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Part	I:	Algorithms	
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Algorithms:	the	basics	
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•  What is an 
algorithm? 
– a step-by-step 

procedure to solve a 
problem 

– every computer 
program is the 
instantiation of some 
algorithm 
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Shortest	paths	example	
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•  Solves a general, well-specified problem 
–  given a graph G = (V, E), a source node s and a destination node t, 

and edge costs c1,…,cn, as input, produce as output a shortest st-
path, namely an st-path with smallest total edge cost  

•  Problem has specific instances 

•  Algorithm takes every possible instance and          
produces output with desired properties 
–  Dijkstra, Bellman-Ford, Floyd-Warshall shortest path algorithms 
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Modeling	the	real-world	
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•  Cast your application in terms of well-studied 
abstract data structures 

Evdokia	Nikolova	

Concrete Abstract 

arrangement, tour, ordering, sequence permutation 

cluster, collection, committee, group, packaging, selection subsets 

hierarchy, ancestor/descendants, taxonomy, radial network trees 

network, circuit, web, relationship graph 

sites, positions, locations points 

shapes, regions, boundaries polygons 

text, characters, patterns strings 



Graph	terminology	
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•  A	directed	graph	(or	digraph)	G	is	a	pair	(V,	E)	where	V	is	a	finite	
set	(of	“ver2ces”)	and	E	(the	“edges”)	is	a	subset	of	V	×	V.		

	
	
	
	
•  An	undirected	graph	G	is	a	pair	(V,	E)	where	V	is	a	finite	set	(of	

“ver2ces”)	and	E	(the	“edges”)	is	a	set	of	unordered	pairs	of	
edges	{u,	v},	where	u	≠	v.		
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•  Abstrac2on	of	transporta2on	graph	(Braess	paradox	graph)	
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•  Abstrac2on	of	transporta2on	graph	(Braess	paradox	graph)	

•  Abstrac2on	of	electricity	graph:		
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Graph	examples	
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•  Abstrac2on	of	transporta2on	graph	(Braess	paradox	graph)	

•  Abstrac2on	of	electricity	graph:		
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Back	to	shortest	paths	
•  Algorithmic	challenge:	exponen2ally	many	paths	

•  Brute	force:	enumerate	all	possible	paths;	output	best	
one.		Brute	force	algorithm	has	exponen2al	running	
2me	
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Back	to	shortest	paths	
•  Algorithmic	challenge:	exponen2ally	many	paths	
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one.		Brute	force	algorithm	has	exponen2al	running	
2me	

	

V1 V2 V3 Vn-1 Vn .	.	.		5	

3	

2	

3	

5	

4	

…

2n	1067:		
number	of	atoms	in	our	galaxy	
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Back	to	shortest	paths	
•  Algorithmic	challenge:	exponen2ally	many	paths	
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Back	to	shortest	paths	
•  Algorithmic	challenge:	exponen2ally	many	paths	

•  In	shortest	paths,	op*mal	substructure	property	(part	
of	the	op*mal	solu*on	remains	op*mal	on	the	
subproblem)	allows	for	efficient	dynamic	programming	
algorithms	(Dijkstra,	Bellman-Ford,	etc)	
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Dijkstra	shortest	path	algorithm	
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Dijkstra	shortest	path	algorithm	
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Dijkstra	shortest	path	algorithm	
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Dijkstra	shortest	path	algorithm	
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Dijkstra	shortest	path	algorithm	
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(Basic)	Algorithm	Design	Techniques	
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•  Brute Force & 
Exhaustive Search 
–  follow definition / try 

all possibilities 
•  Divide & Conquer 

–  break problem into 
distinct subproblems 

•  Transformation 
–  convert problem to 

another one 
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•  Dynamic 
Programming 
–  break problem into 

overlapping 
subproblems  

•  Greedy 
–  repeatedly do what is 

best now 
•  Randomization 

–  use random numbers 
•  Linear programming  
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Algorithm	running	2me	

•  We	would	like	a	defini2on	of	algorithm	efficiency	that	
is:		
–  plaiorm-independent		
–  instance-independent		
–  of	predic2ve	value	with	respect	to	increasing	instance	(input)	
sizes	(e.g.,	for	a	graph,	input	size	is	the	number	of	nodes	n	
and	edges	m)	

•  An	algorithm	is	efficient	if	it	has	polynomial	running	
Bme.		
–  f(n)	=	aknk+	ak-1nk-1	+	…	+	a1n	+	a0	is	a	polynomial	of	degree	k.		
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Algorithm	running	2me	
•  An	algorithm	is	efficient	if	it	has	polynomial	running	

Bme.		
–  f(n)	=	aknk	+	ak-1nk-1	+	…	+	a1n	+	a0	is	a	polynomial	of	degree	k.		
–  We	care	about	highest	order	term	and	no	coefficients:	
algorithm	polynomial	run2me	is	O(nk),	where	k	is	a	constant	

	
•  Of	course,	running	2me	of	n100	is	clearly	not	great,	and	

a	running	2me	of	n1+.02(log	n)	is	not	clearly	bad.	But	in	
prac2ce,	polynomial	2me	is	generally	good.		

•  In	addi2on	to	being	precise,	this	defini2on	is	also	
negatable.		

	



P	vs	NP	
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•  P is the class of problems which can be 
solved in polynomial time 

•  NP (“nondeterministic polynomial time”) is 
the class of problems for which a candidate 
solution can be verified in polynomial time 
–  Note: NP does not stand for “not polynomial” 
–  P is a subset of NP 

Evdokia	Nikolova	

P	

NP	



P	vs	NP	
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Difference between solving a problem and verifying a 
candidate solution: 
•  Solving a problem:  is there a path in graph G from vertex u 

to vertex v with at most k edges? 
•  Verifying a candidate solution:  is v0, v1, …, vl a path in 

graph G from vertex u to vertex v with at most k edges?   

 

Evdokia	Nikolova	



P	vs	NP	

Algorithms,	Game	Theory	&	Risk-averse	
Decision	Making	

Difference between solving a problem and verifying a 
candidate solution: 
•  Solving a problem:  is there a path in graph G from vertex u 

to vertex v with at most k edges? 
•  Verifying a candidate solution:  is v0, v1, …, vl a path in 

graph G from vertex u to vertex v with at most k edges?   

 

Evdokia	Nikolova	

Is	there	a	path	of	
length	at	most	k=5?	

source	

des2na2on	
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P	vs	NP	
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•  A Hamiltonian cycle in an undirected graph is a 
cycle that visits every vertex exactly once. 

•  Solving a problem:  is there a Hamiltonian cycle in 
graph G? 

•  Verifying a candidate solution:  is v0, v1, …, vl a 
Hamiltonian cycle of graph G? 

Evdokia	Nikolova	



P	vs	NP	

Algorithms,	Game	Theory	&	Risk-averse	
Decision	Making	

•  A Hamiltonian cycle in an undirected graph is a 
cycle that visits every vertex exactly once. 

•  Solving a problem:  is there a Hamiltonian cycle in 
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Hamiltonian cycle of graph G? 
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P	vs	NP	
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•  Although poly time verifiability seems like a weaker 
condition than poly time solvability, no one has been able 
to prove that it is weaker (describes a larger class of 
problems) 

•  So it is unknown whether P = NP. 

Evdokia	Nikolova	
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NP-Complete	problems	
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•  NP-complete problems is class of "hardest" problems in NP. 
•  They have the property that if any NP-complete problem 

can be solved in poly time, then all problems in NP can be, 
and thus P = NP. 
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NP-Complete	problems	
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•  NP-complete problems is class of "hardest" problems in NP. 
•  A decision problem is NP-complete if 

–  It is in NP 
–  It is “at least as hard as” some known NP-complete problem  

Evdokia	Nikolova	

…	

•  When given a new problem, a computer science theorist 
first wants to understand whether the problem is in P, or 
NP-complete, or another complexity class.  

First	NP-Complete	
Problem	(SAT)	 Problem	2	 Problem	3	 Problem	k	

Our	
Problem	



NP-Complete	problems	
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•  NP-complete problems is class of "hardest" problems in NP. 
•  They have the property that if any NP-complete problem 

can be solved in poly time, then all problems in NP can be, 
and thus P = NP. 

•  Other complexity                                                           
classes: 

Evdokia	Nikolova	



P	vs	NP	problem	
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•  Open question since about 1970 
•  One of the seven	"Millennium	Prize	Problems” 
by	the	Clay	Mathema2cs	Ins2tute	($1	million	
prize	for	solving	it)	–	along	with	the	Riemann	
Hypothesis,	the	Poincaré	Conjecture,	etc.*	

•  Great theoretical interest 
•  Great practical importance: 

–  If your problem is NP-complete, then don't waste 
time looking for an efficient algorithm 

–  Instead look for efficient approximations, heuristics, 
etc. 

Evdokia	Nikolova	

*	htp://www.claymath.org/millennium-problems	
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Approxima2on	algorithms*	

Algorithms,	Game	Theory	&	Risk-averse	
Decision	Making	

•  If we do not know how to solve a problem in 
polynomial time, can we find a near-optimal 
solution in polynomial time? 

•  An α-approximation algorithm for an 
optimization problem 
–  runs in polynomial time  
–  always returns a candidate solution 
–  cost of returned solution is at most α times the cost 

of the optimal solution (for a minimization problem) 

Evdokia	Nikolova	
*This	semester:	CS294-145	"Approxima2on	Algorithms"	instructor	David	Williamson.		
Tue/Thu	3:30-5:00	in	310	Soda	Hall.	



Traveling	Salesman	Problem	
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•  Given a set of cities, distances between all 
pairs of cities, and a bound B, does there 
exist a tour (sequence of cities to visit that 
returns to the start and visits each city 
exactly once) that requires at most distance 
B to be traveled? 

•  TSP is in NP: 
– given a candidate solution (a tour), add up all 

the distances and check if total is at most B 

Evdokia	Nikolova	



TSP	approxima2on	algorithm	
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•  Input:  set of cities and distances b/w them 
that satisfy the triangle inequality 

Evdokia	Nikolova	
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TSP	approxima2on	algorithm	

1)  Compute MST 

•  Input:  set of cities and distances b/w them 
that satisfy the triangle inequality 		
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TSP	approxima2on	algorithm	

1)  Compute MST 
2)  Go around MST to 

get a tour 

•  Input:  set of cities and distances b/w them 
that satisfy the triangle inequality 		
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TSP	approxima2on	algorithm	

1)  Compute MST 
2)  Go around MST to 

get a tour 
3)  Remove duplicate 

cities 

•  Input:  set of cities and distances b/w them 
that satisfy the triangle inequality 		
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TSP	approxima2on	algorithm	

•  This is a 2-approximation 
algorithm 

1)  Compute MST 
2)  Go around MST to 

get a tour 
3)  Remove duplicate 

cities 

•  Input:  set of cities and distances b/w them 
that satisfy the triangle inequality 



Part	II:	Game	Theory	
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Best route depends on others 
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•  Games	are	thought	experiments	to	help	us	learn	how	to	
predict	ra)onal	behavior	in	situa)ons	of	conflict	

•  Situa)on	of	conflict:		Everybody's	ac2ons	affect	others.		
This	is	captured	by	the	tabular	game	formalism.	

•  Ra)onal	Behavior:		The	players	want	to	maximize	their	
own	expected	u2lity.		No	altruism,	envy,	masochism,	or	
externali2es	(if	my	neighbor	gets	the	money,	he	will	buy	
louder	stereo,	so	I	will	hurt	a	litle	myself...).			

•  Predict:		We	want	to	know	what	happens	in	a	game.		Such	
predic2ons	are	called	solu2on	concepts	(e.g.,	Nash	
equilibrium).	

 

Game	theory	
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Travel time increases with congestion	
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• 	Highway	conges2on	costs	were	
	$160	billion	in	2014	(TTI)	

• 	Avg.	commuter	travels	100	minutes	a	day.	Evdokia	Nikolova	



Example:		Inefficiency	of	equilibria 

Suppose 100 drivers leave from town A towards town B. 

What is the traffic on the network? 

Every driver wants to minimize her own travel time.	

In any unbalanced traffic pattern, all drivers on the most loaded 
path have incentive to switch their path. 

Delay is 1.5 hours for 
everybody at the unique 
Nash equilibrium 

Town A Town B 

x/100 hours

1 hour

1 hour

1/2	

1/2	

x/100	hours	

x/100	hours	

1	hour	

1	hour	

Algorithms,	Game	Theory	&	Risk-averse	
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Example:		Inefficiency	of	equilibria 

A benevolent mayor builds a superhighway connecting the fast 
highways of the network.  

What is now the traffic on the network? 

No matter what the other drivers are doing it is always better 
for me to follow the zig-zag path. 

Delay is 2 hours for 
everybody at the unique 
Nash equilibrium 

Town A Town B 

x/100 hours

x/100 hours

1 hour

1 hour

1	

x/100	hours	

x/100	hours	

1	hour	

1	hour	

0	hours	

Algorithms,	Game	Theory	&	Risk-averse	
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Example:		Inefficiency	of	equilibria 

A B 

x/100 hours

x/100 hours

1 hour

1 hour

1	

A B 

x/100 hours

x/100 hours

1 hour

1 hour

1/2	

1/2	

vs	

Adding  a fast road on a road-network is not always a good idea! 
Braess’s paradox 

In the RHS network there exists a traffic pattern where all players have 
delay 1.5 hours. 

PoA =
performance of system in worst Nash equilibrium

optimal performance if drivers did not decide on their own

4/3

Price of Anarchy: 

x/100	hours	

x/100	hours	

1	hour	

1	hour	

x/100	hours	

x/100	hours	

1	hour	

1	hour	

Algorithms,	Game	Theory	&	Risk-averse	
Decision	Making	

measures the loss in system performance due 
to free-will 

Evdokia	Nikolova	



Equilibrium 

•  “Travel	2mes	on	used	routes	are	equal	and	no	
greater	than	travel	2mes	on	unused	routes.”			

•  Defines	Wardrop	Equilibrium,	also called User 
Equilibrium or Nash Equilibrium. 

 
 

 
 
 

Algorithms,	Game	Theory	&	Risk-averse	
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x/100 hours
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•  “The	average	[total]	journey	2me	is	minimum.”	

•  Defines	Social	Op2mum	(SO)	

 
 
 

Social	Op2mum 
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•  “[Modified]	Travel	2mes	on	used	routes	are	equal	
and	no	greater	than	travel	2mes	on	unused	
routes.”			

•  Defines	Social	Op2mum	(SO)	

 
 
 

Social	Op2mum 
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•  “[Modified]	Travel	2mes	on	used	routes	are	equal	
and	no	greater	than	travel	2mes	on	unused	
routes.”			

•  Social	Op2mum	(SO)	is	Equilibrium	w.r.t	travel	
2mes	plus	tolls!		

 
 
 

Social	Op2mum 
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•  “[Modified]	Travel	2mes	on	used	routes	are	equal	
and	no	greater	than	travel	2mes	on	unused	
routes.”			

•  Social	Op2mum	(SO)	is	Equilibrium	w.r.t	travel	
2mes	plus	tolls!	à	Mechanism	design	

 
 
 

Social	Op2mum 
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Town A Town B 

x/100 hours

1 hour

1 hour

1/2	

1/2	

x/100	hours	+	1/2	

x/100	hours	+	1/2	

1	hour	

1	hour	

0	hours	

Note:	both	Equilibrium	and	Social	op2mum	exist	and	can	be	computed	efficiently.	



Price	of	Anarchy 
•  Price of anarchy: (Koutsoupias, Papadimitriou ’99) 

•  Measures the degradation of system performance 
due to free will (selfish behavior)  

•  4/3 in general graphs, linear delays as function of 
traffic; 2 for quartic delays (Roughgarden, Tardos 
’02;  Correa, Schulz, Stier-Moses ‘04, ‘08) 

 
 

Cost Optimum Social
Cost mEquilibriusup

instances
problem
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Take-away	points	on	conges2on	
games 

•  Shortest paths (and algorithmic questions in general) 
can get complicated due to presence of more people 

•  Equilibrium and Social Optimum in nonatomic routing 
games exist and can be found efficiently via convex 
programs. 

•  Social optimum is an equilibrium with respect to 
modified latencies = original latencies plus toll. 

 
•  Price of anarchy:  4/3 for linear delays, can be found 

similarly for more general classes of delay functions. 
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Part	III:	Risk-averse	decision	making	
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•  Op2mal	route	may	differ	with	start	2me	

	

	

Op2mal	route?	

30	or	60	
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Evdokia	Nikolova	 Reliable	route	planning	

•  Op2mal	route	may	differ	with	start	2me	
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•  Op2mal	route	may	differ	with	start	2me	
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Op2mal	route? 

30	or	60	

40	

10:30 am 9:50 10 

Optimal route 

Departure time 



Implica2ons	of	risk	a{tudes	
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•  Uncertainty	and	risk	can	affect	our	design	and	
analysis	of:		

•  Algorithms	
•  Algorithmic		
			Game	Theory	
•  Algorithmic		
				Mechanism		
				Design	
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What	is	risk?	

Three	main	quan2ta2ve	approaches	to	defining	risk:	
•  Economics:	Expected	u2lity	theory	and	alterna2ves	
•  Finance:	Markowitz	mean-variance	framework	
•  Modern	risk	theory:	axioma2c	approach	to	defining	
risk	(coherent	&	convex	risk	measures)	

•  Systemic	risk:	will	not	talk	about	it	today.	See	“A	
Survey	of	Systemic	Risk	AnalyBcs”	by	Bisias,	Flood,	Lo,	
Valavanis,	2012.			

•  Dynamic	/	mul2-period	risk		
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•  Express	preferences	over	random	variables	(loteries)	by	
mapping	each	to	a	single	number	through	a	“u2lity	func2on”.	
[Bernoulli	1738]	

Risk	I:	Expected	U2lity	Theory	
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•  Express	preferences	over	random	variables	(loteries)	by	
mapping	each	to	a	single	number	through	a	“u2lity	func2on”.	
[Bernoulli	1738]	

•  U2lity	exists	assuming	independence,	con2nuity	axioms	

		

Risk	I:	Expected	U2lity	Theory	
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•  Express	preferences	over	random	variables	(loteries)	by	
mapping	each	to	a	single	number	through	a	“u2lity	func2on”.	
[Bernoulli	1738]	

•  U2lity	exists	assuming	independence,	con2nuity	axioms	
•  Experiment:		
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•  Express	preferences	over	random	variables	(loteries)	by	
mapping	each	to	a	single	number	through	a	“u2lity	func2on”.	
[Bernoulli	1738]	

•  U2lity	exists	assuming	independence,	con2nuity	axioms	
•  Experiment:		

•  Convex	u2lity	=>	risk-loving	preference	
•  Concave	u2lity	=>	risk-averse	preference	

Risk	I:	Expected	U2lity	Theory	
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Risk	II:	Mean-variance	framework	
•  In	investment	science,	Markowitz	(1952)	iden2fied	risk	with	

the	variance	of	a	poriolio	
•  E.g.	rou2ng	under	uncertainty:		

	minimize	(mean	+	standard	devia2on)	of	travel	2me	
Related:		

	minimize	variance	s.t.	mean	is	at	most	a	threshold	
	minimize	trip	budget	s.t.	Prob	(late)	<	5%	[value	at	risk]	

	
•  Cri2cisms	

–  Non-monotonicity	(may	prefer	stochas2cally	dominated	solu2ons)	
–  Non-convexity	(conflicts	risk-diversifica2on?)	
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Risk	III:	Coherent	risk	measures	
•  Axioma2c	approach	to	the	construc2on	of	risk	measures	

(Artzner	et	al.	1999)	
–  A1	[Monotonicity]:	X	≥	0	implies	R(X)	≤	0	
–  A2	[Convexity]:	R(β	X	+	(1-β)	Y)	≤	β	R(X)	+	(1-β)	R(Y)	
–  A3	[PosiBve	homogeneity]:	R(βX)	=	β	R(X)	
–  A4	[TranslaBon	invariance]:	R(X+c)	=	R(X)	–	c	for	all	real	c	

•  Example:	Condi2onal	Value	at	Risk,	CVaRα(X):	the	condi2onal	
expecta2on	of	losses	that	exceed	VaRα(X);		X	is	con2nuous.	

	
•  Remark:	when	X	is	normally	distributed,	both	VaRα(X)	and	

CVaRα(X)	are	equal	to	E[X]	–	k	Stdev(X)	for	appropriate	
constants	k.	
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Implica2ons	of	risk	a{tudes	
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•  Uncertainty	and	risk	can	affect	our	design	and	
analysis	of:		

•  Algorithms	
•  Algorithmic		
			Game	Theory	
•  Algorithmic		
				Mechanism		
				Design	
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Algorithmic	challenges	
•  E.g.,	In	shortest	paths,	op*mal	substructure	(addi*vity)	

property	allows	for	efficient	dynamic	programming	
algorithms	(Dijkstra,	Bellman-Ford,	etc)	

	

A	
B	 C	

5

6.9	

5	



•  Nonaddi2vity:	in	risk-averse	shortest	paths,	
op*mal	substructure	fails.	

	

•  Non-convex	(concave)	objec2ve	
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Algorithmic	challenges	

A	
B	 C	

Mean		5	
St.dev.	3	

Mean		6.9	
St.dev.	1	

Mean		5	
St.dev.	1	

AB-top:								mean	+	st.dev.	=	8	
AB-botom:	mean	+	st.dev.	=	7.9		

AC-top:								mean	+	st.dev.	=	10	+	√10	≈	13.2		
AC-botom:	mean	+	st.dev.	=	11.9+	√2	≈	13.3		

Op2mal	path	
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Algorithmic	insights	
Insight	1:	Concave	objec2ve	
	

	
Insight	2:	Visualize	on	mean-

variance	plane		
Insight	3:	Solu2on	is	an	

extreme	point	on	mean-
variance	fron2er	

	
	
	
	

		min	path	mean	+	r	√path	var	
{paths}	

mean	

var	
Mean-Variance	of	Paths	

c	

Exact	algorithm	for	risk-averse	shortest	path	has	run2me	n^O(log	n).		
[Nikolova,	Kelner,	Brand,	Mitzenmacher	2006]	
OPEN:	Is	risk-averse	shortest	path	in	P?		On	planar	graphs?		
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Algorithmic	insights	
Insight	1:	Concave	objec2ve	
	

	
Insight	2:	Project	on	mean-

variance	plane		
Insight	3:	Solu2on	is	an	

extreme	point	
	
	
	
	

		min	risk-averse	func2on	
{feas.set}	

mean	

var	
Mean-Variance	of	Paths	

c	

There is an (1+ε)-approximation algorithm for risk-averse problem 
that uses poly( |input|, 1/ε) queries to exact algorithm for 
corresponding deterministic problem. [Nikolova	2010]	 
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Algorithmic	challenges	
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•  Challenge	is	nonlinear	objec2ve	func2on	over	
combinatorial	feasible	set	

•  Example	from	electricity	grid	

Evdokia	Nikolova	

Resistance	

Ac2ve	power	

Reac2ve	power	

Successors	of	edge	e	
in	spanning	tree	ST	
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Risk	sensi2vity	of	price	of	anarchy	
•  [Piliouras,	Nikolova,	Shamma	2013]	consider	rou2ng	games	with	

uncertain	delays	resul2ng	from	“uniform	schedulers”		
•  Price	of	anarchy	of	linear	conges2on	games	under	risk	a{tudes:		

–  Wald’s	minimax	cost		 	 	2	
–  Savage’s	minimax	regret	 	[4/3,	1]	
–  Minimizing	Expected	cost	 	5/3	
–  Average	case	analysis		 	5/3	
–  Win-or-Go-Home 	 	unbounded 		
–  Second	moment	method	 	unbounded	

•  Conclusion:	Risk	criBcally	affects	predicBons	of	system	performance	

•  Related	work	on	risk-aversion	in	rou2ng	games:	Ordóñez	&	S2er-
Moses’10,	Boyles-Kockelman-Waller’10	(tolls),	Nikolova	&	S2er-
Moses’11-’14,	‘15,	Nie’11,	Angelidakis-Fotakis-Lianeas’13,	Comine{-
Torico’13,	Meir-Parkes’15,		Lianeas-Nikolova-S2er-Moses’16,	etc.	
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Effect	of	Risk	vs	Selfish	Behavior? 

•  Cost	of	traffic	patern	C(x):	central	planner	is	risk-
neutral	(although	users	are	risk-averse),	so	we	
consider	the	sum	of	expected	travel	*mes	

•  Price	of	Risk	Aversion:	captures	inefficiency	
introduced	by	user	risk-aversion	w.r.t.	to		
risk-neutral	users	

																																								risk-averse	equilibrium	
	
																																				risk-neutral	equilibrium	

)C(x
 )C(xsup 0

instances
problem

r
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•  In	graphs	with	general	mean,	variance	func2ons	where	
users	minimize	(mean	+	r*variance):	

					Cost(Risk-averse	eq.)	≤	(1+ηrk)	Cost(Risk-neutral	eq.)			
	
•  η=1	for	series-parallel	graphs,	η=2	for	Braess	graph,			

η≤	|V|/2	for	a	general	graph	

•  [Lianeas,	Nikolova,	S2er-Moses’16,	*]		
•  Above	bound	is	2ght	for	general	graphs.		
•  Bound	can	also	be	found	w.r.t	latency	func2on	classes:	
•  Price	of	risk	aversion	≤	(1+rk)	PoA	
	

Risk-averse	selfish	rou2ng*	
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•  In	graphs	with	general	mean,	variance	func2ons	where	
users	minimize	(mean	+	r*variance):	

					Cost(Risk-averse	eq.)	≤	(1+ηrk)	Cost(Risk-neutral	eq.)			
	
•  η=1	for	series-parallel	graphs,	η=2	for	Braess	graph,			

η≤	|V|/2	for	a	general	graph	

•  Above	bound	is	2ght	for	general	graphs.	
•  Bound	can	also	be	found	w.r.t	latency	func2on	classes:	

	 	Price	of	risk	aversion	≤	(1+rk)	PoA	

	

Risk-averse	selfish	rou2ng*	
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	Forthcoming	in	Mathema2cs	of	Opera2ons	Research.			
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Effect	of	risk	on	mechanism	design	
•  People	respond	beter	to	loteries	(examples	in	

transporta2on,	energy,	recycling,	etc.)	
•  What	are	the	op2mal	loteries?		I.e.	what	is	the	op2mal	

mechanism	design	if	people	have	given	risk-averse	or	risk-
loving	a{tudes?	

•  Work	in	progress	on	risk-loving	mechanism	design	with	
Manolis	Pountourakis,	Ger	Yang	at	UT	Aus2n.		

•  Want	to	know	more?		Talk	to	Manolis	(Simons	Fellow)		
Algorithms,	Game	Theory	&	Risk-averse	
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Conclusion	

•  CS	theorists	like	to	prove	theorems	(and	have	guarantees	
on	algorithm	run2mes,	etc)	

•  CS	theorists	like	“clean	formula2ons”	that	abstract	away	
many	engineering	details	so	as	to	find	and	understand	
core	algorithmic	challenges	(reduce	to	toy	puzzles)	

•  Open	ques2ons?	
–  Dynamic	/	Adap2ve	models?		(streaming	algorithms,	learning	
algorithms	for	real-2me	decision	making)	
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