

Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

February 27, 2018 John Wu LBNL http://crd.lbl.gov/sdm/

Scientific Data Management Research Group

Outline

USummary ♦ICEE project \diamond Application examples Data and Process Management \diamond ADIOS, Streaming, Subsetting, dynamic execution **New Feature Extraction algorithm** \diamond Blob detection algorithm, two-level parallelization **G**Fusion plasma stability \diamond Comparing experiment with simulation

ICEE Project Vision: Enable Real-Time Collaborative Decision Making

□Vision: Enable distributed, collaborative, real-time decisions

- Workflows including both experiments and simulations
- Reduce cost, improve utilization of expensive experimental devices

□ Metrics of Success:

Reduction of time to make a "good" decision, across the entire scientific process

Adoption of technology by "important users"

Motivating Example: Fusion

- Complex DOE experiments, such as a fusion reactor, contain numerous diagnostics that need Near-Real-Time analysis for feedback to the experiment
 - \diamond For guiding the experiment
 - \diamond For faster and better understanding of the data
- Current techniques to write, read, transfer, and analyze "files" require a long time to produce an answer
 - \diamond Long delay due to slow disks involved to store files \diamond Slow start up of many workflow execution engines

ICEE Approach

Create an I/O abstraction layer for

Writing data quickly on exa, peta, tera, giga scale resources transparently

Streaming data on these resources, and across the world

- Place different parts of a workflow at different locations
- Research new techniques for quickly indexing data to reduce the amount of information moved in the experimental workflow

 \diamond Prioritize data

Create new techniques to identify important features, which turn the workflow into a data-driven streaming workflow

Index-and-Query Reduces Execution Time

Remote file copy VS. index-and-query

- \diamond Measured between LBNL and ORNL to simulate KSTAR-LBNL-ORNL connection
- ♦ Indexed by FastBit. Observed a linear performance (i.e., indexing cost increased by data size) → Expensive indexing cost
- $\diamond\,$ However, once we have index built, index-and-query can be a better choice over remote file copy

Use Case I: Near Real Time Detection of Blobs

- Fusion Plasma blobs
 - \diamond Lead to the loss of energy from tokamak plasmas
 - \diamond Could damage multi-billion tokamak
- The experimental facility may not have enough computing power for the necessary data processing
- Distributed in transient processing
 - \diamond Make more processing power available
 - \diamond Allow more scientists to participate in the data analysis operations and monitor the experiment remotely
 - \diamond Enable scientists to share knowledge and processes
- Lingfei Wu, Alex Sim, Jong Choi, M. Churchill, K Wu, S Klasky, CS Chang Blobs in fusion reaction (Source: EPSI project)

Blob trajectory

Use Case 2: Fracture of Nano-Materials

Matthew Wolf, Jai Dayal, and Greg Eisenhauer, Georgia Tech

Georgia Tech

Bonds

CSYM

CNA

- This demonstration is based off a scenario from materials scientists interested in understanding fracture in nano-structured materials
- It uses LAMMPS to simulate the block of nanostructured metal while under stress.

ICEE

Singapore

LAMMPS

- Simulation proceeds until the first plastic deformation (start of fracture) is detected.
- At that first fracture, the system is fully characterized to understand where and, hopefully, why things broke.

LAMMPS Helper

SC14

VisIt

ICEE

FXOCT

Use Case 3: Microscopy Image Analysis

J. Saltz, T. Kurc, M. Michalewicz, M. Parashar + ICEE team

Significance: Understanding of disease morphology at micro anatomic level has potential for better diagnosis disease mechanisms.

• Challenge: Rapidly analyze tissue slides (120Kx120K pixels) to assess condition

- Technologies: (1) SBU ADIOS for wide-area, efficient transfers; (2) Longbow for very fast, low-latency connection; (3) pipelined processing on clusters
- **Demo:** Tissue slides on machine in Singapore. Analysis done on cluster at Georgia Tech. Segmentation results displayed on client machine.

Snapshot of adaptive processing of a remote slide (53Kx36K pixel resolution).

JS, TK, MM & MP supported by NCI and NLM: 1U24CA180924, R01LM011119-01, R01LM009239 grants, and ORNL SDAV and JFA.

Overview: Enable Rapid Decision Making

Effective data management

- \diamond Easily express data accesses: high-level data model instead of offsets into files
- \diamond Transparent accesses to remote data
- \diamond Convenient subsetting operations

Effective workflow management

 \diamond Tight integration of workflow components to reduce latency

 \diamond Make the best uses of known resources

Reduce the time to solution

- Streaming data accesses, avoid waiting for all data before analysis could start
- Only access the necessary data records (selective data accesses)
- Keep the data in memory as much as possible (in situ processing)

Main Tasks of ICEE

Create an infrastructure that transparently

- $\diamond \mathsf{Stage}$ data used in workflows on local nodes
- \diamond Stage data used in workflows on remote nodes
- \diamond Stage data through files, using an external file mover
- $\diamond\, {\rm Index}$ the data and move only the relevant chunks of data from the query
- Dynamically adjust the data being moved according to
 - \diamond Rules the user provides
 - Oynamic changes in the networking and computational resources

♦ Multiple workflows being run concurrently

Efficient merging of multiple data streams

 \diamond Enable comparative analytics

Outline

□Summary ◇ICEE project ◇Application examples

Data and Process Management ADIOS, Streaming, Subsetting, dynamic execution New Feature Extraction algorithm Blob detection algorithm, two-level parallelization Fusion plasma stability Comparing experiment with simulation

ADIOS Abstraction Unifies Local And Remote I/O

- I/O Componentization for Data-at-Rest and Data-in-Motion
- Service Oriented Architecture for Extreme scaling computing
- Self Describing data movement/storage
- □Main paper to cite

Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, W. Yu, "Hello ADIOS: the challenges and lessons of developing leadership class I/ O frameworks", Concurrency and Computation: Practice and Experience, 2013

The ADIOS-BP Stream/File format

- □ All data chunks are from a single producer
 ◇MPI process, Single diagnostic
 - Ability to create a separate metadata file when "sub-files" are generated
- □ Allows variables to be individually compressed
- Has a schema to introspect the information
 - **H**as workflows embedded into the data streams

Format is for "data-in-motion" and "data-at-rest"

Ensemble of chunks = file

Num .Of FLOPS

ICEE Enables Distributed In Memory Workflows

ICEE System Development

- □ Features
 - ADIOS provides an overlay network to share data and give feedbacks
 - Stream data processing supports stream-based IO to process pulse data
 - In transit processing provides remote memory-to-memory mapping between data source (data generator) and client (data consumer)
 - Indexing and querying with FastBit technology

Software Components of ICEE Transport

- ♦ Using EVPath package (GATech)
- Support uniform network interface for TCP/IP and RDMA
- \diamond Easy to build an overlay network
- Dataspaces (with sockets)
 - \diamond Developed by Rutgers
 - \diamond Support TCP/IP and RDMA

SL C	NV DI		=			
EA					Search OLCE ORMUCOV	
~\N	National Laboratory COMPUTING FACILITY			Search OLCF.ORNL.GOV		
HOME					SUDDOD	
HOME	ABOUT OLCF	LEADERSHIP SCIENCE	COMPOTING RESOURCES	CENTER PROJECTS	SUPPOR	
Adios						
70105						
0	verview Dow	nload & Revision Histor	Documents & Manual	Press & Publicatio	ons	
Below are links for the Adios download and user manual. For additional support, please contact						
help@	olcf.ornl.gov.					
Download						
Current stable version: ADIOS 1.9.0 (Download 1.9.0)						
Rev	ision Histo	ry				
1.9.0 Release Dec 2015						
 Array attributes are supported 						
o e.g axes = { X, Y, Z}						
 adios_define_attribute_byvalue() 						
 to define scalar attributes with floating point variables instead of strings for precision 						
 Update mode when appending to a file 						
 to add variables to last timestep instead of a new one 						
 Python/Numpy wrapper improvements: 						
 Numpy-style array notations 						
	e.g, var[1:5, 2:10], var[1:5. :], var[:5,]					
	 Support for ADIOS write APIs 					
 Hint/docstring support 						
 Support for pip install and update 						
 Added adios_version.h to provide release and file format versions 						
 Bug fixes 						
o fix: memory leak in POSIX method						
 fix: adios_write() now accents_const * void data from C++ anns. 						
o fix: Cray compiler support						
o fix: reading of compressed zero size arrays on some processes						
Inx. reading or compressed, zero size arrays on some processes						
	0 IIX. SCa	anng bugs in aggregate m	ettiod writing > 206 per pro	cess or aggregating da	ta mto a	
	tile ove	1 40D				
1.84		2014				
1.0.0		2017				
• • •	Juery API	de la contra de la c				
II	o extend	s me read API with querie	15			
• *	staging over WA	N (wide-area-network)				
	 ICEE r 	nethod (requires FLEXPA	IH)			
 skeldump utility 						
 to generate info and code from output data to replay the I/O pattern 						
bpmeta utility						
 generates metadata file (.bp) separately after writing the data using MPI_AGGREGATE 						
method with metadata writing turned off						
 I/O timing statistics and timing events can be collected 						
 New stage writer code for staged I/O, where output data (list of variables and their sizes) is changing 						
at every timestep. See examples/stage_write_varying						
 fix: staging with multiple streams allowed 						
fix: parallel build (make -i <n>) completes without breaking</n>						
		, , , , , , , , , , , , , , , , , , , ,				

Reducing Payload Size

Select only areas of interest and send (e.g., blobs)Reduce payload on average by about 5X

Adaptive Workflow Execution

Adaptively determine *what* phases to perform, *where* by embedding workflow tasks with data streams

The execution runtime needs provide management for

- Dynamic allocation of resources for global optimization without strong consistency in the knowledge across the entire system
- Adaptation policy and mechanisms within the runtime for changing power and performance metrics
- Isolation of faults and minimization of interference of the entire system
- Flexible reconfiguration of the workflow to support rapid evolution of user and application requirements

Outline

Summary ♦ICEE project \diamond Application examples **Data and Process Management ADIOS**, Streaming, Subsetting, dynamic execution **New Feature Extraction algorithm** \diamond Blob detection algorithm, two-level parallelization **Fusion plasma stability**

 \diamond Comparing experiment with simulation

Outline of Feature Detection Algorithm

MPI

- □ Formulate the blob detection problem as a region outlier detection problem
- Develop a high-performance approach to meet the real-time requirements
- A hybrid MPI/OpenMP parallelization on many-core processor architecture:
- High-level: use MPI to allocate n processes and each process takes at least one time frame

Pn

T2

T1

□ Low-level: use OpenMP to accelerate the computations with m threads

OpenMP

Tm

OpenMP

Tm

Spatial Feature Extraction Approach

Target: regions of interest defined on range conditions on known quantities, e.g., "temperate between 800 and 1000 and pressure less 10⁵"

Use database indexing technology to resolve the conditions, which generally identifies "points" satisfying the conditions

Connect the points into regions in space

Operations on Indexes

Review available database indexing technologies

- Known multi-dimensional indexes suffer from "curse of dimensionality" – don't work for high dimensional data
- One of the second se
- Compressed bitmap index supports ad hoc queries and works well for high dimensional data – our favorite

Connected Component Labeling

Connect points into regions with connected component labeling algorithms

Our contributions:

- Represent the connectivity in an very efficient manner using magnetic coordinates
 - Makes it much easier to find which neighbors are connected to each other, reduce execution time by hundreds of times
- Use an efficient connected component labeling algorithm named Scan with Array-based Union-Find (SAUF)
 - \odot SAUF requires less memory than alternatives and is generally faster as well
- \diamond Use a compact representation of the points in the regions of interest named query lines
 - Reduces the execution time significantly because the number of query lines are much less than the number of points

Bitmap Index Operation Time

Connectivity In Magnetic Coordinates

- Much more compact than the general connectivity graph: ~ 200 numbers vs. 6 million numbers
- Follows the physics used for the simulation (Gyrokinetic Toroidal Code)
- Much cleaner connectivity definition: a point only connects to
 - $\diamond\,$ Two points on the same circle
 - Four points on the neighboring circles
 - $\diamond\,$ Two points in the neighboring planes

Labeling Time

- Top figure: time to label the points is a linear function of the number of points, but ~IIx longer than labeling the query lines
- Bottom figure: time to label the query lines is bounded by a linear function of the number of query lines (i.e., O(Q)): red points from I-sided range conditions and gray from 2-sided range conditions

 Labeling query lines using magnetic coordinates is
 600-1000 × faster than using connectivity graph

Real-time Blob Detection

- Top right figure: strong scaling
 - Complete blob detection in around 2 ms with MPI/
 OpenMP using 4096 cores and in 3 ms with MPI using 1024 cores
 - Linear time speedup in blob detection time
 - MPI/OpenMP is two times faster than MPI
- Bottom right figure: weak scaling
 - Near constant blob detection time indicates our implementations scale very well to solve much larger problems

Outline

Summary ♦ICEE project \diamond Application examples **Data and Process Management** ♦ ADIOS, Streaming, Subsetting, dynamic execution New Feature Extraction algorithm \diamond Blob detection algorithm, two-level parallelization □Fusion plasma stability \diamond Comparing experiment with simulation

Fusion Example with More Details

- □ Volume: Initially 90 TB per day, 18 PB per year, maturing to 2.2 PB per day, 440 PB per year
- □ Value: All data are taken from expensive instruments for valuable reasons.
- □ Velocity: Peak 50 GB/s, with near real-time analysis needs
- Variety: ~100 different types of instruments and sensors, numbering in the thousands, producing interdependent data in various formats
- Veracity: The quality of the data can vary greatly depending upon the instruments and sensors.

The pre-ITER superconducting fusion experiments outside of US will also produce increasingly bigger data (KSTAR, EAST, Wendelstein 7-X, and JT60-SU later).

Cross Sections of Hot Plasma in Torus

Blob Detection: time frame 86 and Poloidal plane 1

Blob Detection: time frame 86 and Poloidal plane 3

Blob Detection: time frame 86 and Poloidal plane 4

Tracking Trajectories

2D examples showing multiple regions (i.e., blobs)

3D example showing a single region (blob) over 15 time steps

Review: Distributed Streaming KSTAR ECEI Image Analysis Workflow

- Objective: To enable remote scientists to study ECE-Image movies of blobby turbulence and instabilities between experimental shots in near real-time.
- Input: Raw ECEi voltage data (~550MB/s, over 300 seconds in the future) + Metadata (experimental setting)
- Requirement: Data transfer, processing, and feedback within <15min (inter-shot time)</p>
- Implementation: distributed data processing with ADIOS ICEE method

Science Use Case I: Real-time Comparison of Experiment and Simulation

1.0

1.1

1.2

1.3

1.4

- Objective: Enable comparisons of simulation (pre/post) and experiment at remote locations
- **Input**: Gas Puff Imaging (GPI) fast camera images from NSTX and XGCI edge simulation data
- **Output**: Blob physics
- **Requirement**: Complete in near real-time for inter-shot experimental comparison, experiment-simulation validation or simulation monitoring
- Implementation: distributed data processing with ADIOS ICEE method, optimized detection algorithms for near real-time analysis

🖕 V [km/s

V_{po} [km/s]

1.03

Lessons learned

□ Velocity

- $\diamond \mbox{Critical}$ to quickly build an index which can be done in a timely fashion
- UVeracity
 - Onderstand the trade-offs for accuracy (of the query) vs. accuracy of the results vs. performance (time to solution).

Volume

Reduce the volume of data being moved and processed over the WAN (size vs. accuracy)

U Variety

 \diamond Enable multiple streams of data to be analyzed together

🗆 Value

 \diamond Provide the freedom for scientists to access and analyze their data interactively

Contact Info

 Coauthors: Lingfei Wu, Kesheng John Wu, Alex Sim, Michael Churchill, Jong Y Choi, Andreas Stathopoulos, Choong-Seock Chang, Scott Klasky
 IEEE Transactions on Big Data 2016. <u>https://doi.org/10.1109/TBDATA.2016.2599929</u>

John's email <u>KWu@lbl.gov</u>
 SDM research group: <u>http://crd.lbl.gov/sdm/</u>