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MATERIALS AND METHODS

Data Collection
All subjects provided informed consent to participate in this study.
This study was approved by Institutional Review Boards at the Univer-
sity of California at Berkeley and the Medical College of Wisconsin, and
the study protocol followed the tenets of the Declaration of Helsinki.

One or both eyes of each subject were dilated using 2.5% phenyl-
ephrine and 1% tropicamide. Two commercially available SD-OCT
systems were used to collect data for this study. Twelve eyes of eight
subjects and two eyes of two patients with macular disease were
imaged using Cirrus HD-OCT (Carl Zeiss Meditec, Inc., Dublin, CA) by
the same operator (BJL), and three eyes of three subjects were imaged
using a single Bioptigen SD-OCT (Bioptigen, Durham, NC) by a single
operator (JC). All scans for a given subject were performed during a
single session. The specific protocols for each device are described.
Additionally, a retrospective review of two clinical cases obtained
using Bioptigen SD-OCT was also performed.

Subjects ranged from 20 to 43 years of age and had refractive errors
ranging from a spherical equivalent of !0.50 to "4.50 diopters. SD-
OCT data were reviewed, and each included eye defined as normal was
determined to be free of macular pathology by a retinal specialist.

The Cirrus HD-OCT is an SD-OCT device that uses a 50-nm band-
width light source centered at 840 nm, has a 5-!m axial resolution, and
obtains 27,000 axially oriented scans (A-scans) per second. Cirrus data
are acquired over a 20° field (6 mm for an emmetropic eye) and has a
scan depth of 2 mm. Two standard Cirrus scan protocols were used to
acquire data—a 512 # 128 cube and a frame-averaged cross-sectional
scan through the fovea. The 512 # 128 cube consisted of 128 cross-
sectional images, or B-scans, that were each composed of 512 A-scans.
The frame-averaged cross-sectional scans were obtained using the
system’s commercial software (version 4.5), which averages 20 indi-
vidual B-scans each consisting of 1024 A-scans where the nominal
spacing between scans was set to zero. The rendered B-scans have an
aspect ratio of 2:1 (i.e., the scale is doubled in the axial dimension), but
this was corrected to 1:1 before data analysis described below.

Cirrus SD-OCT has a dedicated pupil camera that permits live
monitoring of the pupil position during scans and that indicates the
entry position of the SD-OCT beam. This was used in conjunction with
B-scans rendered in real time to obtain a beam entry position in which
both the horizontal and the vertical B-scans appeared “flat” (i.e., sym-
metric about the fovea.) Subsequently, the entrance pupil was dis-
placed at multiple intervals superiorly, inferiorly, temporally, and na-
sally. At each entrance pupil location, a horizontal and vertical frame
averaged cross-sectional scan was obtained. The absolute beam entry
position was documented using the pupil camera.

The Bioptigen SD-OCT used a 186.3-nm bandwidth centered at
878.4 nm, had a theoretical 1.4-!m axial resolution, and obtained

20,000 A-scans per second. Forty B-scans centered on the fovea, each
consisting of 1000 A-scans, were registered and averaged as previously
described.21 A headrest was used to stabilize subjects, and deviation of
the entry position from where the B-scan appeared flat was measured
using markings on the stage. Additionally, video was recorded of live
vertical translation of the stage while vertically oriented B-scans were
acquired.

Foveal fixation was confirmed by the midpoint position of the
foveal center in each analyzed B-scan. Scans that demonstrated low
signal strength or reduced image quality through frame averaging were
excluded. Volumetric data sets were evaluated immediately after ac-
quisition and were repeated if motion artifacts were present.

Statistical Analysis
Cirrus B-scans were exported as bitmaps and analyzed using graphics
editing software (Photoshop CS4; Adobe Systems, Inc., San Jose, CA)
and ImageJ software (developed by Wayne Rasband, National Institutes
of Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/index.
html). B-scan intensities were linearly normalized to assign the bright-
est pixel a value of white and the darkest pixel a value of black.

Measuring HFL Thickness
Horizontal frame-averaged B-scans acquired with Cirrus at the two
extreme horizontal entrance positions were used to measure the con-
tribution of different zones of reflectivity between the external limiting
membrane (ELM) and the inner plexiform layer (IPL) in five right eyes.
Specifically, the side of the B-scan that allowed full visualization of the
transition to the outer plexiform layer (OPL) was used for this analysis
where the inner segment/outer segment (IS/OS) was 1 mm from the
foveal center. The distance from the ELM to the posterior edge of the
OPL and the distance from the ELM to the edge of the observed
hyporeflective zone within this layer was measured along a line per-
pendicular to the IS/OS. The relative contribution of this hyporeflec-
tive zone corresponding to HFL was reported as a percentage of the
total distance between the ELM and the OPL.

Frame-averaged B-scans obtained with Bioptigen from each subject
were exported to Image J, where a manual tool was used to segment
the images collected at each of three pupil entry positions (nasal,
center, temporal). Segmented layer data were processed through cus-
tom computing software (MatLab; MathWorks, Natick, MA) to deter-
mine the thickness between the ELM and the outer edge of the OPL at
each eccentricity and between the ELM and the hyporeflective layer
corresponding to HFL.

Measuring Dependence of HFL Reflectance on
SD-OCT Scan Angle
Cirrus data were analyzed to assess the relative intensity of HFL as a
function of pupil entry positioned in six normal left eyes. The axial

FIGURE 1. Mammalian foveal histol-
ogy, courtesy of Roger C. Wagner, Pro-
fessor Emeritus of Biological Sciences,
University of Delaware, http://dspace.
udel.edu:8080/dspace/handle/19716/
1884. Photoreceptor components are in-
dicated by the rectangle, showing the
substantial contributions by the photore-
ceptor inner and outer segments, nuclei,
and axons running in HFL. GCL, gan-
glion cell layer; PRs, photoreceptor IS
and OS; Ch/CC, choriocapillaris and cho-
roid. *ELM.
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Retinal ganglion cell sampling array
(shown at one dot for every 20 ganglion cells)

(from Anderson & Van Essen, 1995)



Letter size vs. eccentricity
(Anstis, 1974)
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‘Crowding’

From:  Whitney & Levi (2011) 

studies to individuate and distinguish crowding from other
effects, such as masking, lateral interaction and surround
suppression. All of these share the characteristic of making
a target more difficult to see, but each is distinct and most
probably reflects different neural processes.

Diagnostic criteria
(i) Crowding impairs identification, not detection

When objects are crowded they do not simply
disappear, as might be expected if crowding were a
disruptive process that suppressed their signals.
Figure 1b confirms that crowding has little or even
no effect on detection of a feature or object [3 –5].

(ii) Crowded objects are perceived as having high
contrast but are indistinct or jumbled together.
This can be easily confirmed from inspection of
Figure 1b.

(iii) Critical spacing: is Bouma’s rule a law?
Crowding depends on the eccentricity of a target
object and how densely spaced the surrounding
objects are (Figure 2). At a given eccentricity,
identification of a crowded target improves as the
distance between the target and flankers increases. In
his highly influential report, Bouma stated ‘for
complete visual isolation of a letter presented at an
eccentricity of f8, it follows that no other letters
should be present (roughly) within 0.5 f8 distance.’
[6]. This gives rise to the notion of a critical spacing
that is proportional to eccentricity. Bouma’s propor-
tionality constant, b varies across studies, depending
on how it is both measured and computed, but it is
widely reported to be approximately 0.4 –0.5. Thus, an
object at an eccentricity of 108 might be crowded by
other objects as much as 58 away. Bouma’s propor-
tionality constant, or Bouma’s rule, is sometimes
conferred the status of a law, but this is controversial
(Box 1).

(iv) Anisotropy
Crowding in peripheral vision is not isotropic. There
is a very substantial radial–tangential anisotropy

(approx. 2:1) [7], such that radially positioned
flankers are more effective than tangentially posi-
tioned ones. For example, in the vertical meridian,
vertically arranged flankers are more potent than
horizontally arranged flankers, whereas in the
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Figure 1. Visual crowding – the deleterious effect of clutter on peripheral object recognition – is ubiquitous in natural scenes. (a) Visual crowding seriously impacts virtually
all everyday tasks, including reading, driving and interacting with the environment. For example, when fixating the bull’s eye near the construction zone, note that it is
difficult or impossible to recognize the child on the left-hand side of the road, simply because of the presence of the nearby signs. Conversely, it is relatively easy to
recognize the child on the right-hand side. (b) While fixating the crosses, identification of the middle shape, letter, or line orientation – or even the number of tilted lines – is
difficult or impossible on the bottom half of the panel. Crowding impairs the ability to recognize and scrutinize objects, but it does not make them disappear; one can see
that something is present in panel a, but it is difficult to identify it as a child as opposed to another sign. Crowding defines the spatial resolution of conscious object
recognition throughout most of the visual field.
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Figure 2. The critical spacing of crowding and Bouma’s proportionality constant b.
(a) When fixating the crosses along the bottom, notice that the target orientation
(central Gabor patch in each column) is easier to recognize on the right. (b)
Performance accuracy increases as the target–flanker separation increases.
Bouma’s constant, b, is defined as the target–flank separation (as a ratio of
target eccentricity) that results in criterion performance (shown by the dashed
line). Although the analytic methods and criteria used to compute b vary from
study to study, it generally corresponds to the point at which performance begins
to decrease as flankers are advanced toward the target.
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https://www.youtube.com/watch?time_continue=11&v=VT9i99D_9gI
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Fig. 14. The visual field (A) and its representations in LGN layer 6 (B) 
and striate cortex (C) (Van Essen et al., '84). As in Figure 8, the visual field 
has been divided into small, approximately square regions by a grid of 
isoeccentricity and isopolar angle lines. The transformations of this grid are 
shown on the layer-6 and cortical maps. The darkened line in Figure 16A 

isotropies in terms of a simple rule for combining inputs 
from two eyes into what is ultimately a single binocular 
map in visual cortex. It could also account for the observa- 
tion of Hubel et al. ('74) that the representation in layer 4C 
is anisotropic, if one assumes that their recordings were 
somewhere near the horizontal meridian representation. 
On the other hand, it is unclear how this scheme should be 
expanded to include the integration of inputs from the 
remaining LGN layers, where the anisotropies are not the 
same as in layers 6 and 5 .  

Another useful way of examining the relationship be- 
tween visual centers is to compare the relative numbers of 
cells devoted to any given part of the visual field. For the 
geniculocortical pathway, we used the expressions for cel- 
lular magnification for each LGN layer obtained in the 
present study and the expression for areal magnification in 
striate cortex obtained previously (Van Essen et al., '84), 
adjusted by the cell counts for different layers determined 

J 

5mm 

represents the perimeter of the macaque visual field. (Note inverted cortical 
and LGN maps.) The central 5" of the visual representation has been 
stippled in A, B, and C. Several visual field compartments along the hori- 
zontal or vertical meridia and their corresponding LGN and cortical repre- 
sentations have been darkened for comparison. 

by O'Kusky and Colonnier ('82). Figure 16 shows three 
different cellular ratios plotted as a function of eccentricity: 
1) total number of striate neurons per LGN neuron; 2) 
number of layer 4A and 4Cp neurons (i.e., those in parvicel- 
Mar-recipient layers) per parvicellular neuron; and 3) 
number of layer 4Ca neurons per magnocellular neuron. 

Various sources of inaccuracy in our quantitative analy- 
sis of LGN topography have been discussed in preceding 
sections, and it is appropriate to consider their implications 
for interpreting the curves in Figure 16. The uncertainties 
are neither so small as to be completely negligible, nor so 
large as to render the curves meaningless. Unfortunately, 
it is not possible to calculate precise uncertainty limits, 
given the diverse nature of the different sources of error 
and the difficulty in assessing their exact magnitude. Our 
best estimate, once all sources of error are taken into con- 
sideration, is that the points on each of the curves have an 
absolute accuracy of a factor of two or three, and that the 

“…despite the fact that the 
estimated total number of LGN 
cells is similar to the total number 
of retinal ganglion cells, their ratio 
must vary from many LGN cells 
per retinal ganglion cell for the 
fovea to fewer than one LGN cell 
per retinal ganglion cell in the 
periphery.”

Foveal oversampling in LGN and Cortex
(Connolly & Van Essen, 1984)
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Fig. 15. On the right, the anisotropic layer-5 and layer-6 representations 
of small squares in the visual field near the horizontal meridian (A). These 
representations send anisotropic inputs (B) to striate cortex. which, when 

they converge on layer 4C (0, produce an isotropic visual representation in 
cortical "modules" (D). In E, the cortical modules are shown inserted into a 
slice of striate cortex. 
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Fig. 16. Cell ratios as a function of eccentricity in the geniculocortical 
pathway. The large-dot line shows the total number of striate nerons per 
LGN cell. This ratio was calculated as Ma (cortex) X (cells/mm2 surface 
area)/M, (LGN), where Ma (cortex) is the areal magnification factor for a 
standardized striate cortex (equation 8 from Van Essen et al., '84); cells/ 
mm2 was taken from O'Kusky and Colonnier ('82). and M, (LGN) is the 

total LGN cellular magnification factor from Table 1. The small-dot line 
shows the number of 4A and 4C0 cells per parvicellular cell, calculated as 
Ma (cortex) x (4A + 4Cp cells/mm21 x M, (parvi), with appropriate data 
from the same three sources. The dashed line shows the number of 4Ca 
cells per magnocellular cell, calculated as M, (cortex) x (4Cn cells/mm2) x 
M, (magno). 

Eccentricity

Cortex:LGN 
cell ratio

Cortex:LGN cell ratio ranges from 1000:1 in fovea 
to 100:1 in periphery

(Connolly & Van Essen, 1984)
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Humans can resolve the fine details of visual stimuli although the
image projected on the retina is constantly drifting relative to the
photoreceptor array. Here we demonstrate that the brain must take
this drift into account when performing high acuity visual tasks.
Further, we propose a decoding strategy for interpreting the spikes
emittedby the retina,which takes intoaccount the ambiguity caused
by retinal noise and the unknown trajectory of the projected image
on the retina. A main difficulty, addressed in our proposal, is the
exponentially large number of possible stimuli, which renders the
ideal Bayesian solution to the problem computationally intractable.
In contrast, the strategy that we propose suggests a realistic
implementation in the visual cortex. The implementation involves
two populations of cells, one that tracks the position of the image
and another that represents a stabilized estimate of the image itself.
Spikes fromthe retinaaredynamically routed to the twopopulations
and are interpreted in a probabilistic manner. We consider the
architecture of neural circuitry that could implement this strategy
and its performance under measured statistics of human fixational
eye motion. A salient prediction is that in high acuity tasks, fixed
features within the visual scene are beneficial because they provide
information about the drifting position of the image. Therefore,
complete elimination of peripheral features in the visual scene
should degrade performance on high acuity tasks involving very
small stimuli.

computation | fixational eye motion | neural network | retina | cortex

Our brain infers the structure of its surroundings from the
signals of sensory neurons.When those signals are noisy, their

interpretation becomes ambiguous, andmultiple hypotheses about
the outside world compete. Here we consider how the brain esti-
mates a 2D image of the visual scene on the basis of the neural
signals from optic nerve fibers. Ambiguity in this process derives
from two primary sources: noise in the neural circuitry of the retina
and random movements of the eye that lead to image jitter on the
retina. An ideal Bayesian decoder in the brain would take these
sources of ambiguity into account and evaluate the likelihoods of
different 2D scenes leading to the spike trains from the retina.
However, the full probability distribution of an image with many
pixels includes an unfathomably large number of variables. Prior
work on Bayesian inference focused on simplified problems in
which the subject estimates only a single, typically static sensory
variable (1–5). Thus there is considerable uncertainty whether
Bayesian inference of full images is practicable at all. We begin by
laying out the stochastic constraints on this process.
Humans with normal vision can resolve visual features spanning

less than an arcminute, or approximately two receptive fields of
ganglion cells in the central fovea, where each ganglion cell receives
input from a single cone photoreceptor. Indeed, the letters “E” and
“F” on the 20/20 line of a Snellen eye chart differ by just a few
photoreceptors (Fig. 1A).While we perform this discrimination, the
letter drifts across the retina over distancesmuch larger than its own
size. In the time between two subsequent spikes of any ganglion cell,
the image shifts across several receptive fields (Fig. 1A), so that the
cell is driven by a different part of the visual scene by the time the
second spike is emitted. To properly decode the image from these

spikes, it would seem that downstream visual areas require knowl-
edge of the image trajectory. The image jitter on the retina during
fixation is a combined effect of body, head, and eye movements (6,
7). Whereas the brain can often estimate the sensory effects of self-
generated movement using proprioceptive or efference copy sig-
nals, such information is not available for the net eye movement at
the required accuracy (8–10) (reviewed in ref. 11). Thus the image
trajectory must be inferred from the incoming retinal spikes, along
with the image itself. In so doing, an ideal decoder based on the
Bayesian framework would keep track of the joint probability for
each possible trajectory and image, updating this probability dis-
tribution in response to the incoming spikes (5, 11). However, the
images encountered during natural vision are drawn from a huge
ensemble. For example, there are 2900 possible black-and-white
images with 30 × 30 pixels, which covers only a portion of the fovea.
Clearly the brain cannot represent a distinct likelihood for each of
these scenes, calling into question the practicality of a Bayesian
estimator in the visual system.
Here we propose a solution to this problem, based on a factor-

ized approximation of the probability distribution. This approxi-
mation introduces a dramatic simplification, and yet the emerging
decoding scheme is useful for coping with the fixational image
drift. We present a neural network that executes this dynamic al-
gorithm and could realistically be implemented in the visual cortex.
It is based on reciprocal connections between two populations of
neurons, of which one encodes the content of the image and the
other the retinal trajectory.

Results
To address how the visual system may deal with random drift we
need, first, a model of how retinal ganglion cells (RGCs) respond
to light falling on the retina, a model of the visual stimulus, and
a model for how the stimulus is shifted relative to the photore-
ceptor array. Each one of these ingredients is probabilistic. To-
gether, they define the likelihood of every possible stimulus given
the spikes generated by the retina.
We model the fovea as a homogeneous array of retinal ganglion

cells of a single type, arranged on a rectangular grid (Fig. 1A). The
images consist of black-and-white pixels on this same grid, whose
intensities are drawn independently from a binary distribution. The
firing of each cell is an inhomogeneous Poisson process whose rate
depends on the image pixel in the receptive field. We begin with
a simple model where the cell responds instantaneously, firing at
a rate λ1 if the pixel is on and at a background rate λ0 if it is off.
Later, we consider a more realistic version where the rate depends
on the past light intensity within the retina’s integration time. The
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fixational movements of the image over the retina are modeled as
a discrete random walk (12).

Spike Accumulation and the Magnitude of Fixational Motion. It is
instructive to consider first what an ideal decoder would do if the
image trajectory was known. An incoming spike from RGC i could
then be associated uniquely with the pixel i − x(t), where x(t) is the
known position of the image at the discharge time of the cell. After
this routing of spikes to pixels, the performance would be the same
as for a static image. Due to the noisy nature of ganglion cell firing,
the decoder must accumulate spikes over a minimal time interval.
For example, using firing rates of λ0 = 10 Hz and λ1 = 100 Hz, the
letters on the “20/20” line of the Snellen eye chart can be estimated
to reasonable accuracy within 40 ms (Fig. 1C, Left).
Without some knowledge of the image trajectory, such a re-

construction is impossible. Human eye movements resemble
a random walk with a diffusion coefficient D ≃ 100 arcmin2/s
(11–13). In the 40-ms interval considered above, the resulting
image drift can cover some 200 different pixels. Indeed, images of
a Snellen letter derived from simple spike accumulation in each
pixel seem almost random (Fig. 1C, Right). Thus one is led to
a decoding scheme that estimates the image trajectory and uses it
to reconstruct the content of the image.

Factorized Bayesian Decoder. The ideal decoder of such spike trains
would use Bayes’ rule to continuously update a probabilistic esti-
mate of the image s and the retinal position x, on the basis of all of
the spikes observed up to time t. Because the number of possible
images s is prohibitively large, we explored an approximate strategy
that maintains the Bayesian inference scheme, but with a dramat-

ically simplified representation of the probabilities. Specifically,
the full Bayesian estimate is approximated by a factorized posterior
distribution

pðs; x; tÞ ¼ pðx; tÞ∏
i
piðsi; tÞ; [1]

where p(x, t) is a probability distribution of positions and pi(si, t)
are probability distributions for individual pixels in the stabilized
coordinates of the image. This form ignores any correlations be-
tween the values of different pixels or between the image and its
position. To update the posterior after a short time interval, Δt,
while maintaining its factorized structure, we perform two steps.
First, the factorized posterior p(s, x, t) is updated according to the
incoming spikes between t and t + Δt, on the basis of Bayes’ rule.
Subsequently, the result is recast into the factorized form. This
recasting leads to update rules that are derived in the SI Appendix
and are summarized below. We define mi(t) to be the estimated
probability that si = 1: mi(t) = pi(1, t) = 1 − pi(0, t).
Update between spikes. Between spikes the dynamics of p(x, t) are
described by a diffusion equation,

∂pðx; tÞ
∂t

¼ D∇2 p ðx; tÞ; [2]

which reflects the increasing uncertainty about position due to
the random walk statistics of image drift. The dynamics of mi(t)
are described by the differential equation

∂miðtÞ
∂t

¼ −Δλ½1−mi ðtÞ %miðtÞ; [3]

where Δλ = λ1 − λ0. Thus, mi(t) decays toward zero in the
absence of spikes, with a rate proportional to Δλ. We note also
that if mi is either 0 or 1, such that the decoder is certain about
the value of pixel i, mi remains unchanged.
Update due to a spike. If ganglion cell k fires a spike at time t, then
p(x, t) changes as

p ðx; tþÞ∝ ½λ0 þ Δλmk− x ðt− Þ% · pðx; t− Þ; [4]

where t+ designates the time right after the update, t− represents
the time right before the update, and a multiplicative prefactor
keeps the probability distribution normalized. The quantity in
the brackets is the estimated firing rate of ganglion cell k if the
image is at position x. Thus, p(x, t−) is multiplied by the estimated
likelihood that ganglion cell k has produced a spike. The update
to the estimate of pixel i, following a spike in cell k, is

mi ðtþÞ ¼ mi ðt− Þ þ ϕ ½mi ðt− Þ% · pðk− i; tþÞ; [5]

where mi(t−) is the value immediately before the spike, mi(t+) is
the updated value following the spike, and ϕ(m) is the nonlinear
function ϕ(m) = Δλm(1 − m)/(λ0 + Δλm). Therefore, the
change in mi is proportional to the estimated probability that
the image is at position k − i.

Network Implementation. In contrast to the ideal Bayesian de-
coder, we can envision a neural implementation of the factorized
decoder because the number of probabilities that must be tracked
grows only linearly with the number of pixels. The update rules
(Eqs. 2–5) are particularly suggestive of an implementation that
involves two populations of neurons: One represents the proba-
bility of image position p(x) and the other the probability of pixel
intensities mi. We refer to these two populations as where and
what neurons.
Within such an implementation, the update rules (Eqs. 4 and

5) indicate how spiking of each RGC affects the activities of

E

C

Stimulus

Drift

Poisson spikes

Retina

B

y

i x

xi

y y = x + i

Retina

What Where

Retina

WhereWhat

A

DNo Drift Drift

Fig. 1. (A) The letters E and F on the 20/20 line of the Snellen eye chart test,
projected on an image of the foveal cone mosaic (photoreceptor image
modified from ref. 39). The 1-arcmin features that distinguish the letters
extend over only a few cones. Also shown is a sample fixational eye move-
ment trajectory for a standing subject (courtesy of ref. 12), sampled every
2 ms for a duration of 500 ms and then smoothed with a 4-ms boxcar filter.
Red dots mark the spike times from a neuron firing at 100 Hz. (B) Diagram of
model for spike generation; see text for details. (C) Spikes generated by our
model retina, presented with a letter E spanning 5 arcmin for 40 ms (with
instantaneous RGC response), (Left) with no image drift and (Right) with
image drift following statistics of human fixational eye motion. (D) Archi-
tecture of a neural implementation of the factorized decoder. (Upper) Each
RGC projects to multiple what and where cells. (Lower) The projections are
reciprocally gated between the two populations.
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Traditional models compute motion and form independently
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preference for specific directions of motion during the
task (Figure 2C, S3 and S4). Across subjects, absolute
trajectory length averaged across all individual trials
was similar. Relative to the underlying mosaic of
photoreceptors, the stimulus traversed a retinal dis-
tance equaling about 10.5 unique cones during each
750-ms presentation during natural viewing (an exam-
ple stimulus trajectory close to this average in shown in
Figure 2A). In 600 analyzed trials under the stabilized
condition, the residual stimulus motion that occurred
due to imperfections of the tracking and stabilization
techniques was small. Here, the stimulus traversed 0.4
cones on average across subjects. Expressed differently,
stimulus trajectory amplitudes under stabilization were
about 25 times less than in natural viewing (Figure 2C).
This analysis confirmed that the exact same set of cones
was stimulated during the stabilized condition, whereas
many more cones were stimulated during natural
viewing.

Given the nature of our orientation discrimination
acuity task (four main orientations of the Snellen E),
we wondered if the eye can adjust FEM relative to the
orientation of the optotype to maximize transient
information content (e.g. motion preferably perpen-
dicular to the bar orientation), and whether specific
motion traces offer advantages for the task compared
to others. In Figure 2D the same motion paths as in
Figure 2C are plotted, but now rotated relative to the
orientation of the optotype orientation during presen-
tation, and with indication of correct and incorrect
psychophysical responses. We observed no clear trends
in this analysis. In this short period of time the eye does
not seem to adjust its FEM behavior according to the
orientation of the letter, and certain directions of eye
motion do not appear to confer clear benefits.

Experiment 1: Discrimination benefits from FEM
at the resolution limit

Discrimination performance with retinal image
stabilization dropped on average by 23% across
subjects (Figure 3D; p , 0.05, two-tailed binomial z
test). Thus, fine spatial resolution was impaired in the
absence of retinal image motion due to FEM, or visual
acuity was enhanced by FEM. In fact, the visual
resolution achieved in our experimental setup was
higher than what simple spatial sampling models of the
cone mosaic would predict. For each subject, the
stimulus gap, or distance between adjacent bars of the
‘‘E,’’ was compared to the Nyquist limit (NC) of the
tested retinal location (Figure 1E). The stimulus gap
constitutes the primary image detail subjects use to
discriminate orientation (Rossi & Roorda, 2010b). For
each subject, the gap size was smaller than NC (gap

size/NC ¼ 0.61/0.90, 0.74/0.85, 0.63/0.80, 0.57/0.94
arcmin for S1 through S4, respectively).

Subjects performed similarly or better under the
incongruent than under the natural condition (Figure
3E; S1, p , 0.01; S2 and S3, p . 0.05; two-tailed
binomial z test, n¼;450). These findings demonstrate
that the visual system can benefit from retinal image
motion even when the activity is independent of FEM
at the time of stimulus presentation.

Experiment 2: Contrast reduction during
stabilization is not critical

To determine whether contrast was reduced under
stabilization and how performance may have been
affected, we devised a pair of experiments. The
perceived contrast of stabilized versus moving stimuli
was indeed reduced by about 20%, but performance
was similar (p . 0.05, two-tailed binomial z test, n ¼
;250) when subjects discriminated naturally moving
stimuli presented at full and reduced (80%) contrast
(Figure 4). These results suggest reduced contrast was

Figure 3. Stimulus motion improves acuity at the resolution
limit. (A) In natural viewing, the stimulus (‘‘E’’) is fixed in space
and the retinal cone mosaic (circles) moves due to fixational eye
motion (FEM, light blue arrow). (B) In stabilized viewing, the
stimulus moves with the retina (orange arrow), such that it
stays locked on the same cones during presentation. (C) In the
incongruent motion condition, the stimulus moves - while the
eye performs its habitual FEM - in a path according to a
previously recorded FEM trace. (D) Stimulus stabilization
reduced discrimination performance in all subjects by an
average of 23%. (E) Relative to the natural viewing condition,
subjects performed equally well or better when incongruent
motion was employed. Asterisk (*) denotes p value , 0.05.
Error bars are standard error of the mean.
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Retinal image motion helps pattern discrimination



Graphical model for separating form and motion
(Alex Anderson, Ph.D. thesis)

Eye position

Spikes
(from LGN afferents)

Pattern
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Joint estimation of form and motion
(Alex Anderson, Ph.D. thesis)



Motion helps estimation of pattern S



Figure 3: Motion benefit during cone loss. a, Tumbling E with a retinal cone lattice that has 30 percent

of the cones dropped out randomly. b, SNR as a function of time for a moving and a stationary retina plus

or minus half a standard deviation (p = 0.003 at t = 700ms). c,d, An example reconstructed E in the

motion and no motion cases.
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Motion restores acuity in the case of cone loss



Including a prior over S
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Figure 4: Neurons with structured receptive fields improve inference: a, A natural scene patch pro-

jected onto a retina that moves according a random walk. The generated spikes are decoded using three

pattern priors (IND: independent pixel prior, PCA: gaussian prior, SP: dictionary trained with sparse cod-

ing with both a L1 and L2 prior). b, SNR at t = 600 ms relative to PCA averaged over 15 trials (different

patches and eye trajectories). Error bars show 95 percent confidence intervals c, A random set of 25 el-

ements from the sparse coding dictionary. d, e, f, Example reconstructed patterns for each method after

600 ms.
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Natural image pattern may be inferred with a sparse prior 
using a Gabor-like basis similar to V1 receptive fields



Main points

•  The foveal representation in LGN, and again in cortex, is 
highly oversampled,  in terms of number of neurons per 
ganglion cell, with respect to the periphery.

•  Phenomena such as crowding and shape adaptation 
suggest a looser representation of shape in the periphery 
that is more subject to grouping or contextual influences 
than in the fovea.

•  Neural circuits in the foveal portion of V1 must take into 
account estimates of eye position or motion in order to 
properly integrate spatial information.

• One possibility is separate populations of neurons that 
interact multiplicatively in order to explicitly disentangle 
form and motion.


