Neural Substrates of Memory and Prospection

Loren Frank

Howard Hughes Medical Institute Kavli Institute for Fundamental Neuroscience Department of Physiology University of California, San Francisco

Expected Properties of Memory-Related Activity

□ Time-compressed.

□ Contributes to representing future possibilities.

□ Related to behavioral decisions.

Memory and Planning

- Memories allow past experience to inform future decisions.
- Prospection based on SWRs would be limited to behavioral states where SWRs are seen (immobility and slow movement).
- Question:
 - Are there other forms of non-local activity that could inform decision-making processes?

Hippocampal Theta Sequences

Position (cm)

Figure from Feng & Foster (2015)

Hippocampal Theta Sequences

= Population firing sequences that encode sequences in space Each sequence lasts ~100 ms.

Figure from Feng & Foster (2015)

Spiking During Hippocampal Theta Sequences

□ Time-compressed.

□ Capable of representing future possibilities?

Continuous Alternation Task and Regional Targeting

Outbound trials require memory of previous outbound choice

Expected Co-firing Patterns

Observed Co-firing Patterns (in a subset of pairs)

Example 1

Normal, Anti-synchronous and Synchronous Pairs

~9400 pairs total

Prevalence in Single Units – Theta Skip Index

Alternating Representations of Future Possibilities

Clusterless decoding method: Deng et. al. *Neural Computation (2015)* See also Jezek et. al. *Nature* (2011)

Alternating Representations of Future Possibilities

Clusterless decoding method: Deng et. al. *Neural Computation (2015)*

Alternating Representations - Quantification

Spiking During Theta Sequences

□ Time-compressed.

□ Capable of representing future possibilities

□ Related to behavioral decisions?

Relating Theta-timescale Activity to Behavior

Bayesian decoding of prospective (L vs. R) representation from place cells

Decode each theta cycle over entire time in middle arm (>2 s).

Weak Relationship between Activity and Upcoming Choices

Actual choice

Spiking During Theta Sequences

□ Time-compressed.

□ Capable of representing future possibilities.

□ Related to behavioral decisions?

Current vs. Future Representations and Theta Phase

Preferred vs. Non-preferred Directional Representations

Ensemble Organization of Directional Representations

Theta-paced Alternation of Directional Representations

Ensemble Organization of Directional Representations

Conclusions

- We find frequent alternation between representations of future possibilities across theta cycles.
- This alternation is not limited to Vicarious Trial and Error (VTE) behaviors.
- Alternation occurs for both divergent paths and opposite directions of travel.
- Theta-paced alternation could inform upcoming decisions and/or reflect previous decisions.

Lab members and collaborators

Lab Members

Former Lab Members

Jason Chung Tom Davidson Anna Gillespie Hannah Joo David Kastner Kenny Kay Daniel Liu Demetris Roumis Marielena Sosa Jai Yu

Kevin Fan (UCSF/UCB) Shantanu Jadhav (Brandeis) Mattias Karlsson (SpikeGadgets) Gideon Rothschild (U. Michigan)

Collaborators

Uri Eden (BU)

Jeremy Magland (Flatiron) Alex Barnett (Flatiron) Leslie Greengard (Flatiron)

Magnus Karlsson (SpikeGadgets)

Supin Chen (LLNL / Neuralink) Razi Haque (LLNL) Vanessa Tolosa (LLNL / Neuralink) Angela Tooker (LLNL)

> Kris Bouchard (LBNL) Peter Denes (LBNL)

Funding: HHMI, Simons Foundation, NIH, UCOP