
The Complexity of

Unsupervised Learning

Santosh Vempala, Georgia Tech

Unsupervised learning
}  Data … (imagine cool images here)…

}  with no labels (or teachers)

}  How to

}  Understand it/find patterns in it?
}  Make use of it?
}  What data to collect?

}  Interesting extensions:

}  semi-supervised, interactive, lifelong learning

Two high-level approaches
1.  Clustering (grouping into similar elements)

}  Choose objective function or other quality measure of a
clustering

}  Design algorithm to find (near-)optimal or good clustering(s)
}  Check/hope that this is useful

2.  Model fitting
}  Hypothesize model for data
}  Estimate parameters of model
}  Check that parameters were unlikely to appear by chance
}  OR (even better): find best-fit parameters (“agnostic”)

Understanding Unsupervised Learning
}  Needs domain knowledge and insight to define the “right” problem

}  Theoreticians prefer generalized problems with mathematical appeal

}  Some beautiful problems and techniques have emerged. These will be the
focus of this talk.

}  Many ideas/algorithms in ML are due to neuroscientists (we already saw
some)

}  There’s a lot more to understand!

}  How does the brain learn?
}  Much of it is (arguably) unsupervised
}  (“Child, minimize sum-of-squared-distances,” is not so common)

Meta-methods
}  PCA
}  k-means
}  EM
}  Gradient descent
}  …

}  Can be “used” on most data sets.
}  But how to tell if they are effective? Or if they will converge in

a reasonable number of steps?

}  Do they work? When? Why?
}  (this slide applies to supervised learning as well)

This tutorial

}  Mixture Models

}  Independent Component Analysis

}  Finding Planted Structures (subgraphs, topic models etc.)

}  Graph Clustering

}  Some relevant (?) snippets from the frontlines

Many other interesting and widely studied models: learning discrete
distributions, hidden Markov models, dictionaries, identifying the
relevant (“feature”) subspace, etc.

Mixture Models
}  Classify unlabeled samples from a unknown mixture of

distributions; Learn parameters of the mixture.

 𝐹= 𝑤↓1 𝐹↓1 + 𝑤↓2 𝐹↓2 +…+𝑤↓𝑘 𝐹↓𝑘 

}  E.g., each component 𝐹↓𝑖  is an unknown Gaussian, an unknown

logconcave distribution, etc.
}  Goes back to [Pearson 1894]

}  Classification needs components to be well-separated.

}  Learning Gaussian mixtures does not:
Thm: Gaussian mixtures are uniquely identifiable.

Learning parameters with no assumptions

Thm [2010]. There is a polynomial algorithm to learn a
mixture of Gaussians up to any desired accuracy.
[Kalai-Moitra-G.Valiant, Belkin-Sinha, Moitra-G.Valiant]

}  Sample Complexity: 𝑛↑𝑓(𝑘) 
}  Lower bound: 2↑𝑘 𝑛

}  Statistical query lower bound: 𝑛↑Ω(𝑘)  [Diakonikolas-Kane-Stewart
2016]

}  Could be useful for a small number of components

Techniques
}  Random Projection

[Dasgupta] Project mixture to a low-dimensional subspace to (a) make
Gaussians more spherical and (b) preserve pairwise mean separation

[Kalai] Project mixture to a random 1-dim subspace; learn the
parameters of the resulting 1-d mixture; do this for a set of lines to
learn the n-dimensional mixture!

More generally: useful tool to reduce dimensionality while
approximately preserving relationships. E.g., efficient learning of robust
concepts [Arriaga-V. 1999]

}  Method of Moments

[Pearson] Finite number of moments suffice for 1-dim Gaussians
[Kalai-Moitra-G.Valiant] 6 moments suffice

Clustering assuming separation
}  A1. Pairwise separation between means. (Clustering)

Separation: 𝑘↑1/4  (𝜎↓𝑖 + 𝜎↓𝑗 ) where 𝜎↓𝑖↑2  = max variance of
component 𝑖.
[Dasgupta, D-Schulman, Arora-Kannan, V-Wang, K.-Salmasian-V, Achlioptas-McSherry]

}  A2. Each mean is separated from the span of the previous
means. (Clustering)
Separation: 𝑝𝑜𝑙𝑦(𝑘). standard deviation along separating direction
[Brubaker-V.]

}  A3. Matrix of means has a bounded smallest singular value. This
implies that each mean is separated from the span of the rest.
(Learning)
Spherical Gaussians: complexity grows as 1/poly(separation).
[Hsu-Kakade, Goyal-V.-Xiao]

Techniques
PCA:

}  Use PCA once
[V.-Wang]

}  Use PCA twice
[Hsu-Kakade]

}  Reweight and use PCA
[Brubaker-V., Goyal-V.-Xiao]

Technique: Principal Component Analysis

Points 𝑎1…𝑎↓𝑚  𝑖𝑛 𝑅↑𝑛 .
First principal component: line 𝑣 that minimizes the sum of squared

distances to it, ∑𝑖↑▒𝑑(𝑎↓𝑖 ,𝑣)↑2  .

Principal Components are orthogonal vectors 𝑣1…𝑣𝑛 s.t.

𝑉𝑘 = 𝑠𝑝𝑎𝑛{𝑣1…𝑣𝑘} minimizes ∑𝑖↑▒𝑑(𝑎↓𝑖 ,𝑉)↑2  
among all k-dim subspaces.

Vk = Vk-1 + best vector orthogonal to Vk-1
Computed via the Singular Value Decomposition.

PCA example
}  For a Gaussian, the principal components are the axes of

the ellipsoidal level sets.

v1 v2

Why PCA?

}  Reduces computation/space.
(Random projection, Random sampling also reduce space)

}  (sometimes) Reveals interesting structure.

Technique: Principal Component Analysis

}  “PCA is a mathematical tool for finding directions in which a
distribution is stretched out.”

}  Discussed by Euler in work on inertia of rigid bodies (1730).

}  Principal axes identified as eigenvectors by Lagrange.

}  Power method for finding eigenvectors published in 1929, before
computers.

}  Ubiquitous in practice today:
}  Bioinformatics, Econometrics, Data mining, Computer vision, ...

}  Hippocampus uses it!

Distance-based classification

Points from the same component should be closer to each other than
those from different components.

Unfortunately, the separation required grows with the ambient dimension.

Algorithm

}  Project to span of top k principal components of the
data

}  Apply distance-based classification in this subspace

Clustering spherical Gaussians [VW02]

}  Distance-based clustering:
}  needs separation that grows as 𝑛↑1/4  

}  PCA, then cluster:
}  Separation required grows as 𝑘↑1/4  :

 |𝜇↓𝑖 − 𝜇↓𝑗 |> 𝑘↑1/4  (𝜎↓𝑖 + 𝜎↓𝑗 )log … 

}  Projection to span of means preserves inter-mean distance

and shrinks component Gaussians.

}  Span(means) = PCA subspace of dim k

PCA for spherical Gaussians

}  Best line for 1 Gaussian?
 - Line through the mean

}  Best k-subspace for 1 Gaussian?
 - Any k-subspace through the mean

}  Best k-subspace for k Gaussians?
 - The k-subspace through all k means!

Mixtures of Logconcave Distributions
Thm. PCA subspace is “close” to span of means.

}  Separation required for classification:
|𝜇↓𝑖 − 𝜇↓𝑗 |>𝑝𝑜𝑙𝑦(𝑘)(𝜎↓𝑖,𝑚𝑎𝑥 + 𝜎↓𝑗,𝑚𝑎𝑥 )log … 
 where 𝜎↓𝑖,𝑚𝑎𝑥↑2  is the maximum directional variance

K-means and PCA
1.  Apply PCA to embed in a low-dimensional subspace
2.  Run favorite clustering algorithm (e.g., k-means

iteration)

Thm. [Kannan-Kumar] Converges efficiently for k-means
iteration under a natural pairwise separation assumption.

}  (important to apply PCA before running k-means!)

Limits of PCA

}  Can fail for a mixture of 2 arbitrary Gaussians

}  Algorithm is not affine-invariant or noise-tolerant.
}  Any instance can be made bad by an affine

transformation or a few “bad” points.

Parallel pancakes

Still separable, but algorithm does not work.	

Classifying Arbitrary Gaussian Mixtures
}  Component Gaussians must be probabilistically separated

for classification to be possible
}  Q. Is this enough?

}  Probabilistic separation is affine invariant:

}  PCA is not affine-invariant!

 Algorithm: Isotropic PCA

1.  Apply affine transformation to make distribution
isotropic, i.e., identity covariance.

2.  Reweight points (using a spherical Gaussian).
3.  If mean shifts, partition along this direction.

Else, partition along top principal component.
4.  Recurse.

Isotropy

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

-12 -10 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

Isotropy

}  Turns every well-separated mixture into almost
parallel pancakes, separable along the intermean
direction.

•  But, PCA can no longer help!

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Unraveling Gaussian Mixtures
}  Isotropy pulls apart the components

}  If some component is heavier, then reweighted mean
shifts along a separating direction

}  If not, reweighted principal component is along a
separating direction

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Affine-invariant clustering

}  Thm.[Brubaker-V.08] The algorithm correctly classifies

samples from a mixture of k arbitrary Gaussians if each
one is separated from the span of the rest. (More generally,
if the overlap is small as measured by the Fisher criterion).

}  Q: Extend Isotropic PCA to more general mixtures

Original Data

}  40 dimensions, 15000 samples (subsampled for visualization)

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

31

Random Projection

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

32

PCA

-4 -2 0 2 4 6

-4

-3

-2

-1

0

1

2

3

4

33

Isotropic PCA

-1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

Learning noisy distributions/mixtures
}  Data is mostly from a nice distribution (e.g., Gaussian or

mixture of Gaussians) but some fraction is not.

}  Can we learn (the parameters of) the nice distribution?

}  Recent work: Yes, in many interesting cases!

}  Agnostic learning is of interest across learning theory.

Outline

}  Mixture Models

}  Independent Component Analysis

}  Finding Planted Structures (subgraphs, topic models etc.)

}  Graph clustering

}  Some relevant (?) snippets from the frontlines

Independent Component Analysis (ICA)

ICA model
}  Start with a product distribution

ICA model
}  Apply a linear transformation A

ICA model
}  Observed sample

}  Problem: Find the hidden transformation A

ICA model
Matrix A might include a projection
(underdetermined ICA)

Independent Component Analysis
}  Model: Data is a linear transformation of an unknown

product distribution:

𝑠∈ 𝑅↑𝑚 , 𝐴∈ 𝑅↑𝑛×𝑚  data 𝑥=𝐴𝑠

Thm. A is unique up to signs of columns if at most one
component 𝑠↓𝑖  is Gaussian

}  Problem: Learn A by observing samples x.

}  Used in ML, signal processing, neuroscience for 25+ years.

}  Many attractive heuristics.

Status: ICA
}  Thm [Goyal-V.-Xiao13]. If columns of A satisfy a weak linear independence

condition, and component distributions are Δ-far from Gaussian, then A can
be estimated with complexity 𝑝𝑜𝑙𝑦(𝑚,Δ, 1/𝜖 ).

}  Generalized linear independence: smallest d for which the tensors ⊗↑𝑑 
𝐴↓𝑖  are linearly independent.

}  Earlier work for d=1 and special classes of distributions [FJK,NR,AGMS,AGR]
}  Technique: Robust tensor decomposition.

}  Thm[VX14]. If columns of A are linearly independent and 𝑘≤4, then sample

complexity = 𝑂 (𝑛) and time complexity = O(SVD)

}  Both theorems work with Gaussian noise: 𝑥=𝐴𝑠+𝜂
}  Recent work: agnostic ICA.

Techniques
}  PCA
}  finds local optima of second moments, i.e., max┬𝑢∈ 𝑅↑𝑛   𝐸((𝑢↑𝑇 𝑥)↑2 ) 

}  Local optima of 4th moment. [Frieze-Jerrum-Kannan96]
}  Works if each component differs from Gaussian in the 4th moment, e.g., uniform

over a cube.
}  Local optima via local search or a power iteration. [Nguyen-Regev]

}  Tensor view: After making the samples isotropic,
 𝐸(𝑥⊗𝑥⊗𝑥⊗𝑥)=∑𝑗↑▒(𝐸(𝑠↓𝑖↑4 )−3)𝐴↓𝑖 ⊗ 𝐴↓𝑖 ⊗ 𝐴↓𝑖 ⊗ 𝐴↓𝑖  

}  Fourier PCA [GVX13].

}  Reweight 𝑥 with Fourier weight 𝑒↑𝑖𝑢↑𝑇 𝑥  for random unit vector 𝑢; then
apply PCA; more generally, a robust tensor decomposition.

}  Recursive FPCA [VX14].
}  Partition using largest eigenvalue gap; recurse.

Outline

}  Mixture Models

}  Independent Component Analysis

}  Finding Planted Structures (subgraphs, topic models etc.)

}  Graph clustering

}  Some relevant (?) snippets from the frontlines

Planted structures
}  Planted clique/dense subgraph: Start with a random graph. Add a clique of

size 𝑘≫2log 𝑛  on some subset of k vertices.
 Find planted clique.

}  Planted partition: Fix a partition of vertices of a graph. Pick random edges
with different probabilities within parts and across parts.

 Recover planted partition.

}  Planted assignment: Fix an assignment 𝜎 on Boolean variables. Generate a
random formulas by picking clauses from a distribution that depends on 𝜎.

 Recover planted assignment.

}  Planted vector/subspace: Generate random points by adding a random

vector from a fixed subspace to random (Gaussian) noise in full space.
 Recover planted vector subspace

Status: Planted Cliques
}  Upper bounds: 𝑛↑𝑂(log 𝑛 )  for any 𝑘>(2+𝜖)log 𝑛 
}  Polynomial time for 𝑘>𝑐√𝑛 
 [Alon-Krivelevich-Sudakov98]

}  Lower bound: For 𝜖>0, 𝑘= 𝑛↑0.5−𝜖 , any statistical
algorithm has complexity 𝑛↑Ω(log 𝑛 ) 

 [Grigorescu-Reyzin-Feldman-V.-Xiao13]

}  (formally, this is for bipartite planted cliques, for which the
same upper bounds apply)

}  Q: Is there a polytime algorithm for 𝑘≪√𝑛  ?

Techniques
}  Combinatorial:
}  Remove lowest degree vertex iteratively [Feige]

}  Spectral:
}  Take highest components of principal component [AKS98]

 1 1
 1/-1 = 0 + 1/-1

 A E(A) R

Thm [Furedi-Komlos]. |𝑅|↓2 ≤(2+𝑜(1))√𝑛 .

Status: Planted k-SAT/k-CSP
}  Upper bound:
 Information theoretically, 𝑂(𝑛log 𝑛)  clauses suffice.
 Algorithmically, 𝑛↑𝑘/2 log 𝑛   clauses suffice
 [Bogdanov-Qiao-Applebaum, Feldman-Perkins-V.14]
 in time linear in number of clauses [FPV14].

}  Bound is 𝑛↑𝑟/2  for (r-1)-wise independent clause distributions.

}  Lower bound:
 (𝑛/log 𝑛  )↑𝑟/2  clauses for statistical algorithms.[FPV14]

}  OP: Find efficient (nonstatistical) algorithm for planted SAT.

Statistical Algorithms
}  Only access to the input distribution: compute arbitrary

functions on random samples OR estimate their
expectations to within a given tolerance.

}  For any 𝑓:𝑋→[0,1], STAT(𝜏) outputs 𝐸(𝑓(𝑥))±𝜏. [Kearns]

}  For any 𝑓:𝑋→{0,1}, 1-STAT outputs f(x) for a random x.

}  VSTAT(t): outputs 𝐸↓𝐷 [𝑓(𝑥)] to within the standard
deviation of t random samples.

}  Complexity of algorithm = number of calls to oracle.

Can statistical algorithms detect planted
structures?

}  Well-known algorithms can be implemented statistically:
}  Small/large degree
}  Local search
}  PCA (power iteration)
}  Markov Chain Monte Carlo / simulated annealing
}  Gradient descent

𝛻↓x 𝐸↓𝑢 [𝑓(𝑥,𝑢)]= 𝐸↓𝑢 [𝛻↓𝑥 𝑓(𝑥,𝑢)]
}  Linear programs, conic programs, stochastic optimization

}  With one notable exception: Gaussian Elimination over a
finite field

Detecting planted solutions
}  Many interesting problems (e.g., sparse topics/

dictionaries)

}  Potential for novel algorithms

}  New computational lower bounds

}  Open problems in both directions!

Outline

}  Mixture Models

}  Independent Component Analysis

}  Finding Planted Structures (subgraphs, topic models etc.)

}  Graph clustering

}  Some relevant (?) snippets from the frontlines

Clustering from pairwise similarities

Input:
 A set of objects and a (possibly implicit) function
on pairs of objects.

Output:
1.  A flat clustering, i.e., a partition of the set
2.  A hierarchical clustering
3.  A weighted list of features for each cluster

Typical approaches
}  Optimize a “natural” objective function
}  E.g., k-means, min-sum, min-diameter etc.

}  Axiomatic: derive from assumptions on valid solutions

}  Using EM/local search OR
}  a provable approximation algorithm (less common)

}  Issues: quality, efficiency, validity.
}  Many natural functions are NP-hard to optimize

Divide and Merge

}  Recursively partition the graph induced by the
pairwise function to obtain a tree

}  Find an “optimal” tree-respecting clustering

Rationale: Easier to optimize over trees;
 k-means, k-median, correlation clustering all solvable
quickly with dynamic programming

Divide and Merge

How to cut?

Min cut? (in weighted similarity graph)
Min expansion/conductance cut [Jerrum-Sinclair]

 𝜙(𝑆)= 𝑤(𝑆,¯𝑆 )/min 𝑤(𝑆),𝑤(¯𝑆 )  

Sparsest cut
Normalized cut [Shi-Malik 2000]
Many applications: analysis of Markov chains, pseudorandom

generators, error-correcting codes...

How to cut?
}  Min conductance/expansion is NP-hard to compute.

}  Leighton-Rao, Linear program: 𝑂(log 𝑛 )

}  Arora-Rao-U. Vazirani, Semidefinite program: 𝑂(√log 𝑛  )

}  Fiedler cut: Sort vertices according to component in 2nd
eigenvector of normalized similarity matrix; take best of 𝑛−1
cuts. 𝑂(√𝑂𝑃𝑇 )

Worst-case guarantees
Assume
}  we can efficiently find a cut of conductance 𝑎⋅ 𝑂𝑃𝑇↑𝜈 
}  There exists an (𝛼,𝜖)-clustering where each cluster has

conductance at least 𝛼 and at most 𝜖 fraction of similarity lies
between clusters.

Thm [Kannan-V.-Vetta ’00].
 If there exists an (𝛼,𝜖)-clustering, then the recursive
partitioning algorithm finds a clustering of quality (𝛼↑1/𝜈 /𝑎
log 𝑛  ,𝑎𝜖↑𝜈 log 𝑛 )

Cor. Recursive spectral partitioning gives (𝛼↑2 /2log 𝑛  ,2√𝜖 

log 𝑛 )

Graph expansion
}  𝐺=(𝑉,𝐸), edge weights 𝑤
}  𝑆⊂𝑉
 𝜙(𝑆)= 𝑤(𝑆, 𝑆 )/min 𝑤(𝑆), 𝑤(𝑆 )   

}  𝜙(𝐺)= min┬𝑆 𝜙(𝑆) 

}  NP-hard to compute exactly

}  Admits polytime O(√log 𝑛  ) approximation [Arora-Rao-U. Vazirani]

}  Improving on earlier O(log 𝑛)  approximation
 [Leighton-Rao’88, Linial-London-Rabinovich,Aumann-Rabani]

Graph eigenvalues
}  𝐴↓𝐺 = 𝐷↑− 1/2  𝐴𝐷↑− 1/2   with 𝐷↓𝑖𝑖 = 𝑑↓𝑖 =∑𝑗↑▒

𝑤↓𝑖𝑗  
}  𝐴↓𝐺 = 1/𝑑 𝐴 for d-regular graphs

}  𝐿↓𝐺 =𝐼− 𝐴↓𝐺 	is	posi&ve	semidefinite	

}  𝜆↓1 (𝐿↓𝐺 )=0; 𝐿↓𝐺  𝐷↑1/2  𝟏=0.		

𝜆↓2 (𝐿↓𝐺 )= min┬𝑥∈ 𝑅↑𝑛 , 𝑥⊥ 𝐷↑1/2  𝟏  𝑥↑𝑇 𝐿↓𝐺 𝑥/𝑥↑𝑇 𝑥  
= min┬𝑥∈ 𝑅↑𝑛 , 𝑥⋅𝑑=0  ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (𝑥↓𝑖 − 𝑥↓𝑗 )↑2  /
∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖↑2    ≥0

Perron-Frobenius

}  𝜆↓2 =0	if	and	only	if	graph	is	
disconnected.	

}  If	 𝜆↓2 ≈0,	then	is	graph	close	to	
disconnected	?		

𝑆

𝑆 

𝑆

𝑆 

0	

0	

Cheeger’s Algorithm
[Cheeger; Alon-Milman] 1/2  𝜆↓2 ≤𝜙(𝐺)≤√2𝜆↓2  

min┬𝑖  𝜙(𝑆↓𝑖 )≤ √2𝜆↓2   , proof via Cauchy-Schwarz

Gives method to certify constant expansion

x1 x2 x3 . . . xi xi+1 Xn

2nd eigenvector
of 𝐿↓𝐺 

𝑥: eigenvector of 𝐿↓𝐺  for 𝜆↓2 

1.  Sort 𝑥:𝑥↓1 ≤ 𝑥↓2 ≤…≤𝑥↓𝑛 
2.  Consider subsets 𝑆↓𝑖 ={𝑥↓1 ,…, 𝑥↓𝑖 }
3.  Take 𝑆:arg min 𝜙(𝑆↓𝑖 )  

Cheeger’s inequality
[Cheeger; Alon-Milman]

 𝜆↓2 /2 ≤𝜙(𝐺)≤√2𝜆↓2  

 𝜆↓2 = min┬𝑥∈ 𝑅↑𝑛 , 𝑥⋅𝑑=0  ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (𝑥↓𝑖 −
𝑥↓𝑗 )↑2  /∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖↑2    = min┬𝑥∈ 𝑅↑𝑛   ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (
𝑥↓𝑖 − 𝑥↓𝑗 )↑2  /∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖↑2 − (∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖 ) ↑2 /∑𝑖↑▒
𝑑↓𝑖      
≤ min┬𝑥∈ {0,1}↑𝑛   ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (𝑥↓𝑖 − 𝑥↓𝑗 )↑2  /∑𝑖↑▒𝑑↓𝑖 
𝑥↓𝑖↑2 − (∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖 ) ↑2 /∑𝑖↑▒𝑑↓𝑖      = min┬𝑆 𝑤(𝑆,
𝑆 )𝑤(𝑉)/𝑤(𝑆)𝑤(𝑆 )  
 ≤2𝜙(𝐺)

Soo useful and central
Image segmentation
data clustering
network routing and design
VLSI layout
Parallel/distributed computing
...

certificate for constant edge expansion
mixing of Markov chains
graph partitioning
Pseudorandomness
…

Multiple parts
}  Given G=(V,E), find k disjoint subsets of vertices 𝑆↓1 ,

𝑆↓2 ,…, 𝑆↓𝑘  s.t. the maximum expansion among these is
minimized.

𝜙↓𝑘 (𝐺)= min┬𝑆↓1 ,…, 𝑆↓𝑘 ⊂𝑉, disjoint  max┬i  𝜙(𝑆↓𝑖 )  

Perron-Frobenius again

}  𝜆↓𝑘 =0	if	and	only	if	graph	has	at	
least	𝑘	connected	components.	

}  If	 𝜆↓𝑘 ≈0,	then	is	graph	close	to	
having	𝑘	components	?		

}  Is	there	a	Cheeger	inequality?	
[Trevisan]	

Cheeger’s inequality for multiple parts

Theorem.
[Lee-OveisGharan-Trevisan12; Louis-Raghavendra-Tetali-V.12]

𝜆↓𝑘 /2 ≤ 𝜙↓𝑘 (𝐺)≤𝐶√𝜆↓1.01𝑘 log 𝑘  .

}  k disjoint subsets, each with small expansion

}  Alternatively, can get (1−𝜖)𝑘 subsets with √𝜆↓𝑘 log 𝑘   
}  Usual Cheeger is the special case of k=2

Algorithm [Louis-Raghavendra-Tetali-V.’12]

1. [Spectral embedding]
Embed vertices of G using top k eigenvectors
2. [Randomized rounding]
Partition randomly into k ordered subsets
3. [Cheeger cuts]
Apply Cheeger’s algorithm to each ordered subset

∑𝑖∼𝑗↑▒‖𝑢↓𝑖 − 𝑢↓𝑗 ‖↑2  /∑𝑖∈𝑉↑▒𝑑↓𝑖 ‖𝑢↓𝑖 ‖ ↑2  ≤ 𝜆↓𝑘 

 {√𝑑↓𝑖  𝑢↓𝑖 } form an isotropic set of vectors

Spectral embedding

𝑣
↓
1
 

𝑣
↓
2
 

𝑣
↓
𝑘
 

𝑢↓1 
𝑢↓2 

𝑢↓𝑛 

…

𝑢↓𝑖 = 1/√𝑑↓𝑖   (𝑣↓1 (𝑖), 𝑣↓2 (𝑖),…, 𝑣↓𝑘 (𝑖))

Randomized rounding
}  Pick k random Gaussians: 𝑔↓1 , 𝑔↓2 ,…, 𝑔↓𝑘  ~ 𝑁(0,1)↑𝑘 

}  Project each 𝑢↓𝑖  to each 𝑔↓𝑗 .

}  Assign each i to Gaussian j that maximizes | 𝑢↓𝑖 ⋅ 𝑔↓𝑗 |, thus
partitioning the vertices into k sets.

g1

g2

gk

Outline

}  Mixture Models

}  Independent Component Analysis

}  Finding Planted Structures (subgraphs, topic models etc.)

}  Graph clustering

}  Some relevant (?) snippets from the frontlines

Representation: what is a concept?

1.  Subset of neurons, such that if more than a certain
fraction “fire”, then the concept is recognized.

2.  Distribution over neurons
3.  Activity pattern of neurons

Operations on Concepts: Join

BA

Join(A, B)

Operations on Items: Link (≈ Variable Binding)

HA
Link(A, H)

Memorization

}  Join is AND, Link is OR.

}  Valiant: Join and Link can be used to memorize binary patterns of length two
(subsets of Σ x Σ), via a short “neural” program.
}  “blue” and “water” = “ocean”

}  What about n > 2?

BA

PJoin(A, B)

Predictive Join
(with Christos Papadimitriou, 2015)

Memorization

“Learn a pattern x” 00101

=
“on sensory presentation of x,

create a top-level item I(x), which
will fire precisely on all subsequent presentations of x”

Algorithm (x)

Repeat for S steps:
 each sensory input is sensed
 with probability p
 PJoins created with probability q
 after delay D
 while existing Pjoins “do their thing”

Pjoin eligibility criteria: two items that have fired recently, with no parent that
fired since.

Presentation of a pattern

0 1 0 0 1

Second presentation

0 1 0 0 1

Other patterns: Share and build

0 0 1 0 1

Unsupervised Memorization

Theorem: Any subset of Σn of size m can be memorized whp
and with total height O(log m + log n), provided that:

 D ≥ log n, and S ≥ log n / p.

}  Any m patterns can be memorized.

Simulations

}  Patterns with up to n = 100 base features
}  all learning activity completed in < 80 steps
}  sharing as predicted
}  majority of firing traffic downwards

Learning Thresholds, neurally
(with Christos Papadimitriou & Samantha Petti, 2016)

Goal: Develop a mathematical framework to explain cognitive function

Neurally plausible = highly distributed, little synchrony, little global control

Algorithm:

Pick one of two small JOIN-LINK trees at random,
apply to a random subset of items

repeat

Thm. For any desired threshold function, there exists a distribution on two
trees s.t. later items reliably compute that threshold. (Independent of the
number of items!)

Q. Cortical microcircuits for learning?

Emergence of clustering in random graphs

}  The classical random graph model 𝐺↓𝑛,𝑝 
}  Power-law (scale-free) random graphs
}  Small-world networks

}  Don’t capture clustering coefficient: “neighbors are more
likely to be connected”

}  Random Overlapping Communities (ROC) model

Models of Connectome h connectivity?
Associations?

}  Random graph theory does not seem to suffice

}  [Song et al 2005]

p ~ 10−1

Capturing edge and triangle density
}  Impossible for any stochastic block model unless the

number of blocks grows with graph size!

 0.1 0.2 0.6 0.1

}  (e.g., for a hypercube graph)

Random Overlapping Communities (ROC)
}  A graph is built by taking the union of many relatively dense random

subgraphs.

}  Thm.[Petti-V. 2017] Any realizable clustering coefficient and degree
distribution can be approximated by a ROC random graph.

}  Higher degree vertices are in fewer triangles

Thank you!

