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Unsupervised learning

» Data ... (imagine cool images here)...
» with no labels (or teachers)

» How to
Understand it/find patterns in it?
Make use of it?
What data to collect!?

» Interesting extensions:
semi-supervised, interactive, lifelong learning



Two high-level approaches

Clustering (grouping into similar elements)

Choose objective function or other quality measure of a
clustering

Design algorithm to find (near-)optimal or good clustering(s)
Check/hope that this is useful

Model fitting

Hypothesize model for data

Estimate parameters of model

Check that parameters were unlikely to appear by chance
OR (even better): find best-fit parameters (“‘agnostic”)



Understanding Unsupervised Learning

>

Needs domain knowledge and insight to define the “right” problem
Theoreticians prefer generalized problems with mathematical appeal

Some beautiful problems and techniques have emerged. These will be the
focus of this talk.

Many ideas/algorithms in ML are due to neuroscientists (we already saw
some)

There’s a lot more to understand!

How does the brain learn?
Much of it is (arguably) unsupervised
(“Child, minimize sum-of-squared-distances,’ is not so common)



Meta-methods

PCA
k-means
EM

Gradient descent
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» Can be “used” on most data sets.

» But how to tell if they are effective?! Or if they will converge in
a reasonable number of steps?

» Do they work?! When? Why?
(this slide applies to supervised learning as well)
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This tutorial

» Mixture Models

» Independent Component Analysis

» Finding Planted Structures (subgraphs, topic models etc.)
» Graph Clustering

» Some relevant (?) snippets from the frontlines

Many other interesting and widely studied models: learning discrete
distributions, hidden Markov models, dictionaries, identifying the
relevant (“feature”) subspace, etc.



Mixture Models

» Classify unlabeled samples from a unknown mixture of
distributions; Learn parameters of the mixture.
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E.g., each component ~Y/ is an unknown Gaussi:
logconcave distribution, etc.

Goes back to [Pearson 1894]
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Classification needs components to be well-separated.

» Learning Gaussian mixtures does not:
Thm: Gaussian mixtures are uniquely identifiable.



Learning parameters with no assumptions

Thm [2010].There is a polynomial algorithm to learn a

mixture of Gaussians up to any desired accuracy.
[Kalai-Moitra-G.Valiant, Belkin-Sinha, Moitra-G.Valiant]

» Sample Complexity: 27/ (k)
» Lower bound: 274 7

» Statistical query lower bound: 727Q0(/4) [Diakonikolas-Kane-Stewart
2016]

» Could be useful for a small number of components



Techniques

» Random Projection

[Dasgupta] Project mixture to a low-dimensional subspace to (a) make
Gaussians more spherical and (b) preserve pairwise mean separation

[Kalai] Project mixture to a random |-dim subspace; learn the
parameters of the resulting |-d mixture; do this for a set of lines to
learn the n-dimensional mixture!

More generally: useful tool to reduce dimensionality while
approximately preserving relationships. E.g., efficient learning of robust
concepts [Arriaga-V. 1999]

» Method of Moments
[Pearson] Finite number of moments suffice for |-dim Gaussians
[Kalai-Moitra-G.Valiant] 6 moments suffice



Clustering assuming separation

» Al.Pairwise separation between means. (Clustering)

Separation: #71 /4 (oli+0olj) where gliT2 = max variance of
component ..
[Dasgupta, D-Schulman, Arora-Kannan,V-Wang, K.-Salmasian-V, Achlioptas-McSherry]

» A2.Each mean is separated from the span of the previous
means. (Clustering)

Separation: po/y (k). standard deviation along separating direction
[Brubaker-V.]

» A3.Matrix of means has a bounded smallest singular value.This
implies that each mean is separated from the span of the rest.
(Learning)

Spherical Gaussians: complexity grows as |/poly(separation).
[Hsu-Kakade, Goyal-V.-Xiao]



Techniques
PCA:

» Use PCA once
[V.-Wang]

» Use PCA twice
[Hsu-Kakade]

» Reweight and use PCA
[Brubaker-V., Goyal-V.-Xiao]



Technique: Principal Component Analysis

points @1 ...adm in BTn.

First principal component: line Z7that minimizes the sum of squared

among all k-dim subspaces.

V, =V, , + best vector orthogonal to V, _,
Computed via the Singular Value Decomposition.



PCA example

» For a Gaussian, the principal components are the axes of
the ellipsoidal level sets.



Why PCA?

»  Reduces computation/space.

( also reduce space)

» (sometimes) Reveals interesting structure.



Technique: Principal Component Analysis

» “PCA is a mathematical tool for finding directions in which a
distribution is stretched out.”

» Discussed by Euler in work on inertia of rigid bodies (1730).
» Principal axes identified as eigenvectors by Lagrange.

» Power method for finding eigenvectors published in 1929, before
computers.

» Ubiquitous in practice today:

Bioinformatics, Econometrics, Data mining, Computer vision, ...

» Hippocampus uses it!



Distance-based classification

Points from the same component should be closer to each other than
those from different components.

Unfortunately, the separation required grows with the ambient dimension.



Algorithm

» Project to span of top k principal components of the
data

» Apply distance-based classification in this subspace



Clustering spherical Gaussians [VW02]

» Distance-based clustering:

needs separation that grows as 771 /4

» PCA, then cluster:
Separation required grows as 471 /4 :
\wdi —pdj|>£T1 /4 (oli+olj)log...

Projection to span of means preserves inter-mean distance
and shrinks component Gaussians.

Span(means) = PCA subspace of dim k



PCA for spherical Gaussians

» Best line for | Gaussian?

- Line through the mean

» Best k-subspace for | Gaussian!?
- Any k-subspace through the mean

» Best k-subspace for k Gaussians!?

- The k-subspace through all k means!



Mixtures of Logconcave Distributions

Thm.PCA subspace is “close” to span of means.

» Separation required for classification:
\wdi —udy | >poly(k) (olimax +olj,max )og...

where glimaxT2 is the maximum directional variance
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K-means and PCA

I. Apply PCA to embed in a low-dimensional subspace

2. Run favorite clustering algorithm (e.g., k-means
iteration)

Thm. [Kannan-Kumar] Converges efficiently for k-means
iteration under a natural pairwise separation assumption.

» (important to apply PCA before running k-means!)



Limits of PCA

» Can fail for a mixture of 2 arbitrary Gaussians

N\

» Algorithm is not affine-invariant or noise-tolerant.

» Any instance can be made bad by an affine
transformation or a few “bad” points.



Parallel pancakes

Still separable, but algorithm does not work.




Classitying Arbitrary Gaussian Mixtures

» Component Gaussians must be probabilistically separated
for classification to be possible

» Q.ls this enough!?

» Probabilistic separation is affine invariant:

®/® — I \\

» PCA is not affine-invariant!




Algorithm: Isotropic PCA

I. Apply affine transformation to make distribution
isotropic, i.e., identity covariance.
2. Reweight points (using a spherical Gaussian).

3. If mean shifts, partition along this direction.
Else, partition along top principal component.
4. Recurse.
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[sotropy

» Turns every well-separated mixture into almost
parallel pancakes, separable along the intermean
direction.

« But, PCA can no longer help!



Unraveling Gaussian Mixtures

» Isotropy pulls apart the components

“““““““““““
----------------

» If some component is heavier, then reweighted mean
shifts along a separating direction

» If not, reweighted principal component is along a
separating direction



Affine-invariant clustering

» Thm.[Brubaker-V.08] The algorithm correctly classifies
samples from a mixture of k arbitrary Gaussians if each
one is separated from the span of the rest. (More generally,
if the overlap is small as measured by the Fisher criterion).

» Q: Extend Isotropic PCA to more general mixtures



Original Data

0.5}.

-0.5¢L.

» 40 dimensions, 15000 samples (subsampled for visualization)



Random Projection
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PCA
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Isotropic PCA
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Learning noisy distributions/mixtures

» Data is mostly from a nice distribution (e.g., Gaussian or
mixture of Gaussians) but some fraction is not.

» Can we learn (the parameters of) the nice distribution!?
» Recent work: Yes, in many interesting cases!

» Agnostic learning is of interest across learning theory.



Outline

» Mixture Models

» Independent Component Analysis

» Finding Planted Structures (subgraphs, topic models etc.)

» Graph clustering

» Some relevant (?) snippets from the frontlines



Independent Component Analysis (ICA)



ICA model

» Start with a product distribution




ICA model

» Apply a linear transformation A




ICA model

» Observed sample

» Problem: Find the hidden transformation A



ICA model

Matrix A might include a projection
(underdetermined ICA)




Independent Component Analysis

» Model: Data is a linear transformation of an unknown
product distribution:

SERTm , AERTnxm data x=As

Thm.A is unique up to signs of columns if at most one
component s/ is Gaussian

» Problem: Learn A by observing samples x.
» Used in ML, signal processing, neuroscience for 25+ years.

» Many attractive heuristics.



Status: ICA

>

Thm [Goyal-V.-Xiao | 3]. If columns of A satisfy a weak linear independence
condition, and component distributions are A-far from Gaussian, then A can
be estimated with complexity poly(m,A, 1 /€ ).

Generalized linear independence: smallest d for which the tensors @ 7d
Ali are linearly independent.

Earlier work for d=1I and special classes of distributions [FJK,NR,AGMS,AGR]
Technique: Robust tensor decomposition.

Thm[VX14]. If columns of A are linearly independent and £<4, then sample
complexity = 0 (72) and time complexity = O(SVD)

Both theorems work with Gaussian noise: y=A4s+7
Recent work: agnostic ICA.



Techniques

» PCA
» finds local optima of second moments, i.e.,, max—u€RTn £(ul7 x)72)

» Local optima of 4" moment. [Frieze-Jerrum-Kannan96]

Works if each component differs from Gaussian in the 4" moment, e.g., uniform
over a cube.

Local optima via local search or a power iteration. [Nguyen-Regev]
Tensor view: After making the samples isotropic,

» Fourier PCA [GVXI3].

» Reweight x with Fourier weight 77277 x for random unit vector 2 then
apply PCA; more generally, a robust tensor decomposition.

» Recursive FPCA [VX14].
» Partition using largest eigenvalue gap; recurse.



Outline

» Mixture Models

» Independent Component Analysis

» Finding Planted Structures (subgraphs, topic models etc.)

» Graph clustering

» Some relevant (?) snippets from the frontlines



Planted structures

>

Planted clique/dense subgraph: Start with a random graph. Add a clique of
size £>>2logn on some subset of k vertices.

Find planted clique.

Planted partition: Fix a partition of vertices of a graph. Pick random edges
with different probabilities within parts and across parts.

Recover planted partition.

Planted assignment: Fix an assignment ¢ on Boolean variables. Generate a
random formulas by picking clauses from a distribution that depends on o.

Recover planted assignment.

Planted vector/subspace: Generate random points by adding a random
vector from a fixed subspace to random (Gaussian) noise in full space.

Recover planted vector subspace



Status: Planted Cliques

» Upper bounds: 270(ogn ) for any A> (2+¢€)logn

» Polynomial time for A>cv7
[Alon-Krivelevich-Sudakov98]

» Lower bound: For ¢>0, 4#=7n70.5—¢€, any statistical
algorithm has complexity 727()(logn )
[Grigorescu-Reyzin-Feldman-V.-Xiao | 3]

» (formally, this is for bipartite planted cliques, for which the
same upper bounds apply)

» Q:ls there a polytime algorithm for #<< V7 ?



Techniques

» Combinatorial:

» Remove lowest degree vertex iteratively [Feige]

» Spectral:

» Take highest components of principal component [AKS98]

|/-1
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A E(A) R
Thm [Furedi-Komlos]. |&|42 <(2+0(1))V7.



Status: Planted k-SAT/k-CSP

» Upper bound:
Information theoretically, 0(7logrn) clauses suffice.

Algorithmically, n74/2 logn clauses suffice
[Bogdanov-Qiao-Applebaum, Feldman-Perkins-V.14]

in time linear in number of clauses [FPV |4].
» Bound is n#77/2 for (r-1)-wise independent clause distributions.

» Lower bound:
(n/logn )Tr/2 clauses for statistical algorithms.[FPV 14]

» OP: Find efficient (nonstatistical) algorithm for planted SAT.



Statistical Algorithms

» Only access to the input distribution: compute arbitrary
functions on random samples OR estimate their
expectations to within a given tolerance.

» Forany /:X—[0,1], STAT(7) outputs £(/(x))x 7. [Kearns]
» Forany /:X—{0,1}, -STAT outputs f(x) for a random x.

» VSTAT(t): outputs £YD [/ (x)] to within the standard
deviation of t random samples.

» Complexity of algorithm = number of calls to oracle.



Can statistical algorithms detect planted
structures?

» Well-known algorithms can be implemented statistically:
Small/large degree
Local search
PCA (power iteration)
Markov Chain Monte Carlo / simulated annealing
Gradient descent
Vix Edu [f(xu)]=Edu [Vix f(x,u)]

Linear programs, conic programs, stochastic optimization

» With one notable exception: Gaussian Elimination over a
finite field



Detecting planted solutions

» Many interesting problems (e.g., sparse topics/
dictionaries)

» Potential for novel algorithms
» New computational lower bounds

» Open problems in both directions!



Outline

» Mixture Models

» Independent Component Analysis

» Finding Planted Structures (subgraphs, topic models etc.)

» Graph clustering

» Some relevant (?) snippets from the frontlines



Clustering from pairwise similarities

Input:
A set of objects and a (possibly implicit) function
on pairs of objects.

Output:

I, Aflat clustering, i.e., a partition of the set
2. A hierarchical clustering

3. A weighted list of features for each cluster



Typical approaches

» Optimize a “natural” objective function
» E.g., k-means, min-sum, min-diameter etc.

» Axiomatic: derive from assumptions on valid solutions

» Using EM/local search OR
» a provable approximation algorithm (less common)

» Issues: quality, efficiency, validity.
» Many natural functions are NP-hard to optimize



Divide and Merge

» Recursively partition the graph induced by the
pairwise function to obtain a tree

» Find an “optimal” tree-respecting clustering

Rationale: Easier to optimize over trees;

k-means, k-median, correlation clustering all solvable
quickly with dynamic programming



Divide and Merge




How to cut?

Min cut? (in weighted similarity graph)
Min expansion/conductance cut [Jerrum-Sinclair]

P()=w(S, 'S )/minw(Hw(S )/ 2\
“

Sparsest cut <N
Normalized cut [Shi-Malik 2000]

Many applications: analysis of Markov chains, pseudorandom
generators, error-correcting codes...




How to cut?

» Min conductance/expansion is NP-hard to compute.

» Leighton-Rao, Linear program: J(logzn )
» Arora-Rao-U.Vazirani, Semidefinite program: J( \/Iogn )

» Fiedler cut: Sort vertices according to component in 2"
eigenvector of normalized similarity matrix; take best of 77—1

cuts. O(VOPT )



Worst-case guarantees

Assume

» we can efficiently find a cut of conductance a-OP7Tv

» There exists an (&,¢€)-clustering where each cluster has

conductance at least @ and at most € fraction of similarity lies
between clusters.

Thm [Kannan-V.-Vetta '00].

If there exists an (&,¢)-clustering, then the recursive

partitioning algorithm finds a clustering of quality (aTl/v /a
logn ,aeTvlogn )

Cor. Recursive spectral partitioning gives (@72 /2logn ,2Ve
logn )



Graph expansion

» G=(V,F), edge weights w
» SV
P(S)=w(S8S)/minw(S), w(S)

v

@(G)=minT5 @(5)

v

NP-hard to compute exactly

<N

Admits polytime O(\/Iogn ) approximation [Arora-Rao-U.V

v

Improving on earlier O(log7z) approximation

v

[Leighton-Rao’88, Linial-London-Rabinovich,Aumann-Rabani]



y ALG=DT-1/2 ADT-1/2 with Ddii=dli=})T#
wliy

» ALG =1 /d Afor d-regular graphs

» LIG =/—AlG is positive semidefinite

» A1 (LG )=0; LiG DT1/2 1=0.

A2 (LIG )=min+x€RTn, x1LDT1/2 1 xTTLIGCx/xTT" x



» A42 =0 if and only if graph is
disconnected.

____________________________________________________

» If A2 =0, then is graph close to :
disconnected ? 5 0 [ }




[Cheeger;Alon-Milman] 1/2 12 <@(G)<v2142

x. eigenvector of Z.G for 442

|. Sort rixil <xi2 <..<xin
2. Consider subsets SY/={x!1,...x7}
3. Take Stargming($¢7)

2" eigenvector
«~O0——0—+—0- o—0
of LG I

min— @¢(S4i )< v2442 ,  proof via Cauchy-Schwarz

Gives method to certify constant expansion



Cheeger’s inequality
[Cheeger;Alon-Milman]

A2 2 SH(C)SV2142

S)wV)/w(SHw(S')
=2¢(6)



Soo useful and central

Image segmentation
data clustering
network routing and design

VLSI layout
Parallel/distributed computing

certificate for constant edge expansion
mixing of Markov chains

graph partitioning

Pseudorandomness



Multiple parts

» Given G=(V,E), find k disjoint subsets of vertices SY1,
SY2 ..., SUk s.t.the maximum expansion among these is
minimized.

Pk (G)=min+SY1,...,50k CV, disjoint max—+ @(SY7)




» AL =0 if and only if graph has at
least A connected components.

» If ALA =0, then is graph close to
having £ components ?

» |Is there a Cheeger inequality?
[Trevisan]




Cheeger’s inequality for multiple parts

Theorem.
|[Lee-OveisGharan-Trevisan12; Louis-Raghavendra-Tetali-V.12]

Al /2 @k (C)<CVAIL.01kloghk .

» k disjoint subsets, each with small expansion
» Alternatively, can get (1—&)4 subsets with VA& logk

» Usual Cheeger is the special case of k=2



Algorithm [Louis-Raghavendra-Tetali-V.’12]

|. [Spectral embedding]

Embed vertices of G using top k eigenvectors
2. [Randomized rounding]

Partition randomly into k ordered subsets

3. [Cheeger cuts]
Apply Cheeger’s algorithm to each ordered subset



Spectral embedding

w1
ul2

uln

f

\

\

J

wli=1/Vdli (vl (O),vd2 (0),...vik (©))

{vdii uli } form an isotropic set of vectors



Randomized rounding
» Pick k random Gaussians: g1 ,442,..., gk ~ N(0,1)Tk

» Project each wd/ to each gl/. o

» Assign each i to Gaussian j that maximizes |«zd7-gl/ |, thus
partitioning the vertices into k sets.



Outline

» Mixture Models

» Independent Component Analysis

» Finding Planted Structures (subgraphs, topic models etc.)

» Graph clustering

» Some relevant (?) snippets from the frontlines



Representation: what is a concept?
Subset of neurons, such that if more than a certain
fraction “fire”, then the concept is recognized.

Distribution over neurons
Activity pattern of neurons



Operations on Concepts: Join




Operations on Items: Link (= Variable Binding)



Memorization

Join is AND, Link is OR.

Valiant: Join and Link can be used to memorize binary patterns of length two
(subsets of 2 x %), via a short “neural” program.

» “blue” and “water” =*“ocean”

What about n > 2?



Predictive Join
(with Christos Papadimitriou, 2015)

PJoin(A, B)




Memorization

“Learn a pattern x”

“on sensory presentation of x,
create a top-level item I(x), which

will fire precisely on all subsequent presentations of x”



Algorithm (x)

Repeat for S steps:
each sensory input is sensed
with probability p
PJoins created with probability g
after delay D

while existing Pjoins “do their thing”

Pjoin eligibility criteria: two items that have fired recently, with no parent that
fired since.



Presentation of a pattern




Second presentation




Other patterns: Share and build




Unsupervised Memorization

Theorem: Any subset of 2 " of size m can be memorized whp
and with total height O(log m + log n), provided that:

D 2logn,and S 2 logn/ p.

Any m patterns can be memorized.



Simulations

Patterns with up to n = 100 base features
all learning activity completed in < 80 steps
sharing as predicted

majority of firing traffic downwards



Learning Thresholds, neurally
(with Christos Papadimitriou & Samantha Petti, 2016)

Goal: Develop a mathematical framework to explain cognitive function
Neurally plausible = highly distributed, little synchrony, little global control
Algorithm:

apply to a random subset of items

Pick one of two small JOIN-LINK trees at random, /\I 7\
OR AD

repeat A /\

Thm. For any desired threshold function, there exists a distribution on two
trees s.t. later items reliably compute that threshold. (Independent of the
number of items!)

Q. Cortical microcircuits for learning?



Emergence of clustering in random graphs

» The classical random graph model GYnp
» Power-law (scale-free) random graphs

» Small-world networks

» Don’t capture clustering coefficient:“neighbors are more
likely to be connected”

» Random Overlapping Communities (ROC) model



Models of Connectome

» Random gra

» [Song et al 2

of the data from 14 to 16-d-old animals when the majority of
measurements were performed (see Figure S5). We found that
bidirectional connections are also overrepresented in this
subset of data. Results of other analyses that will be described
later in the paper are also confirmed on this subset
(Figure S5).

Finally, it is possible that some extreme degree of
inhomogeneity in connections probability is able to explain
the observed overrepresentation of reciprocal pairs, but this
would probably reflect large local inhomogeneity in cortical
connectivity patterns—possibly differences between sub-
classes [6,35], rather than experimental artifacts—and is in
line with the main conclusions of this paper.

Three-Neuron Patterns

We extended our analysis by comparing the statistics of
three-neuron patterns to those expected by chance [26,27].
We classify 2 s and count the number of
triplets in each class. In order to avoid reporting over-

represented three-neuron patterns just because they contain
popular two-neuron patterns, we have revised the null
hypothesis[26,27]. The control distribution was obtained
numerically by constructing random triplets where constit-
uent pairs are chosen independently, but with the same

probability of bidirectional and unidirectional connections
as in data (Figure 4A). For example, the actual probability of a
unidirectional connection is (according to Figure 2B) 495/
(3312 + 495 + 218) = 0.123. Then the probability of
unidirectional connection from A to B is 0.123/2 = 0.0615,
the same as from B to A (see Figure 4A). The probability of
bidirectional connection is (according to Figure 2B) 218/
(3312 + 495 + 218) = 0.0542. The probability of finding the
particular triplet class in Figure 4A by chance is the product
of the probabilities of finding the three constituent pairs and
a factor to account for permutations of the three neurons.
The ratio of the observed counts and the expected counts for
each class are plotted in Figure 4B. The actual counts are
given as numbers on top of the bars. Although triplets from
several of these patterns have been reported previously [9,10],

that synaptic weight is concentrated among few synaptic connections. In addition, the strengths of synaptic
connections sharing pre- or postsynaptic neurons are correlated, implying that strong connections are even more
clustered than the weak ones. Therefore, the local cortical network structure can be viewed as a skeleton of stronger
connections in a sea of weaker ones. Such a skeleton is likely to play an important role in network dynamics and should

be investigated further.

Nonrandom Connectivity in Cortex

Null hypothesis assumes of pair
A p=0.0615 B A
A P00615 B ey [/ N\
B C
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Figure 4. Several Three-Neuron Patterns Are Overrepresented as
Compared to the Random Network

(A) Null hypothesis for three-neuron patterns assumes independent
combinations of cti ilities of two kinds of two-neuron

P
patterns.

(B) Ratio of actual counts (numbers above bars) to that predicted by
the null hypothesis. Error bars are standard deviations estimated by
bootstrap method.

(C) Raw (open bars) and multiple-hypothesis testing corrected (filled
bars) p-values. p-values above 0.5 are not shown.

DOIL: 10.1371/journal pbio.0030068.g004




Capturing edge and triangle density

» Impossible for any stochastic block model unless the
number of blocks grows with graph size!

0.1/0.2 | 0.6 0.1

» (e.g., for a hypercube graph)



Random Overlapping Communities (ROC)

» A graph is built by taking the union of many relatively dense random
subgraphs.

» Thm.[Petti-V. 2017] Any realizable clustering coefficient and degree
distribution can be approximated by a ROC random graph.
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» Higher degree vertices are in fewer triangles



Thank you!



