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Theories of the Hippocampus

(2016-02-15 http://www.fusedjaw.com/wp-content/uploads/2011/12/seahorse-anatomy-male-female.png )



Standard Framework of the Hippocampus

I Entorhinal cortex (EC) serves as an interface
between association areas of neocortex and
the hippocampus.

I The subareas of the hippocampus are
connected in a loop: EC - DG - CA3 - CA1 -
subiculum - EC.

I Because of its recurrent connectivity, CA3
serves as the central autoassociative memory.

I Dentate gyrus (DG) orthogonalizes similar
patterns by sparsification.

I CA1 helps expanding the highly compressed
representation in CA3 on the way back to the
association areas.

I Subiculum has no specific function associated
with it.

I The entorhinal-hippocampal part has been
implemented as a connectionist model.

(Treves and Rolls, 1994, Hippocampus 4(3):374–391)



CRISP Theory

CA1 CA3 DG

EC III

EC II

EC VI

EC V

perforant path

MFSC

TA

u
t

x
t

y
t
→ y

t+1

z
t

v
t

I Context Reset by dentate gyrus (DG)
I Dentage gyrus performs disambiguation of similar patterns.

I Intrinsic Sequences in CA3
I Patterns are connected by association with pre-existing sequences.

I Pattern completion in CA1
I Pattern storage and retrieval is done through feedforward hetero-association.

I This is a conceptual model.

(Cheng, 2013, Frontiers in Neural Circuits 7(88):1–14)



Memory Fidelity of Single Patterns

(2018-01-26 https://pixabay.com/en/loving-memory-memorial-grief-1207568/)



Network

I Cell numbers, connectivity and sparsity are derived from rat.
Scaling factor for number of neurons is 100, for connections per neuron is 10.

I Activation is pi (t + 1) =
∑

wijpj(t) with k-winners-take-all.

I Autoassociative feedback loop in CA3 is run 15 times per pattern.

I Learning rules exactly as in (Rolls, 1995).

I Storage is done via DG, recall via EC→CA3 connections.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Following the Rolls (1995) Model

(Rolls, 1995, Intl. J. of Neural Systems 6:51-70)

’Rolls model’ ’modified Rolls model’

Solid/dashed lines: with/without recurrent dynamics in CA3.

The Rolls model (top and lower left) used 1% activity in CA1 for 100 patterns and full connectivity from CA1 to EC.
We changed that to 10% and sparse connectivity from CA1 to EC, and during storage CA1 was activated by EC→CA1.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Correlated Input

I Four modules of grid cells as mEC input.

I Population activity at random locations serves as input.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Performance on 252 Random and Correlated Patterns

CA3 EC
R

a
n

d
o

m
P

a
tt

er
n

s
C

or
re

la
te

d
P

a
tt

er
n

s

Solid/dashed lines: with/without recurrent dynamics in CA3.

Learning in DG is disabled, because it drops performance. 252 patterns were used.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Performance on 252 Correlated Patterns

CA3 EC

Solid/dashed lines: with/without recurrent dynamics in CA3.

Learning in DG is disabled, because it drops performance. 252 patterns were used.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Performance on Correlated Patterns
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Top/bottom: without/with recurrent dynamics in CA3. Red: correlations with wrong patterns. Blue/cyan: correlations with correct
pattern. Blue: cases where the recalled pattern is closer to a wrong than to a correct pattern. Black star: average correlation with correct
pattern. Histograms taken at cue qualitiy levels marked by red diomonds in previous graphs.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Performance with EC→CA1→EC Network

I Storage: Activity in CA1 triggered by EC→CA3→CA1, without
plasticity. Connections EC→CA1→EC are plastic.

I Retrieval: EC→CA1→EC only is effective.

Random Input Correlated Input

Solid/dashed lines: with/without recurrent dynamics in CA3.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Summary

I Qualitative behavior of a network can be very different for random and
for more natural input patterns.

I Correlation between stored and retrieved patterns is only one measure
of performance. Confusion rate might be more important.

I We found feed-forward hetero-association to be more powerful than
recurrent auto-association.

I Recurrent dynamics in CA3 was even harmful.

I A simple EC→CA1→EC performed best on correlated input.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)



Instantaneous Sequential Storage and
Retrieval of Pattern Sequences

(2018-02-07 https://commons.wikimedia.org/wiki/File:Egyptmotionseries.jpg)



Network

I N = 200.

I Fixed connections were pre-trained with gradient descent, plastic
connections were trained with Hebbian learning plus weight decay.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Raw Input Patterns

I A random sequence of 200 handwritten digits of size 28×28 = 784
from the MNIST database serves as raw input, shown here by rows
from top left to bottom right.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Reconstructed Input Patterns

I Raw images are compressed with an auto-encoder network down to
220 dimensions to yield the EC representation.

I This image shows the reconstructed images from the auto-encoder.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Full Recall from Cue 10 Without Noise

I Cue image is shown negative. Retrieved sequence is rotated for easier
comparison.

I The recently stored patterns (lower right) are clearer than the earlier
stored patterns (upper left). The quality loss is roughly linear.

I In this run 196/200 of the retrieved sequences are correct.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Full Recall from Cue 10 With 20% Input Noise

I Same as before but with 20% input pixel noise.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Full Recall from Cue 10 Without Noise

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Full Recall from Cue 10 With 20% EC Noise

I Same as before but with 20% noise in EC.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Reconstructed Input Patterns

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Full Recall from Cue 121 Without Noise

I Cue 121 does not trigger the correct sequence.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Full Recall from Cue 121 Without Noise Shifted by 39

I But after about 60 time steps CA3 converges to the correct sequence
shifted by 39.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Reconstructed Input Patterns

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Full Recall from Cue 14 Without Noise

I Cue 14 does not trigger the correct sequence and CA3 does not
recover into the correct sequence at all.

I CA3 fluctuates around a spurious attractor state.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)



Summary

I It is possible to store a sequence of up to 1.5N random patterns in a
recurrent CA3 network of N units with gradient descent.

I It is possible to do instantaneous sequential hetero-association of a
sequence of correlated patterns to the intrinsic sequence of patterns in
a CA3 with some preprocessing (auto-encoder + DG).

I The system has no catastrophic interference/forgetting, quality of
retrieved patterns degrades linearly.

I Sequential order is preserved reliably even for similar stimuli and
overlapping sequences.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)
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