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Debugging in a data center

DevOps notices problems with response time.

§ Was there a network update, which messed things up?

§ Was there a code update?

§ Is there some part of the system that started churning?

§ Is it because of changes in demand?

§ Is it a knock-on effect from elsewhere?
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Debugging in a data center

True story:

§ Student’s peer-to-peer code runs happily, until it suddenly becomes horribly slow

§ It’s only slow on the campus network, not over ADSL

§ Diagnosis:
Certain workload patterns trigger a cascade of ≈12 packets
This overwhelms the switch buffers, and the final few packets get dropped
The code goes into timeout / recovery
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Challenge, version 1

If we have logs of flows,
plus the process ID that each flow belongs to,
plus occasional programmer-generated log messages,

but we don’t know the network state or the code,

how can we diagnose problems?

Flow from INTERNET to HOST1(pid=4af) ended at t=128.3

HOST1(pid=4af) log message “transaction type 5”

Flow from HOST1(pid=4af) to HOST2(pid=b3c1) started at t=129.5

Flow from HOST1(pid=b3c1) to HOST2(pid=b3c1) ended at t=132.0

HOST2(pid=b3c1) log message “found in cache”

Flow from HOST1(pid=4af) to HOST5(pid=ee22) started at t=130.0

...



State of the art: AppDynamics

§ The operator manually assigns labels:
to transaction types, and to classes of server

§ AppDynamics reports average statistics grouped by these labels



Challenge, version 2

Based on logs at an intermediate level of abstraction,

we want unsupervised learning
§ of clusters of code structure
§ of how code behaviour is influenced 

by network infrastructure
§ of how the network infrastructure responds 

to code choices

to give the operator insight into what’s happening and why.



A stylized machine-learning model in the spirit of 
Grammar Variational Autoencoder (Kusner, Paige, Hernández-Lobato, 2017)

First, write the transaction as a sentence in a 
grammar of state transitions and actions. 
(Here I’m restricting attention to trees, encoded via depth-first traversal. All the bells and whistles, e.g. 
interaction with infrastructure, parallel calls, and programmer log messages, can be added.)
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Second, train an autoencoder: a neural network that learns to 
reconstruct the sequence.

A stylized machine-learning model in the spirit of 
Grammar Variational Autoencoder (Kusner, Paige, Hernández-Lobato, 2017)
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A stylized machine-learning model in the spirit of 
Grammar Variational Autoencoder (Kusner, Paige, Hernández-Lobato, 2017)
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The latent variable ! encapsulates

§ intent:
how a transaction’s code is split into 
subrequests

§ experience:
how the next choice is affected by the 
experiences of subrequests

It is an unsupervised way to group similar 
transactions. It should be a good basis for 
interactive visualization / investigation.



This type of data arises in many societal networks.
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Log files are everywhere, but they’re hard to make sense of.

Analyzing Windows telemetry, to 

identify common call stacks at the 

time of crashes.

Debugging in the (very) large: ten years of 
implementation and experience
Glerum, Kinshumann, et al. (SOSP 2009)

ReBucket: a method for clustering 
duplicate crash reports based on call stack 
similarity
Dang, Wu, et al. (ICSE 2012)

Mining event logs of processes (businesses, 

hospitals, home sensors) to discover dependencies 

and to highlight common subprocesses.

Structure identification in layered precedence networks
Kong, Katselis, Beck, Srikant (CCTA 2017)

Mining context-dependent and interactive
business process maps using execution patterns
Li, Bose, van der Aalst (Business Process Management 

2010)

sambcudnje
samqfhllhgike
samfghlhikqe
sambcdnuje



All sorts of structured human activity fall in this general category
(and data centers are the perfect laboratory, because of reproducibility and privacy)

Challenge v3

Based on log records at a low level of abstraction, 
infer the latent hierarchical structure of the activity.

(Deep learning for Natural Language Processing manages to learn something like 
grammar. Log records are surely easier!)
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Challenge v4

Build systems for working with this sort of data.

§ Build databases that make it easier / faster to manipulate 

hierarchical data

FDB: A query engine for factorised relational databases

Bakibayev, Olteanu, Závodny (Proc VLDB 2012)

§ Excel, Tableau, etc. are wedded to flat tabular data.

Invent tools for users to interact with hierarchical data.

Example interaction: 

“Label some GPS coordinates, use these to up-label the trips, use these to down-label 

all their GPS coordinates.” 
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Challenge v4
Build systems for working with this sort of data.

§ The Synecdoche Engine
To understand data about richly structured behaviour, 
it’s often helpful to look at illuminating anecdotes. 
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