
Making sense of
hierarchical log data
Damon Wischik
Dept. of Computer Science and Technology

UNIVERSITY OF
CAMBRIDGE

ad
server

friend graph
database

recent posts
database

Debugging in a data center

Internet

servers / hosts
switches / routers

front end
webserver

front end
webserverrecent

posts
ad
server

friend
graphtim

e

transaction start

query RecentPosts

in parallel,
query AdServer

AdServer:
query FriendGraph

AdServer:
JOIN(FriendGraph)

JOIN(RecentPosts, AdServer)

transaction end

Debugging in a data center

DevOps notices problems with response time.

§ Was there a network update, which messed things up?

§ Was there a code update?

§ Is there some part of the system that started churning?

§ Is it because of changes in demand?

§ Is it a knock-on effect from elsewhere?

front end
webserverrecent

posts
ad
server

friend
graph

transaction start

query RecentPosts

in parallel,
query AdServer

AdServer:
query FriendGraph

AdServer:
JOIN(FriendGraph)

JOIN(RecentPosts, AdServer)

transaction end

Network engineer view Programmer view DevOps view

Debugging in a data center

True story:

§ Student’s peer-to-peer code runs happily, until it suddenly becomes horribly slow

§ It’s only slow on the campus network, not over ADSL

§ Diagnosis:
Certain workload patterns trigger a cascade of ≈12 packets
This overwhelms the switch buffers, and the final few packets get dropped
The code goes into timeout / recovery

front end
webserverrecent

posts
ad
server

friend
graph

transaction start

query RecentPosts

in parallel,
query AdServer

AdServer:
query FriendGraph

AdServer:
JOIN(FriendGraph)

JOIN(RecentPosts, AdServer)

transaction end

Network engineer view Programmer view DevOps view

Challenge, version 1

If we have logs of flows,
plus the process ID that each flow belongs to,
plus occasional programmer-generated log messages,

but we don’t know the network state or the code,

how can we diagnose problems?

Flow from INTERNET to HOST1(pid=4af) ended at t=128.3

HOST1(pid=4af) log message “transaction type 5”

Flow from HOST1(pid=4af) to HOST2(pid=b3c1) started at t=129.5

Flow from HOST1(pid=b3c1) to HOST2(pid=b3c1) ended at t=132.0

HOST2(pid=b3c1) log message “found in cache”

Flow from HOST1(pid=4af) to HOST5(pid=ee22) started at t=130.0

...

State of the art: AppDynamics

§ The operator manually assigns labels:
to transaction types, and to classes of server

§ AppDynamics reports average statistics grouped by these labels

Challenge, version 2

Based on logs at an intermediate level of abstraction,

we want unsupervised learning
§ of clusters of code structure
§ of how code behaviour is influenced

by network infrastructure
§ of how the network infrastructure responds

to code choices

to give the operator insight into what’s happening and why.

A stylized machine-learning model in the spirit of
Grammar Variational Autoencoder (Kusner, Paige, Hernández-Lobato, 2017)

First, write the transaction as a sentence in a
grammar of state transitions and actions.
(Here I’m restricting attention to trees, encoded via depth-first traversal. All the bells and whistles, e.g.
interaction with infrastructure, parallel calls, and programmer log messages, can be added.)

!" = 0
%" = "fork[host5]"

!1 = 2(!")
%1 = "join"

!8 = 9(!", !1)
%8 = "fork[host8]"

!< = 2(!8)
%< = "fork[host3]"

!> = 2(!<)
%> = "join"

!? = 9(!<, !>)
%? = "join"

!@ = 9(!8, !?)
%@ = "join"

host 5
host 2
host 8
host 3

!"

!1

!8
!<

!>
!?

!@

2

5 8

3

Second, train an autoencoder: a neural network that learns to
reconstruct the sequence.

A stylized machine-learning model in the spirit of
Grammar Variational Autoencoder (Kusner, Paige, Hernández-Lobato, 2017)

! " ! ! " " "

#$ #% #& #' #(#) #*

+ ,

-$

!′ "′ !′ !′ "′ "′ "′

#$ #% #& #' #(#) #*

/

0 0 0 0 0 0 0

1$ 1% 1& 1' 1(1) 1*

-$2

A stylized machine-learning model in the spirit of
Grammar Variational Autoencoder (Kusner, Paige, Hernández-Lobato, 2017)

! "

#$ #%

& '

($
!′ "′

#$ #%

*

+ +

,$,%

($-⋯ ⋯

($, ($- high-dimensional vectors

* low-dimensional vector: the latent representation

#0 actions, embedded into vectors

,0 vectors that encode distributions over actions

!, ", !-, "-, &, ', + functions parameterized by weights, trained to minimize

loss = 5
transactions <

5
steps 0 in <

log ,0 #0 + regularizer(distribution of *)

The latent variable ! encapsulates

§ intent:
how a transaction’s code is split into
subrequests

§ experience:
how the next choice is affected by the
experiences of subrequests

It is an unsupervised way to group similar
transactions. It should be a good basis for
interactive visualization / investigation.

This type of data arises in many societal networks.

commute

bus leg train leg

train 1 train 2

log records of
tap-in tap-out

public transport user
shift

ride 1 ride 2

GPS

log records of each
ride’s start and end

taxi driver

GPSGPS GPS

⋯ ⋯

underlying public
transit infrastructure

underlying road
infrastructure

Log files are everywhere, but they’re hard to make sense of.

Analyzing Windows telemetry, to

identify common call stacks at the

time of crashes.

Debugging in the (very) large: ten years of
implementation and experience
Glerum, Kinshumann, et al. (SOSP 2009)

ReBucket: a method for clustering
duplicate crash reports based on call stack
similarity
Dang, Wu, et al. (ICSE 2012)

Mining event logs of processes (businesses,

hospitals, home sensors) to discover dependencies

and to highlight common subprocesses.

Structure identification in layered precedence networks
Kong, Katselis, Beck, Srikant (CCTA 2017)

Mining context-dependent and interactive
business process maps using execution patterns
Li, Bose, van der Aalst (Business Process Management

2010)

sambcudnje
samqfhllhgike
samfghlhikqe
sambcdnuje

All sorts of structured human activity fall in this general category
(and data centers are the perfect laboratory, because of reproducibility and privacy)

Challenge v3

Based on log records at a low level of abstraction,
infer the latent hierarchical structure of the activity.

(Deep learning for Natural Language Processing manages to learn something like
grammar. Log records are surely easier!)

study session

first go at
question 5

new approach
to question 3

student using online grading

⋯ ⋯ log records of
each attempt

Challenge v4

Build systems for working with this sort of data.

§ Build databases that make it easier / faster to manipulate

hierarchical data

FDB: A query engine for factorised relational databases

Bakibayev, Olteanu, Závodny (Proc VLDB 2012)

§ Excel, Tableau, etc. are wedded to flat tabular data.

Invent tools for users to interact with hierarchical data.

Example interaction:

“Label some GPS coordinates, use these to up-label the trips, use these to down-label

all their GPS coordinates.”

trips

GPS⋯ ⋯

driver

Challenge v4
Build systems for working with this sort of data.

§ The Synecdoche Engine
To understand data about richly structured behaviour,
it’s often helpful to look at illuminating anecdotes.

the full space

the low-dimensional
latent subspace

a classification boundary

slow
transactions

fast
transactions

illuminating
anecdotes

