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Everything in the world can be 
explained by a matrix, and we see 

how deep the rabbit hole goes


The talk ends, you 
believe -- whatever 

you want to. 






Matrix computations in a red-pill


Solve a problem better by 
exploiting its structure!



My research!
Models and algorithms for high performance !
matrix and network computations on data
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Fig. 4.5: Error in the reduce order model compared to the prediction standard de-
viation for one realization of the bubble locations at the final time for two values of
the bubble radius, s = 0.39 and s = 1.95 cm. (Colors are visible in the electronic
version.)

the varying conductivity fields took approximately twenty minutes to construct using
Cubit after substantial optimizations.

Working with the simulation data involved a few pre- and post-processing steps:
interpret 4TB of Exodus II files from Aria, globally transpose the data, compute the
TSSVD, and compute predictions and errors. The preprocessing steps took approx-
imately 8-15 hours. We collected precise timing information, but we do not report
it as these times are from a multi-tenant, unoptimized Hadoop cluster where other
jobs with sizes ranging between 100GB and 2TB of data sometimes ran concurrently.
Also, during our computations, we observed failures in hard disk drives and issues
causing entire nodes to fail. Given that the cluster has 40 cores, there was at most
2400 cpu-hours consumed via these calculations—compared to the 131,072 hours it
took to compute 4096 heat transfer simulations on Red Sky. Thus, evaluating the
ROM was about 50-times faster than computing a full simulation.

We used 20,000 reducers to convert the Exodus II simulation data. This choice
determined how many map tasks each subsequent step utilized—around 33,000. We
also found it advantageous to store matrices in blocks of about 16MB per record. The
reduction in the data enabled us to use a laptop to compute the coe�cients of the
ROM and apply to the far face for the UQ study in Section 4.4.

Here are a few pertinent challenges we encountered while performing this study.
Generating 8192 meshes with di↵erent material properties and running independent

Ax = b

min kAx � bk
Ax = �x
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Tensor methods for network alignment

Network alignment is the problem of computing an approximate isomorphism between two net-
works. In collaboration with Mohsen Bayati, Amin Saberi, Ying Wang, and Margot Gerritsen,
the PI has developed a state of the art belief propagation method (Bayati et al., 2009).

FIGURE 6 – Previous work
from the PI tackled net-
work alignment with ma-
trix methods for edge
overlap:
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If xi, xj , and xk are
indicators associated with
the edges (i, i0), (j, j0), and
(k, k0), then we want to
include the product xixjxk

in the objective, yielding a
tensor problem.

We propose to study tensor methods to perform network alignment
with triangle and other higher-order graph moment matching. Similar
ideas were proposed by Šváb (2007); Chertok and Keller (2010) also
proposed using triangles to aid in network alignment problems.
In Bayati et al. (2011), we found that triangles were a key missing
component in a network alignment problem with a known solution.
Given that preserving a triangle requires three edges between two
graphs, this yields a tensor problem:

maximize
X

i2L

wixi +
X

i2L

X

j2L

xixjSi,j +
X

i2L

X

j2L

X

k2L

xixjxkTi,j,k

| {z }
triangle overlap term

subject to x is a matching.

Here, Ti,j,k = 1 when the edges corresponding to i, j, and k in
L results in a triangle in the induced matching. Maximizing this
objective is an intractable problem. We plan to investigate a heuris-
tic based on a rank-1 approximation of the tensor T and using
a maximum-weight matching based rounding. Similar heuristics
have been useful in other matrix-based network alignment algo-
rithms (Singh et al., 2007; Bayati et al., 2009). The work involves
enhancing the Symmetric-Shifted-Higher-Order Power Method due to
Kolda and Mayo (2011) to incredibly large and sparse tensors . On this
aspect, we plan to collaborate with Tamara G. Kolda. In an initial
evaluation of this triangle matching on synthetic problems, using the
tensor rank-1 approximation alone produced results that identified
the correct solution whereas all matrix approaches could not.

vision for the future

All of these projects fit into the PI’s vision for modernizing the matrix-computation paradigm
to match the rapidly evolving space of network computations. This vision extends beyond
the scope of the current proposal. For example, the web is a huge network with over one
trillion unique URLs (Alpert and Hajaj, 2008), and search engines have indexed over 180
billion of them (Cuil, 2009). Yet, why do we need to compute with the entire network?
By way of analogy, note that we do not often solve partial di↵erential equations or model
macro-scale physics by explicitly simulating the motion or interaction of elementary particles.
We need something equivalent for the web and other large networks. Such investigations may
take many forms: network models, network geometry, or network model reduction. It is the
vision of the PI that the language, algebra, and methodology of matrix computations will
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Human protein interaction networks 48,228 triangles

Yeast protein interaction networks  257,978 triangles 

The tensor T has ~100,000,000,000 nonzeros



We work with it implicitly


where ! ensures the 2-norm
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Kolda and Mayo


Network alignment




One canonical problem


(� � ↵AT D�1)x = f

A adjacency matrix

D degree matrix

↵ regularization

f “prior” or “givens”

PageRank


Personalized 

PageRank


Semi-supervised"
learning on graphs


Protein function 
prediction


Gene-experiment 
association


Network alignment


Food webs




One canonical problem


(� � ↵AT D�1)x = f

Vahab - clustering

Karl - clustering

Art – prediction 


Jen       - prediction

Sebastiano – ranking/centrality




An example on a graph

PageRank by Google
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The Model
1. follow edges uniformly with

probability �, and
2. randomly jump with probability

1� �, we’ll assume everywhere is
equally likely

The places we find the
surfer most often are im-
portant pages.

David F. Gleich (Sandia) PageRank intro Purdue 5 / 36
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(� � ↵AT D�1)x = f

non-singular linear system (�< 1), non-negative inverse, 
works with weights, directed & undirected graphs, weights 
that don’t sum to less than 1 in each column, …




An example on a bigger graph


Newman’s netscience graph

379 vertices

1828 non-zeros



“zero” on most of 

the nodes




f has a single "
one here




A special case

(� � ↵AT D�1)x = ei

“one column” or “one node”


x = column i of (� � ↵AT D�1

)

�1

localized solutions




An example on a bigger graph

Crawl of flickr from 2006 ~800k nodes, 6M edges, alpha=1/2
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Complexity is complex


•  Linear system – O(n3)

•  Sparse linear sys. (undir.) – O(m log(m)�) 

where �is a function of latest result on solving SDD 
systems on graphs


•  Neumann series – O(m log(�)/log(tol))
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Monte Carlo methods for PageRank



K. Avrachenkov et al. 2005. Monte Carlo methods in PageRank

Fogaras et al. 2005. Fully scaling personalized PageRank.

Das Sarma et al. 2008. Estimating PageRank on graph streams.

Bahmani et al. 2010. Fast and Incremental Personalized PageRank

Bahmani et al. 2011. PageRank & MapReduce

Borgs et al. 2012. Sublinear PageRank




Complexity – “O(log |V|)”




Gauss-Seidel and Gauss-Southwell

Methods to solve A x = b


x

(k+1) = x

(k ) + ⇢jej [Ax

(k+1)]j = [b]jUpdate
 such that


In words “Relax” or “free” the jth coordinate of your solution vector in 
order to satisfy the jth equation of your linear system.


Gauss-Seidel  repeatedly cycle through j = 1 to n

Gauss-Southwell  use the value of j that has the highest magnitude residual 


r

(k ) = b � Ax

(k )



Matrix computations in a red-pill


Solve a problem better by 
exploiting its structure!



Gauss-Seidel/Southwell for PageRank

w/ access to in-links & degs.

PageRankPull


w/ access to out-links

PageRankPush


j = blue node
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j = blue node


Let 
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(k )

x

(k+1)
j

= x
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Update 
r(k+1)

r (k+1)
b = r (k )

b + ↵r (k )
j /3

r (k+1)
c = r (k )

c + ↵r (k )
j /3

r (k+1)
a = r (k )

a + ↵r (k )
j /3

r (k+1)
j = 0



Python code for PPR Push

# initialization !
# graph is a set of sets !
# eps is stopping tol!
# 0 < alpha < 1 !
x = dict() !
r = dict() !
sumr = 0. !
for (node,fi) in f.items(): !
  r[node] = fi !
  sumr += fi !

# main loop !
while sumr > eps/(1-alpha): !
  j = max(r.iteritems, !
             key=(lambda x: r[x]) !
  rj = r[j] !
  x[j] += rj !
  r[j] = 0 !
  sumr -= rj !
  deg = len(graph[j]) !
  for i in graph[j]: !
    if i not in r: r[i] = 0. !
    r[j] += alpha/deg*rj!
    sumr += alpha/deg*rj!
!

If f ≥ 0, this terminates when ||xtrue – xalg||1 < �




Relaxation methods for PageRank





Arasu et al. 2002, PageRank computation and the structure of the web

Jeh and Widom 2003, Scaling personalized PageRank 

McSherry 2005, A unified framework for PageRank acceleration

Andersen et al. 2006, Local PageRank

Berkhin 2007, Bookmark coloring algorithm for PageRank




Complexity – “O( |E| )”
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Matrix computations in a red-pill


Solve a problem better by 
exploiting its structure!



work

⇤
= O

⇣
(1/")

1

1�↵ d(log d)

2

⌘

Some unity?

Theorem (Gleich and Kloster, 2013 arXiv:1310.3423)"


Consider solving personalized PageRank using the Gauss-
Southwell relaxation method in a graph with a Zipf-law in 
the degrees with exponent p=1 and max-degree d, then 
the work involved in getting a solution with 1-norm error�is


* (the paper currently bounds exp(A D-1) ei but analysis yields this bound for PageRank)

** (this bound is not very useful, but it justifies that this method isn’t horrible in theory)


Improve this?




There is more structure
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Figure 4: The 8 graph motifs or graphlets that we use to match a sample of a social
network from Facebook or LinkedIn to a sample of the MGEO-P network model.

mean of 5.4. In both networks, larger graphs have bigger e↵ective diameters, although
the di↵erences are slight.

Graph summaries: graph motifs and spectral densities

Both graph motifs and spectral densities are numeric summaries of a graph that abstract
the details of a network into a small set of values that are independent of the particular
nodes of a network. These summaries have the property that isomorphic graphs have
the same values, although there may exist non-isomorphic graphs that also have the same
values. For instance, co-spectral graphs have the same spectral densities.21 We wish to use
these summaries in order to determine the best dimension that preserves the summary.

Graph motifs, graphlets, or graph moments are the frequency or abundance of specific
small subgraphs in a large network. We study undirected, connected graphs up to four
nodes as our graph motifs. This is a set of 8 graphs shown in Figure 4. Counting the
exact number of occurences of each subgraph within the large graph takes time O(n4),
which is prohibitively large. Instead, we employ the rand-esu sampling algorithm22 as
implemented in the igraph library.23 This algorithm approximately estimates the count
of each subgraph and depends on a sampling probability that can be interpreted as the
probability of continuing a search. Thus, values near 1 indicate exact scores and small
probabilities truncate the search. The value we is 10� log n/ log 10+1. We use log-transformed
output from this procedure in order to capture the dynamic range of the resulting values.

Todo
• Insert discussion of use of network motifs, see rand-esu paper (Wernicke-2006-

motifs). It seems like we don’t need to discuss this and should cite the PNAS
paper and the Janssen et al. paper for this info instead. The point here was that
they were trying to claim something about function and this was more complicated
as random graphs exhibit nontrivial graph motifs.

Consider the graph G = (V, E), the normalized Laplacian matrix dictates many net-
work properties including the behavior of a random walk, the number of connected compo-
nents, an approximate connectivity measure, and many other features.24,25 The spectral
density of the normalized Laplacian is a particularly helpful characterization that is a
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The one ring.


(See C. Seshadhri’s talk for the reference)




Further open directions

Nice to solve Unifying convergence results for Monte Carlo and 
relaxation on large networks to have provably efficient, practical algs.


–  Use triangles? Use preconditioning? 

A curiosity Is there any reason to use a Krylov method? 


–  Staple of matrix computations,                                     with Hk small

BIG gap Can we get algorithms with “top k” or “ordering” convergence?


–  See Bahmani et al. 2010; Sarkar et al. 2008 (Proximity Search)

Important? Are the useful, tractable multi-linear problems on a network?


–  e.g. triangles for network alignment; e.g. Kannan’s planted clique problem.
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A ! AVk+1 = Vk Hk


