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Executive summary 
New registrations of electric cars1 hit a new record in 2016, with over 750 thousand sales 
worldwide. With a 29% market share,2 Norway has incontestably achieved the most successful 
deployment of electric cars in terms of market share, globally. It is followed by the Netherlands, 
with a 6.4% electric car market share, and Sweden with 3.4%. The People’s Republic of China 
(hereafter, “China”), France and the United Kingdom all have electric car market shares close to
1.5%. In 2016, China was by far the largest electric car market, accounting for more than 40% of 
the electric cars sold in the world and more than double the amount sold in the United States.

The global electric car stock surpassed 2 million vehicles in 2016 after crossing the 1 million 
threshold in 2015 (Figure 1).

                                                  Evolution of the global electric car stock, 2010-16 

Notes: The electric car stock shown here is primarily estimated on the basis of cumulative sales since 2005. When available, stock 
numbers from official national statistics have been used, provided good consistency with sales evolutions.

Sources: IEA analysis based on EVI country submissions, complemented by EAFO (2017a), IHS Polk (2016), MarkLines (2017), ACEA
(2017a, 2017b) and EEA (2017). 

Key point: The electric car stock has been growing since 2010 and surpassed the 2 million-vehicle threshold in 2016. So
far, battery electric vehicle (BEV) uptake has been consistently ahead of the uptake of plug-in hybrid electric vehicles 
(PHEVs). 

Until 2015, the United States accounted for the largest portion of the global electric car stock. In 
2016, China became the country with the largest electric car stock, with about a third of the 
global total. With more than 200 million electric two-wheelers,3 3 to 4 million low-speed electric 
vehicles (LSEVs) and more than 300 thousand electric buses, China is also by far the global leader 
in the electrification of other transport modes. 

As the number of electric cars on the road has continued to increase, private and publicly 
accessible charging infrastructure has also continued to grow. In 2016, the annual growth rate of 
publicly available charging (72%) was higher, but of a similar magnitude, than the electric car 
stock growth rate in the same year (60%). 

1 Electric cars include battery-electric, plug-in hybrid electric, and fuel cell electric passenger light-duty vehicles (PLDVs). They
are commonly referred to as BEVs, PHEVs, and FCEVs in this report. Given their much wider diffusion, the scope of this report 
is limited to BEVs and PHEVs.  
2 Market share is defined, under the scope of this report, as the share of new registrations of electric cars in the total of all 
PLDVs
3 In this report, the term “two-wheelers” refers to motorcycles and excludes bicycles. 
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battery) production capacity needs to increase. The scale of this challenge can be illustrated by 
comparing the battery capacity additions needed against recent developments: attaining the 
mid-point of the estimated ranges for OEM announcements in 2025 would require the
construction of roughly ten battery manufacturing facilities with the production capacity of the 
Tesla Gigafactory.20

 Deployment scenarios for the stock of electric cars to 2030 

Sources: IEA analysis based on EVI country submissions, complemented by EAFO (2017a), IHS Polk (2016), MarkLines (2017), ACEA
(2017a, 2017b) and EEA (2017). Country targets in 2020 reflect the estimations made in EVI (2016a) and updates to date. India's 
target reflects a conservative interpretation of the announcement made by the government (PIB India, 2017): 50% of the PLDV stock
of the country (in the B2DS) is electrified by 2030. The assessment methodology for OEM announcements included in Table 2 is 
discussed in the main text. Projections on the stock deployed according to the Paris Declaration are based on UNFCCC (2015a).
Projections on the EV uptake in IEA scenarios were developed with the IEA Mobility Model, March 2017 version (IEA, 2017a). 

Key point: The level of ambition resulting from the OEM announcements assessed shows a fairly good alignment with 
country targets to 2020. To 2025, the range estimated suggests that OEM ambitions lie between the range
corresponding to the RTS and 2DS projections from the IEA, broadly matching the Paris Declaration.

The recent redefinition of the EVI ambition to reach a collective market share (in all modes 
except two-wheelers) of 30% by 2030 (as spelled out in the EV30@30 campaign), places the 
ambition of EVI countries in line with the B2DS,21 provided that the carbon intensity of power 
generation declines rapidly (see Box 2 for insights on the CO2 emissions reduction benefits 
stemming from a shift to electrified powertrains today and by 2030 while electric grids 
progressively decarbonise). 

Box 2 • Progress towards decarbonisation targets

Electrifying road transportation has multiple benefits, including the reduction of emissions of local 
pollutants and noise and the promotion of energy security and decarbonisation through increased energy
efficiency and diversification. If transport electrification goes hand-in-hand with the decarbonisation of the 
electricity supply, it will also be effective for significantly reducing GHG emissions. Figure 10 aims to 
provide a comparative assessment of the CO2 intensities of electric vehicles, benchmarking BEVs and 
PHEVs against other powertrain technologies. It does so by looking at major global regions characterised by 
variable average car sizes and grid carbon intensities under different grid decarbonisation scenarios. The
broad spectrum of options covered in Figure 10 provides a good basis to discuss the advantages and 
disadvantages of EVs in different contexts.

20 This calculation is based on an annual 8 million EV production in 2025, equally shared between BEVs and PHEVs, one
Gigafactory-type plant being able to deliver 0.5 million BEV batteries per year (Tesla, 2014).
21 The B2DS is consistent with a 25% EV market share (for all road modes excluding two-wheelers) by 2030 worldwide and 
about 30% in EVI countries. These same shares grow to 30% and are in the 35-40% range when looking at PLDVs only. In the 
2DS, the corresponding global EV market share is 18% and close to 25% in EVI countries. 
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Types of charging
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Bottlenecks in EV charging

Current:

Ability to charge a battery fast

Number of charging stations

Future:

Capacity of the grid
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A 2025 scenario: charging electric vehicles, baking pizzas,
and melting a fuse in Lochem

From G. Hoogsteen, J. Hurink, G. Smit, et al. Proc. CIRED (2017):
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EV charging: stochastic process on interacting networks

Power distribution

Charging station

Feeder

1λ
iλ

3λ

Iλ

2λ

Charging station

Charging station

I charging stations

Ki parking spaces

Arrivals: λi

Charging requirement: B

Parking time: D

Qi (t) : Number of EVs

Zi (t) : Number of uncharged
EVs

Aim: efficient charging schedule while keeping voltage drop bounded
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Assessing voltage drop: a tractable load flow model

Linearized Distflow: W lin
kk := |V lin

k |2

W lin
kk = W00 − 2

∑
εls∈P(k)

Rls

∑
m∈I(s)

zmpm,

− z = (zi , i ≥ 1) denotes the number of uncharged EVs in the network
at some particular time

− Each EV at node i receives power pi

−
∑

m∈I(s) zmpm is the consumed power by subtree rooted in node s

Some of our results also hold for more general AC (on trees)

Next: how to schedule amount of power for each battery
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Power allocation: use network utility maximization

z = (zi , i ≥ 1): number of uncharged EVs in the network

p = (pi , i ≥ 1): allocated power to vehicles at node i

Each EV receives utility ui (pi ). Example: ui (pi ) = wi log(pi )

p = arg max
I∑

i=1

ziui (pi )

subject to zipi ≤ Mi , 0 ≤ pi ≤ cmax,

υi ≤W lin
ii (p, z) ≤ υi

Key challenge: implementation by market mechanism. [Kelly (1997):
communication networks.]

This talk: assess performance
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Solvable special case: product-form property

Proportional fairness in line network

Consider line network with Ki = Mi =∞ for all i , cmax =∞.
Set R̄i =

∑i
j=1 Rj .

If ui (pi ) = log pi , then for every n ∈ NI
+,

lim
t→∞

P
(
Z (t) = n

)
= (1− ρ)(

I∑
i=1

ni )!
I∏

i=1

ρnii
ni !
,

provided ρ =
∑I

i=1 ρi =
∑I

i=1 λiE[B]R i/δ < 1.

Proof idea: reduction to multi-class Processor queue

New application of Processor Sharing after mainframe computer systems
(70s) and communication networks (90s).
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General case: Measure-valued process

node 1 node 2 node 3

  node 4 node 5  node R

Particles move to the left at rate pr (z) and to the south at rate zr
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Computational analysis of stochastic model: hard

Markov Chain (MC) model (assuming exponential rv’s)

{q K }1
i iiλ 

( , )zq

( , )i iz q e e

( , )i zq e

( , )i iz q e e ( , )izq e

{ 0}( - )1
ii i qq z 

{ 0}1
ii zz  { 0}1p ( )

ii ziz z 

p(z) = arg maxp
∑I

i=1 ziui (pi )

For a line network with identical parking lots of size K and R nodes,
computing the equilibrium distribution of the MC requires solving O(K 2R)
convex optimization problems.

Things are even worse for non-exponential distributions, so we need
another approach.
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Fluid approximation2 2

2 2
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Fluid approximation

Scaling:
Consider a family of models indexed by n

Capacity of power in the nth system: nMi

Arrival rate in the nth system: nλi

Number of parking spaces in the nth system: nKi

Fluid approximation at time t ≥ 0: z(t) = (zi (t), i ≥ 1)

zi (t)→ z∗i as t →∞ and z∗i is an invariant point
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Main result for fluid approximation

Characterization of performance

z∗ is given by z∗i =
Λ∗
i

g−1
i (Λ∗

i )
, with

Λ∗ = arg max
I∑

i=1

Gi (Λi )

subject to Λi ≤ Mi , 0 ≤ Λi ≤ gi (c
max),

υi ≤W lin
ii (Λ) ≤ υi ,

G ′i (·) = u′i (g
−1
i (·)) with

gi (x) := γiE[min{Dx ,B}] and γi = min{λi ,KiE[D]}.

Fraction of cars that get succesfully charged: P(D > Bz∗i /Λ∗i ).
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Idea of the proof: Little is known

Little’s law: (Expected number of customers)= (arrival rate) × (sojourn
time)

Snapshot principle: constant service rate in equilibrium

z∗i = γiE[min{D, B
pi (z∗)}]

Add this approximate version of Little’s law to Karush-Kuhn-Tucker
(KKT) equations for optimization problem that defines p(z).

Still works for AC in this case, as convex relaxation of associated
semi-definite program is exact.
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Validating Distflow (two lots, Markovian model)

Table: Stochastic model

K E[Z1],E[Z2] (Distflow) E[Z1],E[Z2] (AC) Rel. error

10 4.5336, 4.6179 4.6801, 4.6924 3.13 %, 1.58 %
20 14.0174, 14.0385 14.1725, 14.1948 1.09 %, 1.10 %

Table: Fluid approximation

K z∗1 , z
∗
2 (Distflow) z∗1 , z

∗
2 (AC) Rel. error

10 4.5769, 4.5769 4.7356, 4.7513 3.35%, 3.67%
20 14.0300, 14.0300 14.1849, 14.2069 1.09%, 1.25%
30 23.6820, 23.6820 23.8357, 23.8597 0.64%, 0.74%
40 33.4293, 33.4293 33.5823, 33.6073 0.45%, 0.53%
50 43.2330, 43.2330 43.3857, 43.4112 0.35%, 0.41%
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Validating the fluid approximation

Relative error

K Distflow AC

10 0.95%, 0.86% 1.18%, 1.25%
20 0.09%, 0.06% 0.08%, 0.08%
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Figure: K = (10, 10) and λ = (12, 12)
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Weight-setting: fairness

Consider a line network, recall R̄i =
∑i

j=1 Ri .

Fairness property

Assume that Mi = cmax =∞, and ui (pi ) = wi log(pi ). If wi = R i , then

we have that pi (z) = p(z) > 0. Moreover, p(z) = δ
(∑I

i=1 R izi

)−1
.

Not very efficient
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Weight-setting: maximizing throughput

Goal: Choose weights that maximize the fraction of EVs that get
successfully charged under weighted proportional fairness, i.e.,
ui (pi ) = wi log(pi )

For a line network topology, Mi = cmax =∞, it can be shown that this
fraction can be optimized by choosing the weights as follows:

max
w

I∑
i=1

γiP(wiD > R iB)

subject to
I∑

i=1

γiE[min{wiD,R iB}] ≤ δ

Non-convex, depends on the joint distribution of (B,D)
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B = HD, H deterministic

Weight-finding problem can be transformed into

max
x

I∑
i=1

γixi

subject to
I∑

i=1

E[D]γiR iHxi ≤ δ, xi ∈ {0, 1}

Knapsack problem

Yields distributionally robust solution (i.e. homogeneous user preferences
are the worst if the system is overloaded)
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B = HD, H decreasing hazard rate.

Example: H ∼ Pareto(α, κ), i.e., P(H > x) = ( κ
x+κ)α, x ≥ 0, α > 1,

κ > 0.

Weight-finding problem can be transformed into a convex programming
problem:

max
y

I∑
i=1

γi (1− y
α/(α−1)
i )

subject to
I∑

i=1

E[D]κγiR i

1− α
(yi − 1) ≤ δ, 0 ≤ yi ≤ 1
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Weight selection: numerics

Assume 10 nodes with
∑10

i=1
E[B]γiR i

δ = 1.2

The optimal weights are given by:

Table

Det. 0.06 0.09 0.11 0.12 0.13 0.14 0.15 0.16 0 0 8
Pareto (3) 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08 9.5

Pareto (1.1) 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 10

The more variability, the better the system performance
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Dynamic fluid equations (Kr =∞)

zr (t) =

∫ t

0
λiP(Dr > t−s;Br >

∫ t

s
pr (z(u))du)ds r = 1, ...,R, t ≥ 0

Recall

p(z) = arg max
I∑

i=1

ziui (pi )

subject to zipi ≤ Mi , 0 ≤ pi ≤ cmax,

υi ≤W lin
ii (p, z) ≤ υi

Unique solution thanks to the properties: p(z) is Lipschitz continuous,
p(z) is nonincreasing in z .
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Convergence to equilibrium

Proposition: z(t)→ z∗.

Proof: Define

lr = lim inf
t→∞

zr (t) ur = lim sup
t→∞

zr (t).

Using the dynamic fluid equations, it can be shown that

lr = λrE[min{D, B

Mr (l ,h)
}] ur = λrE[min{D, B

mr (l ,h)
}].

with
Mr (l ,h) = sup

z∈[l ,h]
pr (z) mr (l ,h) = inf

z∈[l ,h]
pr (z)

using monotonicity of p(z) and the characterization of z∗ using Little’s
law, uniqueness follows
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Concluding comments

A. Aveklouris, M. Vlasiou, and B. Zwart, A Stochastic Resource-Sharing
Network for Electric Vehicle Charging, https://arxiv.org/pdf/1711.05561.
(Submitted to the special energy issue of IEEE Transactions on Control of
Network Systems)

Multiclass extension: see preprint

Currently working out a rigorous justification of the fluid scaling,
allowing time-varying arrival rates

Challenges: time-dependent behavior, controlling arrival rates of cars,
incorporating markets explicity, reducing communication overhead by
discretizing time, adding reactive power support, allowing for additional
(noisy) behavior of other types of users, ...
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