The brain and body compute together:
neuromechanics of sensorimotor control

Neuro 3 |
& Lena H.Ting, PhD
Q{,\"\b Iting@emory.edu
Q
< Mechanics
S
Georgia | Department of Biomedical Engineering EMORY

Tech || atceorgia Tech and Emory University UNIVERSITY



Multiscale neuromechanical interactions
across motor, mood, mental disorders
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General principles about neuromechanical
interactions that shape how we move




What determines the way we move!

neurobiologist

Neural Control ’

biomechanist

Chiel, Ting, Ekeberg, Hartmann, Journal of Neuroscience 2009

P
Musculoskeletal

mechanics




Neuroscience perspective

Neural control is hard, mechanics is trivial

“The brain tells the body what to do”

Decision
(cortex: move?) cortex
T ————————— e A > v
e . task  _ | brainstem
command v
(brainstem: tonic) | spinal cord

e

execution

command
(spinal cord: rhythmic)

C Neonatal rat preparation

NMDA + 5HT

...sensory feedback

and spinal reflexes too
Sherrington 1906

Graham-Brown ~1910 . *E'



Biomechanics perspective

Mechanics is hard, control is trivial
(“and therefore not interesting” — Andy Ruina)
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Newton’s | skeleton
. . . laws
McGeer 1990; Collins, Wisse, Ruina 2005 J tissues
Passive dynamic walking requires almost gravity
no energy expenditure environment




Neuromechanics perspective
Neuromechanical interactions produce

characteristic and constrained motions
“Why can we recognize people by the way they walk?” — me

Preferred patterns
of joint torque

Passive \
i & mechanical —— Joint torque
n % roperties
Synthesize ‘| prop v

5 skeleton
Liu, Hertzmann, Popovic 2005 v

tissues
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Walking simulations based on preferred patterns of joint

torque also improve joint force predictions in patients
Walter .... Fregly 2014 . Biomech Eng

\ 4

environment




VIEWPOINT

The brain has a body: adaptive behavior
emerges from interactions of nervous
system, body and environment  Trends in Neuroscience 1997

Hillel J. Chiel and Randall D. Beer

>
Brain - neuromechanist . Body +
b Environment

. Neuromechanically

. . e Individual solutions
feasible solutions

Similar network activity from disparate circuit

para meters A B
AB/PD F ' ﬁ. ,ﬂ 1
Astrid A Prinz, Dirk Bucher & Eve Marder J ’,V,' J \
Nature Neuroscience 2004 LR R
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Failure of Averaging in the Construction of a Conductance-Based

Neuron Model
J Neurophysiology 2002

JORGE GOLOWASCH,'! MARK S. GOLDMAN,'* L. F. ABBOTT,' AND EVE MARDER'

after Ting and McKay Current Opinion in Neurobiology 2007; Tresch and Jarc Current Opinion in Neurobioogy 2009



The Journal of Experimental Biology 202, 3325-3332 (1999)

TEMPLATES AND ANCHORS: NEUROMECHANICAL HYPOTHESES OF LEGGED

LOCOMOTION ON LAND

R.J. FULLYM anp D. E. KODITSCHEK?

SIX-Legged Common template
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FOUR-legged

Marc Raibert MIT Leg Lab 1980s



Principles of hierarchal and modular
sensorimotor control for robustness and
flexibility leading to individuality

Motor Descending Possible
Modules Commands Biomechanical
Functions

r: weight acceptance
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Ting et al. Neuron, 2015
Ting and McKay Current Opinion in Neurobiology 2008



Brain and computation bootcamp:
Why movement matters

Sensorimotor control as the canonical decision-
making process

— How to rapidly and robustly achieve behavioral goals by
coordinating the same motor apparatus in different ways!?

Hierarchichal and distributed mechanisms for
sensorimotor control

— Parallel reflex, automatic, and voluntary control allow
computation on increasingly abstract goals

Neuromechanical principles for movement

— Modularity to deal with redundancy, facilitate robustness,
flexibility, and learning, leading to individual differences
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coordinating the same motor apparatus in different ways!?



Why do we have brains!?
To interact with the world, i.e. move

Motor and cognitive decision-
making toward goals :

— Interpret ambiguous sensory data
— Coordinate body parts

— Weigh cost and criteria

— Adapt to behavioral contexts

Costs and constraints are

physical in movement Viagan A
Neurons: costly and slow o Dan Wolpert

Cognitive, emotional, and other
brain functions support
movement

— Side note: enteric nervous system,
i.e. “little brain”

~|00 neurons <100 neurons
tunicate larvae adult tunicate



Neuron
Cell°ress 20 | 7

Neuroscience Needs Behavior:
Correcting a Reductionist Bias

John W. Krakauer,'* Asif A. Ghazanfar,? Alex Gomez-Marin,® Malcolm A. Maclver,* and David Poeppel®:®

LEVELS * What is the brain
Computation [ why (problem) trying to do!?
* What are the

Algorithm what (rules) ) i
organizational
Implementation | 3 | how (physical) PI"iI‘lCiP|€S?
* What mechanisms

flapping '
are available?

* How are they
coordinated to
i A?
Marr 1982/2010 produce behavior!

feathers flight




Example of “simple” motor decision
Frog spinal cord wiping reflex

 Task/problem: wipe skin
— Abstract, goal-directed

??I 2

 Implementation:

— Multiple movement patterns

achieve the same task
Leg wipes the irritated area regardless of
starting position

Hold one leg down activates the other

— Within a movement: Repetition

without repetition .
Bernstein 1968, Algorithm [[7277 what (rules)

Emilio Bizzi et al MIT

LEVELS

Computation [} why (problem)

Implementation | how (physical)



Example of “simple” motor decision
Cockroach running

/

 Task/problem: run!
— Abstract, goal-directed

??I 2

 Implementation:

— Multiple movement patterns
achieve the same task

Tripod gait pattern . Bob Full UC Berkeley
Remove legs: switches to diagonal pattern LEVELS

Computation [l why (problem)

— Within a movement: Repetition

without repetition

Bernstein 1968, Algorithm what (rules)

Implementation 3 how (physical)




NIPS 2017: Learning to Run

Reinforcement learning environments with musculoskeletal models

NIPS -
cular Biomechanics Laboratory

By Stanford Neuromus

A toolkit for developing and

comparing reinforcement 0
. . 2 1 7 Completed f6'761 . o
learning algorithms. It

www.Bandicam.co.kr

P ~  Our bodies are multifunctional,

| requiring complex neural control

* The same system is reconfigured
for walking, running, dancing...

QWOP http://www.foddy.net/Athletics.html

Reinforcement learning using neuroevolution of augmented
topologies (NEAT); Unpublished, van de Woue, de Groote

fiews Participants Submissions



* No cortex
 Half a brainstem
* Lived for years

http://www.miketheheadlesschicken.org



Brain and computation bootcamp:
Why movement matters

e Sensorimotor control as the canonical decision-
making process

— How to rapidly and robustly achieve behavioral goals by
coordinating the same motor apparatus in different ways!?

 Hierarchichal and distributed mechanisms for
sensorimotor control

— Parallel reflex, automatic, and voluntary control allow
computation on increasingly abstract goals



Neural control of movement is hierarchical

ga—
-

~

 Broadly, three categories of movement; ~[T72  SOrteX
R av. VY
— Reflexive (spinal cord) | brainstem
Tendon-tap reflex, withdrawal reflex N V¥
— Automatic/Rhythmic (brainstem) spinal cord
Locomotion, breathing, balance
Sensory
— Voluntary (cortex) - P
Reaching, talking, manipulating objects

* But all voluntary movement requires

coordinated automatic and reflex

neural control




Speed is of the essence:
Increasingly complex actions with time

quiet standing \ '  cortex
— passive response & sensory encoding | by bra“:’stem
—short-latency (spinal / local variables) Ty
— long-latency (brainstem / task variables) spinal cord
I 17 step transition (cortex / “decision’) —
Ly < Sensory

receptors

Force__/\’/\/_\

/

T 100 200
ms ms

perturbation




Spinal reflexes rapidly transform sensory
information into meaningful motor outputs

Stretch reflex

N
L \ Sensory
\ neuron N
Spinal
cord

Muscle \
Quadriceps spindle \\
(extensor) = O

Inhibitory
interneuron

Extensor Flexor
motor motor
neuron neuron
(activated)  (inhibited)

Flexion reflex

Spinal cord Ascending pathways
\ to brain
>

Gray
maﬁer} Spinal

&5 White [ cord
matter
AN N

| .
L]\ ) '\\ |
f \ lll >
Nociceptor )' /.),f "‘\\ | ]
! \‘ I"-‘.,_\
xf‘ ) 3 '..l

¥
Painful
stimulus

=
—

‘ Extensors contract as
'\, weight shifts to left leg
Flexors contract, ' \
moving foot away ' ' } Flexors inhibited
from painful stimulus A |

&

Spinal reflexes are modulated by context, adaptation, emotion,

movement, cognitive tasks....



Oscillations in the spinal cord are activated
by tonic brainstem activity

Spinal central pattern __
generator (CPG) Cmead e

A Transection of spinal cord

Cerebral hemisphere

. 1
3 Mesencephalic b

Lzz?gotor Nerves to.vforelimbs Nerves to hind limbs
* Increased stimulation intensity
increases the frequency of

oscillation

Brainstem mesencephlic
locomotor region (MLR)

activates the CPG
* Higher centers need not modulate

Principles of Neural Science, 4 ed. KS&) 37-1 fine details of movement



Gaits emerge from neuromechanical interactions

Decerebrate cat on treadmill
T. Graham Brown, ca 1920

From Swimming to Walking with a
Salamander Robot Driven by a
Spinal Cord Model Science 2007

Auke Jan ljspeert,’* Alessandro Crespi," Dimitri Ryczko,”” Jean-Marie Cabelguen™’



Descending signals from cortex initiate &
modify the locomotor pattern

Record motor cortex

Brain stem Adi
pinuclei  —— djustment__

Activation=——__ /A
| guidance

MR

Visua

c 0

58
:;39,
%<

EMGs

f * Motor cortex is activated when

[ stepping over obstacles

* Activity is additive to steady-state
locomotor pattern

Trevor' Drew UMontreaI Principles of Neural SCience, 4th ed. KS&J 37-1



Corticospinal neurons project to multiple
levels of the sensorimotor hierarchy

€ Corticofugal; subcerebral projection neurons

Corticospinal projections
to motorneurons are I/ “'—'V—:_-«---»-_

\
mostly indirect and diffuse Vi

“Old M1” 5 “New M1”

G%tral Su%dal

g&
I Corticospinal neurons have collaterals to
<~ striatum, red nucleus, caudal pons, medulla

(these areas also have motor maps)

N/

@ Corticotectal neurons (layer V)

O Corticopontine neurons (layer V)
@ Corticospinal motor neurons (layer V)

Rathelot and Strick PNAS 2009 Molyneaux et al Nature Reviews Neuroscience 2007



What is the function of the
cortex in sensorimotor control?

Toe




AP What is the function of the
% /\ cortex in sensorimotor control?

Torso Hand Arm Toe Leg

Kohonen network  Aflalo and Graziano, | Neuroscience 2006

e . Possible Origins of the Complex Topographic Organization
map for mu Itijoint of Motor Cortex: Reduction of a Multidimensional Space
coordination? onto a Two-Dimensional Array

Review: Graziano The Neuroscientist 2007

Behaviorally-driven
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cortex in sensorimotor control?

Torso

Hand

Arm

Toe

Leg

Behaviorally-driven Kohonen network

Aflalo and Graziano, | Neuroscience 2006
f ltiioi Possible Origins of the Complex Topographic Organization

map tor muitijoint of Motor Cortex: Reduction of a Multidimensional Space

coordination? onto a Two-Dimensional Array

Review: Graziano The Neuroscientist 2007

NeurOn 2015 Kawai, Markman...Olveczky
Motor Cortex Is Required for Learning but Not for
Executing a Motor Skill

Tutor for learning

new movements!?

Corticospinal system sculpts and modulate subcortical excitability



Brain and computation bootcamp:
Why movement matters

e Sensorimotor control as the canonical decision-
making process

— How to rapidly and robustly achieve behavioral goals by
coordinating the same motor apparatus in different ways!?

 Hierarchichal and distributed mechanisms for
sensorimotor control

— Parallel reflex, automatic, and voluntary control allow
computation on increasingly abstract goals



Brain and computation bootcamp:
Why movement matters
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Hierarchichal and distributed mechanisms for
sensorimotor control

— Parallel reflex, automatic, and voluntary control allow
computation on increasingly abstract goals

Neuromechanical principles for movement

— Modularity to deal with redundancy, facilitate robustness,
flexibility, and learning, leading to individual differences



Balance control: intention versus implementation
Common goals, different execution strategies

 Common goal: Maintain CoM over BoS
* Different implementation: EMG, biomechanics

* No one-to-one mapping between task-level and
execution-level variables

1. Disturbance 2. Falling 3. Response 1 Surface moves 2 Falling 3 Recovery

) ._>:Q
P (« ==

Macpherson & Horak Ch 39 Fig 2

I

g

Kandell et al, Principles of Neuroscience, V ed, in press

|



Reactive balance: activation of muscles is
specific to direction of perturbation

A Backward perturbation Forward perturbation

) Automatic postural response
perturbation onset

paraspinals __NWWM Ao
abdominals ~ _J/\/\/\/\w,\,
hamstrings W *
quadriceps _.____./MMMM _‘MM
gastrocnemius ___J\M : SN A
tibialis anterior : P /"\/\/\/\M
e 0 025 05 075 15 umiemmenm 0 025 0.5 075 1s
— —>

*Different muscles activated for forward and backward
perturbations

*Not co-contraction of all muscles

*Spinal response (50 ms), brainstem response (100 ms), voluntary
response (>250 ms)

After Horak and Macpherson, Handbook of Physiology 1996



Muscle tuning curves illustrate
complex spatial patterning at a single time point

A Backward perturbation Forward perturbation

) Automatic postural response
perturbation onset

paraspinals _____/\’\j\'\""""\f""\""-'\’" i
abdominals E ~ _,_/\/\'\/\/\M
hamstrings W %
quadriceps W\M _,_//L"‘"""\/\vv\-\_a.«.
gastrocnemius W’A’ TPV .. SN
tibialis anterior — P /"\/\/\/M
/S 0 025 05 075 15 mumismsm 0 025 05 075 Ts
— —>
B Multidirectional perturbation muscle tuning curves
forward
90° forward backward forward backward

paraspinals N/I\/\ abdominals j |
| | |
| ; | |
hamstrings AZ: I N quadriceps J\-’i\—t
|
|
|

I
|
gastrocnemius ! /\ tibialis anterior !

0 90 180 270 360 180 270 360

270°
backward perturbation direction (deg) perturbatlon direction (deg)

After Horak and Macpherson, Handbook of Physiology 1996



Motor modules, a.k.a. muscle synergies,
reveal structure in EMG patterns

muscle 1 muscle 2 muscle 3

Independent 1
muscle activation!? om "\
0 180 360 O 180 360 O 180 360
perturbation direction (deg)

Ting, Progress in Brain Research 2007, Chvatal and Ting 2010




Motor modules define time synchronous
co-activation of muscles

Neural Command
Direction-dependent G

1
command signal J\

e.g.“push I"ight” 0 180 360

perturbation direction (deg)

Synergy W,
Motor module: I -
relative excitation —

of motor pool

muscle 1 muscle 2 muscle 3

Independent
muscle activation?

0 180 360 O 180 360 O 180 360
perturbation direction (deg)

Ting, Progress in Brain Research 2007, Chvatal and Ting 2010



Muscles participate in multiple motor modules

Neural Command AND Neural Command
Direction-dependent & G

1 ¢ h f d”
command signal J\ /\ push torwar

e.g.“push I"ight” 0 180 360 0 180 360

perturbation direction (deg)

' '

Synergy W, Synergy W,
Motor module; I .
. o | - [ ]
relative excitation

of motor pool

muscle 1 muscle 2 muscle 3

Independent

muscle activation!? I é \ Q \EL_ éx
360 0 180 360 0
perturbation direction (deg)

Ting, Progress in Brain Research 2007, Chvatal and Tlng 2010




Motor modules reflect functional co-activation of
muscles underlying variable motor patterns

Neural Command AND Neural Command
G G

J\ -—./\ “push forward”

0 180 360 0 180 360
perturbation direction (deg)

J )

Synergy W, Synergy W,

Motor modules .
e . " — - — . -
library of actions I "

=

1

“push right”

Non-negative matrix

factorization (NMF):
Tresch et al. 1999
Lee and Seung 1999

muscle 1 muscle 2 muscle 3 .
Tutorial, code, and why |

Weighted sum of
Motor modules ‘ é ! ‘ / \ l @ don’t like PCA:
Ting and Chvatal 2010
360 0 180 360 0

perturbation direction (deg)

Ting, Progress in Brain Research 2007, Chvatal and Tlng 2010




Structure: Motor module recruitment is
correlated to an endpoint force vector

Motor module Activation level R
0 jﬂﬂmm

ol J

ST F @
NI R

—
—

nt, ¢
o

o -y
ynergy recruitme
®
o

Muscle weights, w;

Muscle s
)

.

0 90 180 270 360
Perturbation direction (deg)

* Motor modules are predicted by energetic optimization
Steele et al. 2013; deGroote et al. 2014; Todorov and Jordan 2002

Ting and Macpherson, | Neurophysiology 2005; Torres-Oviedo, Macpherson, Ting, | Neurophysiology 2006



Individuality: each individual expresses a
particular motor structure

1

LA
Rt
S 3
R
3
3
5
‘V
\)
D
>'P,

S<ooSOn Qs = AnsO-<o AasSOR< 0 180 360
SASSser  cREniessgE pEERsileszo Perturbation Direction (deg)
NNOODXSOONDS=n NhNnOOAESONDLIV HhnOOOE>SO0now= erturbation Direction (aeg

L L 0
j \I? } (|1_5N ‘15' 02N

* Motor modules are consistent across different biomechanical
configurations and tasks in cats and humans
* People prefer habitual rather than optimal solutions

Torres-Oviedo, Macpherson, Ting, INP 2006; humans: Torres-Oveido and Ting NP 2010; Chvatal and Ting 2013



Multifunctionality: Motor modules
reveal hidden coordination between muscles

== Synergy 3 contribution
Synergy 4 contribution

i
I III II' " ILPS " GLUT
Ct 0 = 0 A A
1
I II| III 1 STEN [ RFEM
= C2 . o,
1 C: 1 1
BFMP BFMA
0 C3 0 | _ - ¢ \_
1H|HHI:| H |:|H 1 VINT 11 SEMP
| l 1 l C4 OM OM
180 0 90 180 270 360 0 90 180 270 360
S <S<op<oz<oo w Perturbation directions (deg)
|_ Z W
EEZEEEEBEEEEEE’ = QOriginal EMG - Synergy 1 contribution
2rSnnccCannnnic 20 270 g ynergy
i | | ] %& = = = Reconstructed EMG === Synergy 2 contribution
0

* Additive nature is a hard constraint on feasible coordination space

Ting and Macpherson, | Neurophys 2005; Torres-Oviedo et al. 2006;



Variability: Trial by trial differences in muscle
activity are not random

90°
displacement (cm)
12 ’
1800%'@ 0°
270° 0 /
; '[Ime
Muscle Synergies (W) Synergy Coeﬁnments
1 T APR1
W]1 C1 ; :
|II I B ,,s' |
0 YTLI FLI
1 W2 Co l _
O —
1| W ca Averaglng
0 . ailli
1I W4 C4
Q 5......||i|'.,
W5 II Cs :
; ,!il /
0 §||c|' |,||
! IW6I I I Ce ;
0 OBepn "" ,.!!i. —

om [t E |_D

< §§ g:< (DOU-' L
Lui<u.1u.liu.u.1<5< 520
o:l—l—ummcto.E_nuJuJ(D>>w
L vt g

Flex Biarticular Ext

0 180 360
Perturbation dlrectlons (deg)

Torres-Oviedo and Ting, | Neurophysiology 2007

“repetition without repetition” — Bernstein 1969

* Ankle and hip
strategy are
implemented by
different motor
modules

* Trial by trial
variations reflect
flexible
recruitment of
motor modules
based on task
demands and
adaptation



Generalization: common motor modules
aCross motor tasks

Young able-bodied

individual e Common modules for:

Balance _ Walking — Walking, perturbation to walking,
anticipatory stiffening of leg,
reactive balance with feet in
place, reactive stepping

* Motor modules may be the

lowest level of motor
organization and recruited by
spinal, brainstem, and cortical
mechanisms

Motor modules ,Q
Shared across
Reactive Balance |

. e Motor module recruitment
and Walking

reflects desired CoM motion

support surface
perturbation

Chvatal et al, /| Neurophysiology 201 |; Chvatal and Ting | Neurosci 2012; Frontiers in Comp Neuro 2013
Safavynia and Ting | Neurophysiology 2013 ab



Learning: Motor modules are shared across

nominal and challenging tasks in dancers
Shared modules

* We select “good enough” or “slop- B. Wide and Overground
timal” solutions to achieve multiple goals
with adequate efficiency 10

75

50

% Shared

* Motor modules change with

development and training Dominici et al 2011, 25
Kargo and Giszter 2003 0
. . Experts Novices

* Learning a more challenging task may A. Narrow and Overground
involve refining existing motor modules p=0010
Gentner et al 2010 100 | eese o

* Training may expand the range of tasks L 75 8
performed with a set of modules, altering S 50 5
nominal task performance 2

0
Experts Novices

Sawers, Allen, and Ting, Journal of Neurophysiology 2015;Allen, Sawers Mckay Hackney, Ting, Journal of Neurophysiology 2017



Versatility suggests a mechanism of backward-

compatibility for learning new skills

Consistent with changes in early
skill learning'-

1 1 * Modify existing rather than create
o II . =~ II - new muscle patterns
Muscle Synergy A' Muscle Synergy A
Learned . C . ith C C
' Behavior onsistent with Common Core
y ‘ Modified to meet i34
Suffigient d I 4 \ Backward /A biomechanical Hypothe5|s
to meet demands |‘ \ © o / demands of ne ° 1 H 1
of old behavior / Compatibility ~ J§) demands of now Sharesl spinal circuits between
~ practice behaviors
New
Behavior . .«
1 * Neural constraint on learning
. lI al * What can be learned and the rate
Muscle Synergy A' at which it is learned

9

e Basis for “The Natura

Differences in rehabilitation outcome

1. Kargo and Nitz, 2003 2. Nudo et al, 1996 3. Zehr 2005 4. Zehr et al, 2007 5. Sadtler et al., 2014



Motor modules: individual-specific solutions
for similar movements

e Control points to transform motor goals into muscle
activity throughout the nervous system

— Re-re-representations of movements, “just as many chords,
musical expressions. and tunes can be made out of a few
notes’’ Hughlings-Jackson 1889

— Motor cortex Overduin et al 2012, Rathelot and Strick 2009, Krouchev 2006, Kargo and Giszter
2003, Holdefer and Miller 2002

— Brainstem Joshua and Lisberger 2014, Riddle and Baker 2010
— Spinal cord saltiel et al 1991, Hart and Giszter 2010

* A stored repertoire of available motor actions,
facilitating rapid adaptation and flexible motor behavior
without regard for low-level biomechanics

* A necessary concept for understanding motor
variability and changes with development, evolution,
training, and disease

Ting and McKay, Current Opinion in Neurobiology 2007; Ting, et al. Neuron 2015



Structure of muscle coordination pattern
reflect neural sensorimotor processes

Neural control . )
;  Hierarchical
Sénsorimotor  optimal control

of abstract arrangement of

transformation | .
i moer9oas temporal and spatial
QN structure similar to
locomotion
n | -level \ o
— (O b\ |\ |/ —_ | * Temporal structure
execution-level
- reflects goal-level
Sensory emergent kinetics Motor
input and kinematics outplit Contl"ol
. * Spatial structure for
R—— D E— muscle and multi-joint
Temporal & . .
spatial coordination
Biomechanics  complexity

Ting and McKay, Curr Op in Neurobiol 2007; Chiel et al. | Neuorsci 2009 ;Ting et al. Int ] Numer Method Biomed Eng 2012



Variations in recruitment of motor modules
account for cycle-by-cycle variations in walking

Processed EMG Motor Modules Reconstructed EMG

"NMAMAN WYYy

SO (\ /\ c Muscle weightings Activation timing profile L so c ! :

i MG “ { S (S
[terative

-AAM VM&ALA—‘
@ § RF&AMM
Opimization M= \ [

LH

MH j_-.JIL L‘A—AL[ MH
5 TA SOMGVMRF LHMHGM L_l u !u
GM/\M """"""""""""""""""""""""""""""""""""""""""""""""""" GM{X zg zg |

Averaging

4
Pee

T

my)
M
Module 4 Module3 Module2 Module 1

Clark, Ting, Neptune, Zajac, Kautz | Neurophysiology, 2010 McGowan, Neptune, Clark, Kautz, | Biomechanics , 2010



Delayed sensorimotor feedback of
CoM acceleration, velocity, and displacement

x(1)
oot
Musculoskeletal o) Sensory
system h feedback
. Q predicted pendulum
7,",9,‘, =mhd(t) . S resultant torque nvertad Ikinematicsu :
.perturbation h > pendulum X p
torque muscular Q 9 9 il=1v
torque X a
—— — 1/ muscle comm
> % e dynamics time decl)a?y &(1—1)
d(t) Iy
perturbation feedback gains
acceleration h’ Ne rvous
Muscle hy kv kol

reconstructed muscle

activation activation

delayed kinematics S)’Stem

Temporal EMG Prediction ' EMG Recorded r
jee_ EMG Simulated (Optimal) k,{TZ\ifz.' [I / ('\JQ'\‘”WJ)(“*Q.x(”}
0

Energy and performance tradeoff
Lockhart and Ting, Nature Neuroscience 2007, Welch and Ting, | Neurophysiology 2008, 2009, Safavynia and Ting 2011, 2013



Delayed sensorimotor feedback of
CoM acceleration, velocity, and displacement

x(1)
oot
Musculoskeletal o) Sensory
system h feedback
- Q dicted dul
7;,9,&: mhd(t) resultant torque inverted P Ilfi:err?:t?csu o
.perturbation h pendulum X p
torque muscular GIONe) x[=1]v
torque X a
—— A muscle
e T e " dynamics ticr:wc::(rir;cl);y d(t—2)
d(t) Iy
perturbation feedback gains
acceleration m Nervous
Muscle ky ko kol
. . reconstructed muscle delayed kinematics SYStem
activation activation

Lockhart and Ting, Nature Neuroscience 2007, Welch and Ting, | Neurophysiology 2008, 2009, Safavynia and Ting 2011, 2013




Delayed sensorimotor feedback of
CoM acceleration, velocity, and displacement

x(?)
i
Musculoskeletal o) Sensory
system h feedback
- . predicted pendulum
Ee&: mhd(1) S resultant torque inverted Ikinemaﬁcsu '
.perturbation h > pendulum x p
torque muscular ONONe) x|=|v
torque X a
—— — 1/ muscle
—_— % e dynamics ti?r?: g;?:y S(f _7‘) P o ecusbarcn drecson
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Energy and performance tradeoff
Lockhart and Ting, Nature Neuroscience 2007, Welch and Ting, | Neurophysiology 2008, 2009, Safavynia and Ting 2011, 2013




Variations in feedback gains can characterize
changes in adaptation and individual differences

Trials 1-3
. recorded
— optimal

TA

* Reduction in feedback gains
over repeated perturbations

* Similar CoM displacement

Trials 13-15

* Tradeoff between
performance and effort

* Parameter variation within a
low dimensional space may
speed adaptation

Trials 28-30

0 500 1000
Time (ms)

Welch and Ting, in review



Common neural principles and mechanisms for

interacting with the environment

Tradeoffs in . Tradeoffs in
d Sparse representation
performance an performance and

ene rgetics Neural representation and control ene rgeti csS
. ( hierarchal selection and modulation
estimated sensorsyp jgﬁmotor | | desired motor
sensory events [ . -  outputs :
convergence rensory representations motor | dive rgence
binding binding
| sensory receptors motoneurons
correlated correlated
inputs L E— outputs
Biomechanical interactions with environment

Environmental interactions

Ting and McKay, Current Opinion in Neurobiology 2007; Chiel et al. | Neuorsci 2009 ;Ting et al. INMBME 2012



Muscle synergies specify meaningful
relationships between muscles

The same muscles are reconfigured to produce actions

The number of meaningful actions that we can make exceed the
number of muscles

2" combination of muscles considering only binary state
Muscle synergies are like a musical chords

— there are more possible chords than notes

— classes of chords that convey certain emotions

— each composition uses a limited number of chords
— combinations of chords might have meaning

— there are atonal or “discordant” chords

— each composer tends to choose certain chords and chord
combinations over others, creating an individualized signature



Characteristic and constrained motions in individuals
emerge from neuromechanical interactions

< Environment

>
Brain - neuromechanist - Body +

Principle of slop-timality
Improve performance & reduce energy expenditure
plus other ancillary goals

. Neuromechanically Finite building Modularity
feasible solutions W e.g. muscle synergies,
e Individual solutions Constrained In health?l 3 |
Motor Function neurally impaired
individuals

Ting and McKay Current Op. in Neurobiology 2007; Tresch and Jarc Current Op. in Neurobiology 2009;Ting et al. Neuron 2015



Need for motor modularity emerge from
neuromechanical redundancy and complexity

« Motor structure — effect of biomechanics
— Almost no biomechanical bounds on muscle activity in walking

« Motor abundance — many solutions to the same task
— Different motor modules have equivalent function
 Motor variability — repetition without repetition
— Variations at the level of motor module recruitment

« Multifunctionality — the same muscles are reconfigured
to create the whole motor repertoire

— There must be more motor modules than muscles

 Motor individuality —Individual-specific motor modules
may be shaped by evolution, development, and experience

— You say “to-may-to” and | say “to-mah-to”
De Rugy et al 2012, Ganesh et al 2010, Kuhl 2004

Slop-timal, not optimal
Ting et al. Neuron 86:38-54 2015



Hierarchy and modularity facilitate fast and
robust adaptation and learning

modular problem evolutionary process non-modular networks
pixels for left pixels for right
subproblem subproblem

In new environment
selection on .
T~ performance alone slow adaptation
retina L

evolutionary process

n
Rl B —
" variation
SN '/,})'

\ NN

selection on
performance and
connection costs

v
eﬁ ®

\‘. ‘l;‘/{_"

)
'

fast adaptation

H variation modular networks

PROCEEDINGS - The evolutionary origins of modularity Generalization in vision

THE ROYALI
SOCIETY

Jeff Clune'2!, Jean-Baptiste Mouret>' and Hod Lipson’ and motor Contr0|
2013

T ' & E Bizzi'?
omaso Pogglo’ & Emillo Bzt Nature 2004

* Includes performance and connection costs
* Applicable over multiple timescales

Individual “slop-timal” biases in decision-making
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Neuroscience Needs Behavior:
Correcting a Reductionist Bias

Neuron

2017

John W. Krakauer,'* Asif A. Ghazanfar,? Alex Gomez-Marin,® Malcolm A. Maclver,* and David Poeppel®:®

LEVELS

Computation [ why (problem)

Algorithm 2 what (rules)

Implementation 3 how (physical)

A set of rules or
algorithms that allows
goals to be achieved
with different
implementations

Requires that the
systems we study are
redundant and
complex

Allows for adaptation,
learning, creativity,
and rehabilitation



Brain and computation bootcamp:
Why movement matters

Sensorimotor control as the canonical decision-
making process

— How to rapidly and robustly achieve behavioral goals by
coordinating the same motor apparatus in different ways!?

Hierarchichal and distributed mechanisms for
sensorimotor control

— Parallel reflex, automatic, and voluntary control allow
computation on increasingly abstract goals

Neuromechanical principles for movement

— Modularity to deal with redundancy, facilitate robustness,
flexibility, and learning, leading to individual differences



My brain and computation wish list

Improved non-negative pattern identification for
recorded muscle and neural patterns:

— more modules than muscles

— Include temporal correlations

Unsupervised learning of recorded movement
dynamics across individuals, populations, diseases
— Subtle differences that our brains see easily

Hierarchical reinforcement learning for movement

— Different learning rate, time delays, connection cost,
reconnection cost, variability and randomness

Control-theoretic approaches to understand changes
in neural and biomechanical dynamics



More food for thought

Motor variability is not noise, but grist for the

learning mill
Nature Neuroscience 2014

David ] Herzfeld & Reza Shadmehr

A study demonstrates that variability in how people perform a movement can predict the rate of motor learning on an
Iindividual basis. This suggests that motor ‘noise’ is a central component of motor learning.

Temporal structure of motor variability is dynamically
regulated and predicts motor learning ability

Howard G Wu'*, Yohsuke R Miyamoto'#, Luis Nicolas Gonzalez Castro', Bence P Olveczky®* & Maurice A Smith'*

Neuron
CelPress
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and Their Implications for Rehabilitation
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