1 Opt(v?)
where v! is the vector of player types at time t



Proof Technique: Smoothness (Roughgarden’09)

Consider optimal solution: player i does action a; in optimum
Nash: cost;(a) < cost; (a;,a_;) (doesn’t need to know a;)

A game is (A,1)-smooth (A > 0; u< 1): if for all strategy vectors a

2 cost;(a) < 2 cost;(a;,a_;) < AOPT + u cost(a)
i i
Then: A Nash equilibrium a has cost(a) < ﬁOpt

If Opt much cheaper than a, some player will want to deviate to a;



Learning and price of anarchy

Use approx no-regret learning:
Y costi(at) < (1 + €) X, costy(aj, afi) + AR

A cost minimization game is (A,)-smooth (A > 0; p< 1):
Y. Yicosti(a;,al;) < A¥, Opt + u ¥, cost(al)

A approx. no-regret sequence a’ has
(1+e)A n

1 t
- <
s ecost(at) <o Opt + r— s AR
log d n log d
Note the convergence speed! AR = , SO error [— : ]
€ T e(1-(1+e)p)

Foster, Li, Lykouris, Sridharan, T, NIPS'16



Learning in Dynamic Game:
[Lykouris, Syrgkanis, T. “16]

Dynamic population model:
At each step t each player i
is replaced with an arbitrary new player with probability p

How should they learn from data?
No regret?

z cost;(a’) < (1 +¢€) z cost;(aj,at;) + AR
t

t
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Need for adaptive learning
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Example routing

e Strategy = path ®

e Best “fixed” strategy in hindsight very weak in
changing environment

e Learners should/can adapt to the changing
environment
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Adapting result to dynamic populations

Inequality we “wish to have”

Z cost;(at;vh) < Z cost;(a’t,al;vh)
t t
where aft is the optimum strategy for the players at time t.

with stable population = no regret for a;
Too much to hope for in dynamic case:

e sequence a*! of optimal solutions changes too much.

* No hope of learners not to learn this well!



Change in Optimum Solution

True optimum is too sensitive

e Example using matching

* The optimum solution

* One person leaving
e Can change the solution for everyone
@&
* Np changes each step — No time to =

learn!! (we have p>>1/N)



Adaptive Learning
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Theorem Approximate Regret [Foster,Li,Lykouris,Sridharan,T. NIPS'16]

for all player i, strategy x* sequence that changes k times

¥ cost;(at,vt) < Xi(1 + €) costy(xt, al;; vt) + 0(15 log d)

Using any of MWU (Hedge), Regret Matching, etc. mixed with a bit of recency bias
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Theorem (high level)

If a game satisfies a “smoothness property”

The welfaLg optimization problem admits an approximation algorithm whose
outcome a* is stable to changes in one player’s type

Then any adaptive learning outcome is approximately efficient

POA = lim 2tz cost@ivh)

close to PoA
T— oo 2175;1 Oopt(vl)

Proof idea: use this approximate solution as a* in Price of Anarchy proof
With a*not changing much, learners have time to learn not to regret following a*



Result (Lykouris, Syrgkanis, T'16) :

In many smooth games welfare close to Price of Anarchy even when the
with n players, assuming adaptive no-

rate of change is high, p = log
regret learners

- Worst case change of player type = need for learning players

- Bound a - B - Yy depends on

- a price of anarchy bound as game gets large, goesto 1in
auctions, goes to 4/3 in linear congestion games
-y loss due to regret error goestolasp —» 0

- p loss in opt for stable solutions goestolasp — 0 & game is large
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Stable = Optimum in Matching

True optimum is too sensitive

* Use greedy allocation: assign large values first
(loss of factor of 2)

e Use coarse approximation of value, e.g.,
power of 2 only

e Potential function argument:

increase in log value of allocation only m log v,,, 4 »
decrease due to departures



Use Differential Privacy — Stable Solutions

Joint privacy [Kearns et al. 14, Dwork et al. ‘06]

A randomized algorithm is jointly differentially private if
 when input from player i changes

* the probability of change in solution of players other thanii is
smaller than €

e Turn a sequence of randomized solutions to a randomized
sequence with small number of changes using Coupling Lemma

* and handling “failure probabilities” of private algorithms



Sample Application

Theorem 1. Matching markets (unit demand) [Lykouris, Syrgkanis,T’16]
if all values are [p,1]

. SW(at; vt) = —

4(1+€)

.t OPT(v?")

| p2e2
with p = 0 (polylog(m,l/p,l/e))

assuming players use no regret learning with parameter € > 0
p = participant turnover probability
p=min item value
OPT(v?) value of efficient outcome with player values vt
SW(at, v?) value of game outcome with player values vt




Conclusions

Learning in games:

e Good way to adapt to opponents

* No need for common prior

* Takes advantage of opponent playing badly.

Learning players do well even in dynamic environments

e Stable approx. solution + good PoA bound = good efficiency with
dynamic population
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