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Unsupervised learning 
}  Data … (imagine cool images here)… 

}  with no labels (or teachers) 
 
}  How to 

}  Understand it/find patterns in it?  
}  Make use of it?  
}  What data to collect? 

 
}  Interesting extensions:  

}  semi-supervised, interactive, lifelong learning 
 



Two high-level approaches  
1.  Clustering (grouping into similar elements) 

}  Choose objective function or other quality measure of a 
clustering 

}  Design algorithm to find (near-)optimal or good clustering(s) 
}  Check/hope that this is useful  

2.  Model fitting 
}  Hypothesize model for data  
}  Estimate parameters of model 
}  Check that parameters were unlikely to appear by chance 
}  OR (even better): find best-fit parameters (“agnostic”) 



Understanding Unsupervised Learning 
}  Needs domain knowledge and insight to define the “right” problem 

}  Theoreticians prefer generalized problems with mathematical appeal 

}  Some beautiful problems and techniques have emerged. These will be the 
focus of this talk. 

}  Many ideas/algorithms in ML are due to neuroscientists (we already saw 
some) 

}  There’s a lot more to understand! 

}  How does the brain learn?  
}  Much of it is (arguably) unsupervised  
}  (“Child, minimize sum-of-squared-distances,” is not so common) 

 



Meta-methods 
}  PCA 
}  k-means  
}  EM  
}  Gradient descent 
}  … 
 
}  Can be “used” on most data sets.  
}  But how to tell if they are effective? Or if they will converge in 

a reasonable number of steps? 

}  Do they work? When? Why? 
}  (this slide applies to supervised learning as well) 



This tutorial 

}  Mixture Models 

}  Independent Component Analysis 

}  Finding Planted Structures (subgraphs, topic models etc.) 
 
}  Graph Clustering 

}  Some relevant (?) snippets from the frontlines 

Many other interesting and widely studied models: learning discrete 
distributions, hidden Markov models, dictionaries, identifying the 
relevant (“feature”) subspace, etc. 



Mixture Models 
}  Classify unlabeled samples from a unknown mixture of 

distributions; Learn parameters of the mixture. 

 𝐹= 𝑤↓1 𝐹↓1 + 𝑤↓2 𝐹↓2 +…+𝑤↓𝑘 𝐹↓𝑘  
 
}  E.g., each component 𝐹↓𝑖  is an unknown Gaussian, an unknown 

logconcave distribution, etc.  
}  Goes back to [Pearson 1894] 

}  Classification needs components to be well-separated. 
 
}  Learning Gaussian mixtures does not: 
Thm: Gaussian mixtures are uniquely identifiable. 



Learning parameters with no assumptions 

Thm [2010]. There is a polynomial algorithm to learn a 
mixture of Gaussians up to any desired accuracy. 
[Kalai-Moitra-G.Valiant, Belkin-Sinha, Moitra-G.Valiant] 

 
}  Sample Complexity: 𝑛↑𝑓(𝑘)   
}  Lower bound: 2↑𝑘 𝑛  

}  Statistical query lower bound: 𝑛↑Ω(𝑘)  [Diakonikolas-Kane-Stewart 
2016] 

}  Could be useful for a small number of components 
 



Techniques 
}  Random Projection  

[Dasgupta] Project mixture to a low-dimensional subspace to (a) make 
Gaussians more spherical and (b) preserve pairwise mean separation 
 
[Kalai] Project mixture to a random 1-dim subspace; learn the 
parameters of the resulting 1-d mixture; do this for a set of lines to 
learn the n-dimensional mixture! 
 
More generally: useful tool to reduce dimensionality while 
approximately preserving relationships. E.g., efficient learning of robust 
concepts [Arriaga-V. 1999]   

 
}  Method of Moments 

[Pearson] Finite number of moments suffice for 1-dim Gaussians 
[Kalai-Moitra-G.Valiant] 6 moments suffice 



Clustering assuming separation 
}  A1. Pairwise separation between means. (Clustering) 

Separation: 𝑘↑1/4  ( 𝜎↓𝑖 + 𝜎↓𝑗 ) where 𝜎↓𝑖↑2  = max variance of 
component 𝑖.    
[Dasgupta, D-Schulman, Arora-Kannan, V-Wang, K.-Salmasian-V, Achlioptas-McSherry] 

 

}  A2. Each mean is separated from the span of the previous 
means.  (Clustering) 
Separation: 𝑝𝑜𝑙𝑦(𝑘). standard deviation along separating direction 
[Brubaker-V.] 

}  A3. Matrix of means has a bounded smallest singular value. This 
implies that each mean is separated from the span of the rest. 
(Learning) 
Spherical Gaussians: complexity grows as 1/poly(separation). 
[Hsu-Kakade, Goyal-V.-Xiao] 

 



Techniques 
PCA: 

}  Use PCA once  
[V.-Wang] 

}  Use PCA twice  
[Hsu-Kakade] 

}  Reweight and use PCA 
[Brubaker-V., Goyal-V.-Xiao] 



Technique: Principal Component Analysis 

Points 𝑎1…𝑎↓𝑚  𝑖𝑛 𝑅↑𝑛 .  
First principal component: line 𝑣 that minimizes the sum of squared 

distances to it, ∑𝑖↑▒𝑑(𝑎↓𝑖 ,𝑣)↑2  .   
 

Principal Components are orthogonal vectors 𝑣1…𝑣𝑛 s.t.  

𝑉𝑘 = 𝑠𝑝𝑎𝑛{𝑣1…𝑣𝑘}  minimizes ∑𝑖↑▒𝑑(𝑎↓𝑖 ,𝑉)↑2   
among all k-dim subspaces. 

 
Vk = Vk-1 + best vector orthogonal to Vk-1  
Computed via the Singular Value Decomposition. 



PCA example 
}  For a Gaussian, the principal components are the axes of 

the ellipsoidal level sets.  

v1 v2 



Why PCA? 

}  Reduces computation/space.  
(Random projection, Random sampling also reduce space)  

 

}  (sometimes) Reveals interesting structure. 



Technique: Principal Component Analysis 

}  “PCA is a mathematical tool for finding directions in which a 
distribution is stretched out.”  

}  Discussed by Euler in work on inertia of rigid bodies (1730). 

}  Principal axes identified as eigenvectors by Lagrange. 

}  Power method for finding eigenvectors published in 1929, before 
computers. 

}  Ubiquitous in practice today: 
}  Bioinformatics, Econometrics, Data mining, Computer vision, ...  

}  Hippocampus uses it! 



Distance-based classification 

Points from the same component should be closer to each other than 
those from different components. 

Unfortunately, the separation required grows with the ambient dimension. 



Algorithm 

}  Project to span of top k principal components of the 
data 

}  Apply distance-based classification in this subspace 



Clustering spherical Gaussians [VW02] 

}  Distance-based clustering:  
}  needs separation that grows as 𝑛↑1/4   

}  PCA, then cluster: 
}  Separation required grows as 𝑘↑1/4  : 

  |𝜇↓𝑖 − 𝜇↓𝑗 |> 𝑘↑1/4  (𝜎↓𝑖 + 𝜎↓𝑗 )log …  
 
}  Projection to span of means preserves inter-mean distance 

and shrinks component Gaussians.  

}  Span(means) = PCA subspace of dim k 



PCA for spherical Gaussians 

}  Best line for 1 Gaussian? 
 - Line through the mean 

 
}  Best k-subspace for 1 Gaussian? 
 - Any k-subspace through the mean 

 
}  Best k-subspace for k Gaussians? 
 - The k-subspace through all k means! 



Mixtures of Logconcave Distributions 
Thm. PCA subspace is “close” to span of means. 
 
}  Separation required for classification: 
|𝜇↓𝑖 − 𝜇↓𝑗 |>𝑝𝑜𝑙𝑦(𝑘)(𝜎↓𝑖,𝑚𝑎𝑥 + 𝜎↓𝑗,𝑚𝑎𝑥 )log …  
   where 𝜎↓𝑖,𝑚𝑎𝑥↑2   is the maximum directional variance 



K-means and PCA 
1.  Apply PCA to embed in a low-dimensional subspace 
2.  Run favorite clustering algorithm (e.g., k-means 

iteration) 

Thm. [Kannan-Kumar] Converges efficiently for k-means 
iteration under a natural pairwise separation assumption. 

}  (important to apply PCA before running k-means!) 



Limits of PCA 

}  Can fail for a mixture of 2 arbitrary Gaussians 

}  Algorithm is not affine-invariant or noise-tolerant. 
}  Any instance can be made bad by an affine 

transformation or a few “bad” points. 



Parallel pancakes 

Still separable, but algorithm does not work.	



Classifying Arbitrary Gaussian Mixtures 
}  Component Gaussians must be probabilistically separated 

for classification to be possible 
}  Q. Is this enough? 

}  Probabilistic separation is affine invariant: 

}  PCA is not affine-invariant! 



 Algorithm: Isotropic PCA 

1.  Apply affine transformation to make distribution 
isotropic, i.e., identity covariance. 

2.  Reweight points (using a spherical Gaussian). 
3.  If mean shifts, partition along this direction.         

Else, partition along top principal component. 
4.  Recurse. 



Isotropy 
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Isotropy 

}  Turns every well-separated mixture into almost 
parallel pancakes, separable along the intermean 
direction. 

•   But, PCA can no longer help!  
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Unraveling Gaussian Mixtures 
}  Isotropy pulls apart the components  
 
 

}  If some component is heavier, then reweighted mean 
shifts along a separating direction 

}  If not, reweighted principal component is along a 
separating direction 
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Affine-invariant clustering 
 
 
}  Thm.[Brubaker-V.08] The algorithm correctly classifies 

samples from a mixture of k arbitrary Gaussians if each 
one is separated from the span of the rest. (More generally, 
if the overlap is small as measured by the Fisher criterion). 

}  Q: Extend Isotropic PCA to more general mixtures 

 



Original Data  

}  40 dimensions, 15000 samples (subsampled for visualization) 
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Random Projection 
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PCA 
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Isotropic PCA 
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Learning noisy distributions/mixtures 
}  Data is mostly from a nice distribution (e.g., Gaussian or 

mixture of Gaussians) but some fraction is not. 

}  Can we learn (the parameters of) the nice distribution? 

}  Recent work:  Yes, in many interesting cases! 

}  Agnostic learning is of interest across learning theory.  



Outline 

}  Mixture Models 

}  Independent Component Analysis 

}  Finding Planted Structures (subgraphs, topic models etc.) 
 
}  Graph clustering 

}  Some relevant (?) snippets from the frontlines 



Independent Component Analysis (ICA) 



ICA model 
}  Start with a product distribution 



ICA model 
}  Apply a linear transformation A 



ICA model 
}  Observed sample 

}  Problem: Find the hidden transformation A 



ICA model 
Matrix A might include a projection  
(underdetermined ICA) 



Independent Component Analysis 
}  Model: Data is a linear transformation of an unknown 

product distribution: 
 

𝑠∈ 𝑅↑𝑚 , 𝐴∈ 𝑅↑𝑛×𝑚   data  𝑥=𝐴𝑠
     
Thm. A is unique up to signs of columns if at most one 
component 𝑠↓𝑖  is Gaussian 

}  Problem: Learn A by observing samples x.  

}  Used in ML, signal processing, neuroscience for 25+ years. 

}  Many attractive heuristics. 



Status: ICA 
}  Thm [Goyal-V.-Xiao13]. If columns of A satisfy a weak linear independence 

condition, and component distributions are Δ-far from Gaussian, then A can 
be estimated with complexity 𝑝𝑜𝑙𝑦(𝑚,Δ, 1/𝜖 ). 

}  Generalized linear independence: smallest d for which the tensors ⊗↑𝑑 
𝐴↓𝑖  are linearly independent. 

 
}  Earlier work for d=1 and special classes of distributions [FJK,NR,AGMS,AGR] 
}  Technique: Robust tensor decomposition. 
 
}  Thm[VX14]. If columns of A are linearly independent and 𝑘≤4, then sample 

complexity = 𝑂 (𝑛) and time complexity = O(SVD) 

}  Both theorems work with Gaussian noise: 𝑥=𝐴𝑠+𝜂 
}  Recent work: agnostic ICA. 



Techniques 
}  PCA  
}  finds local optima of second moments, i.e., max┬𝑢∈ 𝑅↑𝑛   𝐸((𝑢↑𝑇 𝑥)↑2 )  

}  Local optima of 4th moment. [Frieze-Jerrum-Kannan96]  
}  Works if each component differs from Gaussian in the 4th moment, e.g., uniform 

over a cube. 
}  Local optima via local search or a power iteration. [Nguyen-Regev] 

}  Tensor view: After making the samples isotropic, 
  𝐸(𝑥⊗𝑥⊗𝑥⊗𝑥)=∑𝑗↑▒(𝐸(𝑠↓𝑖↑4 )−3)𝐴↓𝑖 ⊗ 𝐴↓𝑖 ⊗ 𝐴↓𝑖 ⊗ 𝐴↓𝑖   

}  Fourier PCA [GVX13].  

}  Reweight 𝑥 with Fourier weight 𝑒↑𝑖𝑢↑𝑇 𝑥  for random unit vector 𝑢; then 
apply PCA; more generally, a robust tensor decomposition.  

}  Recursive FPCA [VX14].  
}  Partition using largest eigenvalue gap; recurse. 



Outline 

}  Mixture Models 

}  Independent Component Analysis 

}  Finding Planted Structures (subgraphs, topic models etc.) 
 
}  Graph clustering 

}  Some relevant (?) snippets from the frontlines 



Planted structures 
}  Planted clique/dense subgraph: Start with a random graph.  Add a clique of 

size 𝑘≫2log 𝑛  on some subset of k vertices.  
    Find planted clique. 

}  Planted partition: Fix a partition of vertices of a graph. Pick random edges 
with different probabilities within parts and across parts.  

    Recover planted partition. 

}  Planted assignment: Fix an assignment 𝜎 on Boolean variables. Generate a 
random formulas by picking clauses from a distribution that depends on 𝜎.  

    Recover planted assignment. 
 
}  Planted vector/subspace: Generate random points by adding a random 

vector from a fixed subspace to random (Gaussian) noise in full space.  
    Recover planted vector subspace 



Status: Planted Cliques 
}  Upper bounds: 𝑛↑𝑂(log 𝑛 )  for any 𝑘>(2+𝜖)log 𝑛  
}  Polynomial time for 𝑘>𝑐√𝑛  
    [Alon-Krivelevich-Sudakov98] 

}  Lower bound: For 𝜖>0,  𝑘= 𝑛↑0.5−𝜖 , any statistical 
algorithm has complexity 𝑛↑Ω(log 𝑛 )   

    [Grigorescu-Reyzin-Feldman-V.-Xiao13] 

}  (formally, this is for bipartite planted cliques, for which the 
same upper bounds apply) 

 
}  Q: Is there a polytime algorithm for 𝑘≪√𝑛  ? 



Techniques 
}  Combinatorial: 
}  Remove lowest degree vertex iteratively [Feige] 

 
}  Spectral: 
}  Take highest components of principal component [AKS98] 

               1                            1 
                  1/-1        =                0          +               1/-1  
 
                 A                           E(A)                         R 

Thm [Furedi-Komlos].   |𝑅|↓2 ≤(2+𝑜(1))√𝑛 . 



Status: Planted k-SAT/k-CSP 
}  Upper bound:  
    Information theoretically, 𝑂(𝑛log 𝑛)  clauses suffice. 
    Algorithmically, 𝑛↑𝑘/2 log 𝑛   clauses suffice  
     [Bogdanov-Qiao-Applebaum, Feldman-Perkins-V.14] 
    in time linear in number of clauses [FPV14]. 
     
}  Bound is 𝑛↑𝑟/2  for (r-1)-wise independent clause distributions. 
 
}  Lower bound: 
   (𝑛/log 𝑛  )↑𝑟/2  clauses for statistical algorithms.[FPV14] 
 
}  OP: Find efficient (nonstatistical) algorithm for planted SAT. 

 



Statistical Algorithms 
}  Only access to the input distribution: compute arbitrary 

functions on random samples OR estimate their 
expectations to within a given tolerance. 

 
}  For any 𝑓:𝑋→[0,1], STAT(𝜏) outputs 𝐸(𝑓(𝑥))±𝜏. [Kearns] 

}  For any 𝑓:𝑋→{0,1}, 1-STAT outputs f(x) for a random x. 

}  VSTAT(t): outputs 𝐸↓𝐷 [𝑓(𝑥)] to within the standard 
deviation of t random samples. 

 
 
}  Complexity of algorithm = number of calls to oracle.  



Can statistical algorithms detect planted 
structures? 

}  Well-known algorithms can be implemented statistically: 
}  Small/large degree 
}  Local search 
}  PCA (power iteration) 
}  Markov Chain Monte Carlo / simulated annealing 
}  Gradient descent

𝛻↓x 𝐸↓𝑢 [𝑓(𝑥,𝑢)]= 𝐸↓𝑢 [𝛻↓𝑥 𝑓(𝑥,𝑢)] 
}  Linear programs, conic programs, stochastic optimization 

}  With one notable exception: Gaussian Elimination over a 
finite field 
 
 



Detecting planted solutions 
}  Many interesting problems (e.g., sparse topics/

dictionaries) 

}  Potential for novel algorithms 

}  New computational lower bounds 

}  Open problems in both directions! 



Outline 

}  Mixture Models 

}  Independent Component Analysis 

}  Finding Planted Structures (subgraphs, topic models etc.) 
 
}  Graph clustering 

}  Some relevant (?) snippets from the frontlines 



Clustering from pairwise similarities 

Input:  
 A set of objects and a (possibly implicit) function 
on pairs of objects.  

 
Output:  
1.  A flat clustering, i.e., a partition of the set 
2.  A hierarchical clustering 
3.  A weighted list of features for each cluster 
 



Typical approaches 
}  Optimize a “natural” objective function 
}  E.g., k-means, min-sum, min-diameter etc. 

}  Axiomatic: derive from assumptions on valid solutions 

}  Using EM/local search OR  
}  a provable approximation algorithm (less common) 
 
}  Issues: quality, efficiency, validity. 
}  Many natural functions are NP-hard to optimize 



Divide and Merge 

}  Recursively partition the graph induced by the 
pairwise function to obtain a tree 

}  Find an “optimal” tree-respecting clustering 
 
Rationale: Easier to optimize over trees; 
 k-means, k-median, correlation clustering all solvable 
quickly with dynamic programming 



Divide and Merge 



How to cut? 

Min cut?   (in weighted similarity graph) 
Min expansion/conductance cut [Jerrum-Sinclair] 
 
 𝜙(𝑆)= 𝑤(𝑆,¯𝑆 )/min 𝑤(𝑆),𝑤(¯𝑆 )   
 
 
Sparsest cut  
Normalized cut [Shi-Malik 2000] 
Many applications: analysis of Markov chains, pseudorandom 

generators, error-correcting codes... 



How to cut? 
}  Min conductance/expansion is NP-hard to compute. 

}  Leighton-Rao, Linear program:  𝑂( log 𝑛 ) 

}  Arora-Rao-U. Vazirani, Semidefinite program: 𝑂(√log 𝑛  ) 

}  Fiedler cut:  Sort vertices according to component in 2nd 
eigenvector of normalized similarity matrix; take best of 𝑛−1 
cuts. 𝑂(√𝑂𝑃𝑇 ) 



Worst-case guarantees 
Assume  
}  we can efficiently find a cut of conductance 𝑎⋅ 𝑂𝑃𝑇↑𝜈   
}  There exists an (𝛼,𝜖)-clustering where each cluster has 

conductance at least 𝛼 and at most 𝜖 fraction of similarity lies 
between clusters. 

Thm [Kannan-V.-Vetta ’00]. 
 If there exists an (𝛼,𝜖)-clustering, then the recursive 
partitioning algorithm finds a clustering of quality (𝛼↑1/𝜈 /𝑎
log 𝑛  ,𝑎𝜖↑𝜈 log 𝑛 ) 

 
Cor.  Recursive spectral partitioning gives (𝛼↑2 /2log 𝑛  ,2√𝜖 

log 𝑛 ) 

 
 



Graph expansion 
}  𝐺=(𝑉,𝐸), edge weights 𝑤 
}  𝑆⊂𝑉 
                        𝜙(𝑆)= 𝑤(𝑆, 𝑆 )/min 𝑤(𝑆),   𝑤( 𝑆 )    

}  𝜙(𝐺)= min┬𝑆 𝜙(𝑆)  

}  NP-hard to compute exactly 

 
}  Admits polytime O(√log 𝑛  ) approximation [Arora-Rao-U. Vazirani] 

}  Improving on earlier O(log 𝑛)  approximation 
    [Leighton-Rao’88, Linial-London-Rabinovich,Aumann-Rabani] 



Graph eigenvalues 
}  𝐴↓𝐺 = 𝐷↑− 1/2  𝐴𝐷↑− 1/2       with 𝐷↓𝑖𝑖 = 𝑑↓𝑖 =∑𝑗↑▒

𝑤↓𝑖𝑗     
}  𝐴↓𝐺 = 1/𝑑 𝐴 for d-regular graphs

}  𝐿↓𝐺 =𝐼− 𝐴↓𝐺 	is	posi&ve	semidefinite	

}  𝜆↓1 (𝐿↓𝐺 )=0;  𝐿↓𝐺  𝐷↑1/2  𝟏=0.		

𝜆↓2 (𝐿↓𝐺 )= min┬𝑥∈ 𝑅↑𝑛 ,   𝑥⊥ 𝐷↑1/2  𝟏    𝑥↑𝑇 𝐿↓𝐺 𝑥/𝑥↑𝑇 𝑥  
= min┬𝑥∈ 𝑅↑𝑛 ,   𝑥⋅𝑑=0  ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (𝑥↓𝑖 − 𝑥↓𝑗 )↑2  /
∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖↑2    ≥0 



Perron-Frobenius 

}  𝜆↓2 =0	if	and	only	if	graph	is	
disconnected.	

}  If	 𝜆↓2 ≈0,	then	is	graph	close	to	
disconnected	?		

𝑆  

𝑆  

𝑆  

𝑆  

0	

0	



Cheeger’s Algorithm 
[Cheeger; Alon-Milman]    1/2  𝜆↓2 ≤𝜙(𝐺)≤√2𝜆↓2    

min┬𝑖  𝜙(𝑆↓𝑖 )≤ √2𝜆↓2   ,     proof via Cauchy-Schwarz 

Gives method to certify constant expansion 

x1        x2       x3  .  .  .  xi         xi+1  .  .   .   .   .    Xn 

2nd eigenvector 
of 𝐿↓𝐺   

𝑥: eigenvector of 𝐿↓𝐺  for 𝜆↓2  
 
1.  Sort 𝑥:𝑥↓1 ≤ 𝑥↓2 ≤…≤𝑥↓𝑛  
2.  Consider subsets 𝑆↓𝑖 ={𝑥↓1 ,…, 𝑥↓𝑖 } 
3.  Take 𝑆:arg min 𝜙(𝑆↓𝑖 )   
 



Cheeger’s inequality 
[Cheeger; Alon-Milman] 
      

   𝜆↓2 /2 ≤𝜙(𝐺)≤√2𝜆↓2   

 𝜆↓2 = min┬𝑥∈ 𝑅↑𝑛 ,   𝑥⋅𝑑=0  ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (𝑥↓𝑖 − 
𝑥↓𝑗 )↑2  /∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖↑2    = min┬𝑥∈ 𝑅↑𝑛   ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (
𝑥↓𝑖 − 𝑥↓𝑗 )↑2  /∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖↑2 − (∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖 ) ↑2 /∑𝑖↑▒
𝑑↓𝑖      
≤ min┬𝑥∈ {0,1}↑𝑛   ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 (𝑥↓𝑖 − 𝑥↓𝑗 )↑2  /∑𝑖↑▒𝑑↓𝑖 
𝑥↓𝑖↑2 − (∑𝑖↑▒𝑑↓𝑖 𝑥↓𝑖 ) ↑2 /∑𝑖↑▒𝑑↓𝑖      = min┬𝑆 𝑤(𝑆, 
𝑆 )𝑤(𝑉)/𝑤(𝑆)𝑤(𝑆 )  
         ≤2𝜙(𝐺) 



Soo useful and central 
Image segmentation  
data clustering  
network routing and design  
VLSI layout 
Parallel/distributed computing  
... 
 
certificate for constant edge expansion 
mixing of Markov chains 
graph partitioning 
Pseudorandomness 
… 



Multiple parts 
}  Given G=(V,E), find k disjoint subsets of vertices 𝑆↓1 , 

𝑆↓2 ,…, 𝑆↓𝑘  s.t. the maximum expansion among these is 
minimized. 

𝜙↓𝑘 (𝐺)= min┬𝑆↓1 ,…, 𝑆↓𝑘 ⊂𝑉, disjoint  max┬i   𝜙( 𝑆↓𝑖 )   



Perron-Frobenius again 

}  𝜆↓𝑘 =0	if	and	only	if	graph	has	at	
least	𝑘	connected	components.	

}  If	 𝜆↓𝑘 ≈0,	then	is	graph	close	to	
having	𝑘	components	?		

}  Is	there	a	Cheeger	inequality?	
[Trevisan]	



Cheeger’s inequality for multiple parts 

Theorem. 
[Lee-OveisGharan-Trevisan12; Louis-Raghavendra-Tetali-V.12]


𝜆↓𝑘 /2 ≤ 𝜙↓𝑘 (𝐺)≤𝐶√𝜆↓1.01𝑘 log 𝑘  . 
 

}  k disjoint subsets, each with small expansion 

}  Alternatively, can get (1−𝜖)𝑘 subsets with √𝜆↓𝑘 log 𝑘    
}  Usual Cheeger is the special case of k=2 

 
 



Algorithm [Louis-Raghavendra-Tetali-V.’12] 

1. [Spectral embedding]  
Embed vertices of G using top k eigenvectors 
2. [Randomized rounding]  
Partition randomly into k ordered subsets 
3. [Cheeger cuts]  
Apply Cheeger’s algorithm to each ordered subset 



∑𝑖∼𝑗↑▒‖𝑢↓𝑖 − 𝑢↓𝑗 ‖↑2  /∑𝑖∈𝑉↑▒𝑑↓𝑖 ‖𝑢↓𝑖 ‖ ↑2  ≤ 𝜆↓𝑘 

       {√𝑑↓𝑖  𝑢↓𝑖 } form an isotropic set of vectors 

  

Spectral embedding 

  
𝑣
↓
1
  

  
𝑣
↓
2
  

 
𝑣
↓
𝑘
   

𝑢↓1  
𝑢↓2  
 
 
 
 
 

𝑢↓𝑛  

… 

𝑢↓𝑖 = 1/√𝑑↓𝑖   ( 𝑣↓1 (𝑖), 𝑣↓2 (𝑖),…, 𝑣↓𝑘 (𝑖)) 



Randomized rounding 
}  Pick k random Gaussians:  𝑔↓1 , 𝑔↓2 ,…, 𝑔↓𝑘  ~ 𝑁(0,1)↑𝑘  

}  Project each 𝑢↓𝑖  to each 𝑔↓𝑗 . 

 

}  Assign each i to Gaussian j that maximizes | 𝑢↓𝑖 ⋅ 𝑔↓𝑗 |, thus 
partitioning the  vertices into k sets. 

  
 
 

g1 

g2 

gk 



Outline 

}  Mixture Models 

}  Independent Component Analysis 

}  Finding Planted Structures (subgraphs, topic models etc.) 
 
}  Graph clustering 

}  Some relevant (?) snippets from the frontlines 



Representation: what is a concept? 

1.  Subset of neurons, such that if more than a certain 
fraction “fire”, then the concept is recognized. 

2.  Distribution over neurons 
3.  Activity pattern of neurons 

  



Operations on Concepts: Join 

BA 

Join(A, B) 



Operations on Items: Link   (≈ Variable Binding) 

HA 
Link(A, H) 



Memorization 

 
}  Join is AND,  Link is OR. 

}  Valiant: Join and Link can be used to memorize binary patterns of length two 
(subsets of Σ x Σ), via a short “neural” program. 
}  “blue” and “water” = “ocean” 
 

}  What about n > 2?  



BA 

PJoin(A, B) 

Predictive Join  
(with Christos Papadimitriou, 2015)                     



Memorization 

 
“Learn a pattern x” 00101  

=  
“on sensory presentation of x, 

create a top-level item I(x), which  
will fire precisely on all subsequent presentations of x” 



Algorithm (x) 

Repeat for S steps: 
 each sensory input is sensed  
  with probability p 
 PJoins created with probability q 
 after delay D 
 while existing Pjoins “do their thing” 

 
 
Pjoin eligibility criteria: two items that have fired recently, with no parent that 
fired since. 



Presentation of a pattern 

0 1 0 0 1



Second presentation 

0 1 0 0 1



Other patterns: Share and build 

0 0 1 0 1



Unsupervised Memorization 

 

Theorem:  Any subset of Σn of size m can be memorized whp 
and with total height O(log m + log n), provided that: 

 D ≥ log n, and S ≥ log n / p. 
 

}  Any m patterns can be memorized. 
 
 



Simulations 

}  Patterns with up to n = 100 base features 
}  all learning activity completed in < 80 steps 
}  sharing as predicted 
}  majority of firing traffic downwards 



Learning Thresholds, neurally 
(with Christos Papadimitriou & Samantha Petti, 2016) 

 
Goal: Develop a mathematical framework to explain cognitive function 
 
Neurally plausible = highly distributed, little synchrony, little global control 
 
Algorithm:  

Pick one of two small JOIN-LINK trees at random,  
apply to a random subset of items 

repeat 
 
Thm.  For any desired threshold function, there exists a distribution on two 
trees s.t. later items reliably compute that threshold.  (Independent of the 
number of items!) 
  
Q. Cortical microcircuits for learning?  



Emergence of clustering in random graphs 

}  The classical random graph model 𝐺↓𝑛,𝑝   
}  Power-law (scale-free) random graphs 
}  Small-world networks 

}  Don’t capture clustering coefficient: “neighbors are more 
likely to be connected” 

}  Random Overlapping Communities (ROC) model 



Models of Connectome h connectivity? 
Associations? 

}  Random graph theory does not seem to suffice 
 
 
}  [Song et al 2005] 
  

p ~ 10−1 



Capturing edge and triangle density  
}  Impossible for any stochastic block model unless the 

number of blocks grows with graph size! 

                     0.1 0.2   0.6            0.1 

}  (e.g., for a hypercube graph) 



Random Overlapping Communities (ROC)  
}  A graph is built by taking the union of many relatively dense random 

subgraphs. 

}  Thm.[Petti-V. 2017] Any realizable clustering coefficient and degree 
distribution can be approximated by a ROC random graph. 

}  Higher degree vertices are in fewer triangles 



Thank you! 
 
 


