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The rise of Electric Vehicles

Evolution of the global electric car stock, 2010-16
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Types of charging
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Bottlenecks in EV charging

Current:

Ability to charge a battery fast

Number of charging stations

Future:

Capacity of the grid
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A 2025 scenario: charging electric vehicles, baking pizzas,

and melting a fuse in Lochem

From G. Hoogsteen, J. Hurink, G. Smit, et al. Proc. CIRED (2017):
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EV charging: stochastic process on interacting networks
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EV charging: stochastic process on interacting networks
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EV charging: stochastic process on interacting networks
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EV charging: stochastic process on interacting networks
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EV charging: stochastic process on interacting networks
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EV charging: stochastic process on interacting networks
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EV charging: stochastic process on interacting networks

@ | charging stations
Power di%tributiun
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Aim: efficient charging schedule while keeping voltage drop bounded
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Assessing voltage drop: a tractable load flow model

o Linearized Distflow: W/ := |V/in|2
Wil =Woo—2 > Re Y. zmpm,
es€P (k) meZ(s)

— z =(z;,i > 1) denotes the number of uncharged EVs in the network
at some particular time
— Each EV at node / receives power p;

— 2_mez(s) ZmPm is the consumed power by subtree rooted in node s

Bert Zwart (CWI) Electric vehicle charging 8 /26



Assessing voltage drop: a tractable load flow model

o Linearized Distflow: W/ := |V/in|2

Wlii/?:WOO_z Z Ris Z ZmPm,
es€P(k)  meZ(s)

— z =(z;,i > 1) denotes the number of uncharged EVs in the network
at some particular time

— Each EV at node / receives power p;

— 2_mez(s) ZmPm is the consumed power by subtree rooted in node s

@ Some of our results also hold for more general AC (on trees)
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Assessing voltage drop: a tractable load flow model

o Linearized Distflow: W/ := |V/in|2

W/Z?:WOO_z Z Ris Z ZmPm,
es€P(k)  meZ(s)

— z =(z;,i > 1) denotes the number of uncharged EVs in the network
at some particular time

— Each EV at node / receives power p;

— 2_mez(s) ZmPm is the consumed power by subtree rooted in node s

@ Some of our results also hold for more general AC (on trees)

@ Next: how to schedule amount of power for each battery
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Power allocation: use network utility maximization

@ z = (z;,i > 1): number of uncharged EVs in the network
@ p=(pi,i >1): allocated power to vehicles at node i

@ Each EV receives utility uj(p;). Example: ui(p;) = w;log(p;)
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Power allocation: use network utility maximization

@ z = (z;,i > 1): number of uncharged EVs in the network
@ p=(pi,i >1): allocated power to vehicles at node i
@ Each EV receives utility uj(p;). Example: ui(p;) = w;log(p;)

i

p = arg max Zz;u;(p;)
i=1
subject to zipi < M;, 0<p;<c™,

v; < Wi(p,z) <7
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Power allocation: use network utility maximization

@ z = (z;,i > 1): number of uncharged EVs in the network
@ p=(pi,i >1): allocated power to vehicles at node i

@ Each EV receives utility uj(p;). Example: ui(p;) = w;log(p;)
I

p = arg max Zz;u;(p;)
i=1
subject to zipi < M;, 0<p;<c™,

v; < Wi(p,z) <7

@ Key challenge: implementation by market mechanism. [Kelly (1997):
communication networks.]

@ This talk: assess performance
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Solvable special case: product-form property

Proportional fairness in line network

Consider line network with K; = M; = oo for all /, ¢™® = .
5 i

If uj(p;) = log p;, then for every n € N/,
I

I n;
lim B(Z(t) = n) = (1 p)(>_ ) H%
i=1 "

t—00
i=1

provided p = Z,l-zl pi = ZI{:]_ NE[BIR; /6 < 1
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Solvable special case: product-form property

Proportional fairness in line network

Consider line network with K; = M; = oo for all i, c™

Set R; = 2}21 R;.
If uj(p;) = log p;, then for every n € N/,

= Q.

I o

/
lim P(Z(t) = n) = (1 - p)(>_ m)! H%
i=1 "

t—00
i=1

provided p = Z,l-zl pi = ZI{:]_ NE[BIR; /6 < 1

@ Proof idea: reduction to multi-class Processor queue
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Solvable special case: product-form property

Proportional fairness in line network

Consider line network with K; = M; = oo for all /, ¢™® = .
5 i

If uj(p;) = log p;, then for every n € N/,
I n;

/
lim P(Z(t) = n) = (1 - p)(>_ m)! H%
i=1 "

t—00
i=1

provided p = Z,l-zl pi = ZI{:]_ NE[BIR; /6 < 1

@ Proof idea: reduction to multi-class Processor queue

@ New application of Processor Sharing after mainframe computer systems
(70s) and communication networks (90s).
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General case: Measure-valued process

Particles move to the left at rate p,(z) and to the south at rate z,
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Computational analysis of stochastic model: hard

@ Markov Chain (MC) model (assuming exponential rv's)

Z)kq 0

(@-e,2) @2)
Z; 1{z >0} I Z; P; (Z)l{zi>0}
(q—e,z—€) (9,z—¢)

/
p(z) = argmaxp Y ;4 ziuj(p;)

@ For a line network with identical parking lots of size K and R nodes,
computing the equilibrium distribution of the MC requires solving O(K?R)
convex optimization problems.

@ Things are even worse for non-exponential distributions, so we need
another approach.
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Fluid approximation
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Fluid approximation

Scaling:
@ Consider a family of models indexed by n

e Capacity of power in the n™ system: nM;
o Arrival rate in the nt" system: n);

@ Number of parking spaces in the n" system: nK;

o Fluid approximation at time t > 0: z(t) = (z(t),i > 1)

@ zj(t) = z as t — oo and z is an invariant point
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Main result for fluid approximation

Characterization of performance

. A* :
z* is given by z = ——, with
8; (A,') |
N* = arg max Z Gi(Ni)
i=1
subject to N < M, 0<NA; <gi(c™),
v; < Wi"(N) <,

GI() = ul(g () with
gi(x) := v E[min{Dx, B}] and v; = min{\;, K;E[D]}.
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Main result for fluid approximation

Characterization of performance

. A* :
z* is given by z = ——, with
8; (A,') |
N* = arg max Z Gi(Ni)
i=1
subject to N < M, 0<NA; <gi(c™),
v; < Wi"(N) <,

GI() = ul(g () with
gi(x) := v E[min{Dx, B}] and v; = min{\;, K;E[D]}.

Fraction of cars that get succesfully charged: P(D > Bz}/AY).
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Idea of the proof: Little is known

o Little's law: (Expected number of customers)= (arrival rate) x (sojourn
time)

@ Snapshot principle: constant service rate in equilibrium
e z/ = ~;E[min{D, %}]

@ Add this approximate version of Little's law to Karush-Kuhn-Tucker
(KKT) equations for optimization problem that defines p(z).

@ Still works for AC in this case, as convex relaxation of associated
semi-definite program is exact.
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Validating Distflow (two lots, Markovian model)

Table: Stochastic model

K || E[Z1], E[Z,] (Distflow) | E[Z1],E[Z2] (AC) |  Rel. error
10 45336, 4.6179 46801, 4.6924 | 3.13 %, 1.58 %
20 14.0174,14.0385 | 14.1725, 14.1948 | 1.09 %, 1.10 %

Bert Zwart (CWI)

Table: Fluid approximation

K || zi, z5 (Distflow) zi,z3 (AC) Rel. error

10 || 4.5769,4.5769 4.7356,4.7513 | 3.35%,3.67%
20 || 14.0300,14.0300 | 14.1849,14.2069 | 1.09%,1.25%
30 || 23.6820,23.6820 | 23.8357,23.8597 | 0.64%,0.74%
40 || 33.4293,33.4293 | 33.5823,33.6073 | 0.45%,0.53%
50 || 43.2330,43.2330 | 43.3857,43.4112 | 0.35%,0.41%

Electric vehicle charging
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Validating the fluid approximation

Relative error
K Distflow AC
10 || 0.95%,0.86%| 1.18%,1.25%
20 || 0.09%,0.06%]| 0.08%,0.08%
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Figure: K = (10,10) and A = (12,12)
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Weight-setting: fairness

Consider a line network, recall R; = >\, R:.

Fairness property

Assume that M; = c™> = oo, and u;(p;) = w; log(p;). If w; = R;, then
_\-1
we have that p;j(z) = p(z) > 0. Moreover, p(z) = 6(2;21 R;z;)

Not very efficient
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Weight-setting: maximizing throughput

@ Goal: Choose weights that maximize the fraction of EVs that get
successfully charged under weighted proportional fairness, i.e.,

ui(pi) = w;log(pi)
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Weight-setting: maximizing throughput

@ Goal: Choose weights that maximize the fraction of EVs that get
successfully charged under weighted proportional fairness, i.e.,

ui(pi) = wilog(p;)

@ For a line network topology, M; = ¢™® = o0, it can be shown that this
fraction can be optimized by choosing the weights as follows:

I
max Z'y,-IP(W,-D > R;B)

v i=1
I —
subject to Z’y,-IE[min{W,-D7 RiB}] <o
i=1

Non-convex, depends on the joint distribution of (B, D)
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B = HD, H deterministic

Weight-finding problem can be transformed into

1
max E YiXi
x
i=1

I
subject to ZE[D]%-F;HX; <4, x;€{0,1}
i=1

Knapsack problem

Yields distributionally robust solution (i.e. homogeneous user preferences
are the worst if the system is overloaded)
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B = HD, H decreasing hazard rate.

Example: H ~ Pareto(a, k), i.e., P(H > x) = ()% x>0, a > 1,
k> 0.

Weight-finding problem can be transformed into a convex programming

problem:

1
max S (1 -y ey
i=1

| _
E[D]&v;R;
subject to E m(yi —1)<9, 0<y; <1
i=1
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Weight selection: numerics

Assume 10 nodes with 372, m =12
The optimal weights are given by:

Table

Det. 0.06 { 0.09 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15| 0.16 | O 0 8
Pareto (3) | 0.12 | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 || 9.5
Pareto (1.1) | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 || 10

The more variability, the better the system performance
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Dynamic fluid equations (K, = o0)

t t
z,(t) = / ANP(Dy > t—s; B, > / p.(z(u))du)ds r=1,.,Rt>0
0 s

Recall

I
p(z) = arg max Z ziui(pi)
i=1
subject to zipi < M;,  0< pp <™,
v; < Wi"(p,2) <

Unique solution thanks to the properties: p(z) is Lipschitz continuous,
p(z) is nonincreasing in z.
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Convergence to equilibrium

*

Proposition: z(t) — z*.

Proof: Define

I, = liminf z,(t) u, = limsup z,(t).
t—00 t—o00

Using the dynamic fluid equations, it can be shown that

B B
Iy = M E[min{D, ——— r = ME[min{D, ————1].
ArE[min{ V() Yo ur = AE[min{ (1 h) H
with
M. (l,h) = sup p,(z) m(l,h)= inf p(2)
ze[l,h] z€[l,h]
using monotonicity of p(z) and the characterization of z* using Little's
law, uniqueness follows
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Concluding comments

o A. Aveklouris, M. Vlasiou, and B. Zwart, A Stochastic Resource-Sharing
Network for Electric Vehicle Charging, https://arxiv.org/pdf/1711.05561.
(Submitted to the special energy issue of IEEE Transactions on Control of
Network Systems)

@ Multiclass extension: see preprint

@ Currently working out a rigorous justification of the fluid scaling,
allowing time-varying arrival rates

@ Challenges: time-dependent behavior, controlling arrival rates of cars,
incorporating markets explicity, reducing communication overhead by
discretizing time, adding reactive power support, allowing for additional
(noisy) behavior of other types of users, ...
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