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Evolution of the eye

A Pessimistic Estimate of the
Time Required for an Eye to
Evolve

(500k years)

Nilsson & Pelger (1994)

that the eye...could have
been formed by natural
selection seems, | freely
confess, absurd in the highest
possible degree.

-- Charles Darwin (1859)
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The evolution of eyes
Land & Fernald (1992)




http://redwood.berkeley.edu/wiki/VS298: Animal Eyes



Retina



R. W, RODIECK

The First Steps in Seeing
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Stiles-Crawford effect

pupil area (mm?)
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HI horizontal cells connected via gap junctions

HI horizontal cells labeled following injection of one HI cell () %300
after Dacey, Lee, and Stafford, 1996



Hyperpolarization of photoreceptor results in
hyperpolarization of horizontal cells

sign-conserving
synapse

J,horizontal cell




Hyperpolarization of horizontal cell results in
depolarization of photoreceptors

sign-inverting
synapse




Hyperpolarization of horizontal cell spreads to
other horizontal cells via gap junctions

gap junction



Hyperpolarization of horizontal cell spreads to
other horizontal cells via gap junctions

gap junction



Analog VLS| retina
(Mead & Mahowald, 1989)
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On vs. off cone
bipolar cells




on off



Efficient coding model of retina
(Karklin & Simoncelli 2012)

Objective function: I(X;R) —» X; (r))

J



Efficient coding model of retina
(Karklin & Simoncelli 2012)

ON-center OFF—-center

OIS bl Sl \
LI P2




Midget ganglion cells receive
input from midget bipolar cells.

Ratio is |:| in fovea.




Cone vs. retinal ganglion cell spacing
as a function of eccentricity

RGC’s Cones ’

Cone spacing (deg)

Eccentricity (deg)



Midget- and Parasol-cell dendritic field diameter
as a function of eccentricity
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Retinal ganglion cell sampling array
(shown at one dot for every 20 ganglion cells)
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(from Anderson & Van Essen, 1995)




Letter size vs. eccentricity
(Anstis, 1974)

height,

letter

Threshold

0 i 0 20 - 30 40 5C 60
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Fig. 2. All letters should lie at threshold when centre of this chart is fixated. Threshold letter size increases
linzarly with increasing distance from fixation point.



Iig. 3. All letters should be equally readable when centre of this chart is fixated. since each etter is ten
times its threshold height



Eye movements



Human eye movements during viewing of an image

Yarbus (1967)



Perception, 1999, volume 28, pages 1311 -1328

DOI:10.1068/p2935

The roles of vision and eye movements in the control
of activities of daily living

Michael Land, Neil Mennie, Jennifer Rusted

Sussex Centre for Neuroscience and Laboratory of Experimental Psychology, School of Biological
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https://www.youtube.com/watch?v=mtYFNsRcxY4

Fixational eye movements
(drift)

(from Austin Roorda, UC Berkeley)



Retinal image motion helps pattern discrimination

*

P (correct)
|
P (correct)

1 2 3 4
Subject Subject

Ratnam, K., Domdei, N., Harmening, W. M., & Roorda, A. (2017). Benefits of retinal image motion
at the limits of spatial vision. Journal of Vision, 17, 1—11.



Position (arcmin)
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Joint estimation of form and motion
(Alex Anderson, Ph.D. thesis)

Image Projected on the Retina and Generated Spikes at t = 005 ms

Pattern with Cone RFs

Estimated Image, S = DA:

SNR =0.75
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Cortex
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Primate visual cortex

Lewis & Van Essen (2000)
Visual areas



V| - topographic representation

Maonocular 10°
Region 20‘)
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ortical magnification

courtesy of Arash Fazl



Cortical neurons

e have elaborate dendritic and axonal arbors
e are highly organized by layer
® are interconnected in a ‘canonical microcircuit’
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Current Biology

(Douglas and Martin, 2007)



V1 - simple cell receptive fields




Perception, 1972, volume 1, pages 371 -394

Single units and sensation: A neuron doctrine
for perceptual psychology?

H B Barlow
Department of Physiology-Anatomy, University of California, Berkeley, California 94720

Received 6 December 1972

Abstract. The problem discussed is the relationship between the firing of single neurons in sensory
pathways and subjectively experienced sensations. The conclusions are formulated as the following

five dogmas:
1. To understand nervous function one needs to look at interactions at a cellular level, rather than
either a more macroscopic or microscopic level, because behaviour depends upon the organized

pattern of these intercellular interactions.

2. The sensory system is organized to achieve as complete a representation of the sensory stimulus
as possible with the minimum number of active neurons.

- —

neurons, each of which corresponds to a pattern of external events of the order of complexity of

the events symbolized by a word.
5. High impulse frequency in such neurons corresponds to high certainty that the trigger feature is

present.
The development of the concepts leading up to these speculative dogmas, their experimental

basis, and some of their limitations are discussed.




V1 is highly overcomplete

LGN

afferents

Barlow (1981)



Sparse, distributed representations
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I(z,y) = Za ¢i(z,y) + €(z,y)




Learned basis functions
(200, 12x12 pixels)
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The “standard model” of VI

L Response Pointwise
Image Receptive field normalization non-linearity Response
linear
response
%y, > P | ot/ | —— __\4 > 1)
Kxy.0 0
neighboring

neurons



What is the other 85% of VI doing!?

10 Five problems with the current view:
|
‘ ® Biased sampling (single unit recording)
B 0.4 | ® Biased stimuli (bars, spots, gratings)
= —> . . .
® | ® Biased theories (data-driven vs.
2 ~85% of V1 function functional theories)
< not'understood
O | ® [nterdependence and context (effect of
_E — = = s = = = intra-cortical inputs)
@
> ® Ecological deviance
0.3-0.4
0 I Olshausen BA, Field D] (2005) How close are we
0 1.0 to understandingV1? Neural Computation, |7,

Proportion of cells studied 1665-1699.



Single-unit electrophysiology




1 mmz2 of cortex analyzes ca. 14 x 14 array of retinal
sample nodes and contains 100,000 neurons

C-0O Blobs

\

M axons

P axons



| mMmm?2 of cortex contains 100,000 neurons




"1

Felleman & Van Essen
(1991)

place cells
grid cells

face cells

Invariant repr.
complex motion

‘Gabor filters’
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Wallisch & Movshon (2008)

i LIP -

T

vOA

V3a I

|
—0<

[ @ )

‘Gabor filters” - ' - - objects - faces



b

—




Hierarchical Bayesian inference in visual cortex
(Lee & Mumford, 2003)

P()C0|)Cl)

P(x | x,)/ Z,
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What do you see?

Lorenceau & Shiffrar (1992);
Murray, Kersten, Schrater, Olshausen & VWoods (2002)



(easy version)




MRI Signal

04

04
03

0.2

01t

-0.1
-0.2¢
-0.3

BOLD signal in VI and LOC

V1

“diamond”

‘non-diamond”

0.6

0.4

0.2

0

0.2

0.4

LOC

“‘non-diamond”

“diamond”




CORTEX Py P
....................... —>—> —» L 41— [1-3
........... /) R I N T e 4
......................................................... 5
e 5
L
EFFERENCE COPIES
D) (O OO
ASSOCIATION
o o NUCLEI
The conventional view
) BRAINSTEM AND
/ SPINAL CORD
MUSCLE

RECEPTOR



An alternative view
(Guillery & Sherman)
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Activity in V1 more than doubles during
locomotion

LFP power
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Mystery



Vision in jumping spiders

(Bair & Olshausen, 1991)




Jumping spiders do object recognition

o ~a /0N O\ XN /e S8\ /N

17 23 32 36 1% 52 58 B85%

(b) ﬁ.“*‘
+ 1 B O

Text-hg. 12. Stisnuli found by Drees to cvoke courtship (@) and prey capture () in male jumping
spiders (Eptblemum sceniowon), The numbers heneath each figure in {0) arc the percentage of
triala on which couriship waa evohed, After Drees (aysg2).




Spider mimicry in flies




Prey capture
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One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)




One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)




Navigation

(Tarsitano & Jackson 1997)

(a)
Procedure 1 A
Route A
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(b)
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...problem solving behavior, language, expert knowledge and
application, and reason, are all pretty simple once the
essence of being and reacting are available. That essence is
the ability to move around in a dynamic environment, sensing
the surroundings to a degree sufficient to achieve the
necessary maintenance of life and reproduction. This part of
intelligence is where evolution has concentrated its time--it is
much harder.

— Rodney Brooks, “Intelligence without representation,”
Artificial Intelligence (1991)



...in the 1960s almost no one realized that machine vision was
difficult.

... the idea that extracting edges and lines from images might be at
all difficult simply did not occur to those who had not tried to do it.

It turned out to be an elusive problem.
— David Marr (1982)



20 years of learning about vision: Questions answered,
questions unanswered, and questions not yet asked.
In: 20 Years of Computational Neuroscience. ].M. Bower,
Ed. (Symposium of the CNS2010 annual meeting)

http://redwood.berkeley.edu/bruno
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