# What Are All Those Neurons in Foveal VI Doing?

#### Bruno A. Olshausen

Helen Wills Neuroscience Institute, School of Optometry and Redwood Center for Theoretical Neuroscience UC Berkeley







### Fibers of Henle

ganglion cells

amacrine cells bipolar cells horizontal cells

photoreceptors



# Midget ganglion cells receive input from midget bipolar cells.

Ratio is I:1 in fovea.



off- and on-midget pathways

# Retinal ganglion cell sampling array (shown at one dot for every 20 ganglion cells)



(from Anderson & Van Essen, 1995)

# Letter size vs. eccentricity (Anstis, 1974)





times its threshold height.



# ENE

+

ENE

### 'Crowding'



### From: Whitney & Levi (2011)



### Foveal oversampling in LGN and Cortex (Connolly & Van Essen, 1984)



### Cortex:LGN cell ratio ranges from 1000:1 in fovea to 100:1 in periphery (Connolly & Van Essen, 1984)



# Fixational eye movements (drift)



(from Austin Roorda, UC Berkeley)



# mic image stabilization in the

Yoram E

5 arçmin aim Sompolinsky<sup>a,c,1</sup>

45

19525-19530



Traditional models compute motion and form independently



# Motion and form must be estimated simultaneously



## Retinal image motion helps pattern discrimination



Ratnam, K., Domdei, N., Harmening, W. M., & Roorda, A. (2017). Benefits of retinal image motion at the limits of spatial vision. *Journal of Vision, 17*, 1–11.

Graphical model for separating form and motion (Alex Anderson, Ph.D. thesis)





### **Eye position**

**Spikes** (from LGN afferents)

Pattern

 $\hat{S} = \arg\max_{S} \log P(R|S)$ 

## Given current estimate of position (X), update S



## Given current estimate of pattern (S), update X



# Joint estimation of form and motion (Alex Anderson, Ph.D. thesis)

Image Projected on the Retina and Generated Spikes at t = 005 ms



### Motion <u>helps</u> estimation of pattern S



### Motion restores acuity in the case of cone loss



## Including a prior over S



Eye position

**Spikes** (from LGN afferents)

Pattern

S = DA

$$\hat{A} = \arg \max_{A} \log P(R|A) + \log P(A)$$
  
sparse

# Natural image pattern may be inferred with a sparse prior using a Gabor-like basis similar to VI receptive fields

SNR relative to

- a Original

**e** PCA: SNR = 8.06

**d** IND: SNR = 2.48





**c** Dictionary: SP



**f** SP: SNR = 11.97



### Main points

- The foveal representation in LGN, and again in cortex, is highly oversampled, *in terms of number of neurons per ganglion cell*, with respect to the periphery.
- Phenomena such as crowding and shape adaptation suggest a looser representation of shape in the periphery that is more subject to grouping or contextual influences than in the fovea.
- Neural circuits in the foveal portion of VI *must* take into account estimates of eye position or motion in order to properly integrate spatial information.
- One possibility is separate populations of neurons that interact multiplicatively in order to explicitly disentangle form and motion.