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Real-time decision making examples
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Part I: Algorithms



Algorithms: the basics

* What is an —-—w
algorithm?
— a step-by-step
procedure to solve a
problem

— every computer

program is the ™
instantiation of some
algorithm

Algorithms, Game Theory & Risk-averse

Evdokia Nikolova Decision Making



Shortest paths example

* Solves a general, well-specified problem

— given a graph G = (V, E), a source node s and a destination node t,
and edge costs c,,...,C,,, a@s input, produce as output a shortest st-
path, namely an st-path with smallest total edge cost

* Problem has specific instances coml 4
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produces output with desired properties
— Dijkstra, Bellman-Ford, Floyd-Warshall shortest path algorithms
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Modeling the real-world

e Cast your application in terms of well-studied

abstract data structures

Concrete

Abstract

arrangement, tour, ordering, sequence

permutation

cluster, collection, committee, group, packaging, selection subsets
hierarchy, ancestor/descendants, taxonomy, radial network trees
network, circuit, web, relationship graph
sites, positions, locations points
shapes, regions, boundaries polygons
text, characters, patterns strings
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Graph terminology

* Adirected graph (or digraph) G is a pair (V, E) where V is a finite
set (of “vertices”) and E (the “edges”) is a subset of V x V.

?/3 s
Q0 O
* An undirected graph G is a pair (V, E) where V is a finite set (of

“vertices”) and E (the “edges”) is a set of unordered pairs of
edges {u, v}, where u #z v.

G\_\Z ? Graph = Network
4 6

Nodes = Vertices
Edges = Links = Arcs
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Graph examples

e Abstraction of transportation graph (Braess paradox graph)
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Graph examples

e Abstraction of transportation graph (Braess paradox graph)
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1 hr
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* Abstraction of electricity graph: l 1 i

l Bus = Node
. Line = Edge?
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Graph examples

e Abstraction of transportation graph (Braess paradox graph)

0.5 hr ‘

1 hr

l Bus = Node
. Line = Edge?
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Back to shortest paths

* Algorithmic challenge: exponentially many paths

* Brute force: enumerate all possible paths; output best
one. Brute force algorithm has exponential running

time o W W o

e Ta o e
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Back to shortest paths

* Algorithmic challenge: exponentially many paths

* Brute force: enumerate all possible paths; output best
one. Brute force algorithm has exponential running

time o W W o
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Back to shortest paths

* Algorithmic challenge: exponentially many paths

* Brute force: enumerate all possible paths; output best
one. Brute force algorithm has exponential running

time o W W o

e Ta o e
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Back to shortest paths

* Algorithmic challenge: exponentially many paths

* In shortest paths, optimal substructure property (part

of the optimal solution remains optimal on the
subproblem) allows for efficient dynamic programming

algorithms (Dijkstra, Bellman-Ford, etc)

B
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Dijkstra shortest path algorithm
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Dijkstra shortest path algorithm
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Dijkstra shortest path algorithm
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Dijkstra shortest path algorithm
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Dijkstra shortest path algorithm
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(Basic) Algorithm Design Techniques

* Brute Force & * Dynamic
Exhaustive Search Programming

— follow definition / try — break problem into

o overlapping
all possibilities subproblems

* Divide & Conquer e Greedy
— break problem into — repeatedly do what is
distinct subproblems best now

e Transformation Randomization
— convert problem to — use random numbers

another one * Linear programming
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Algorithm running time

 We would like a definition of algorithm efficiency that
IS:
— platform-independent

— instance-independent

— of predictive value with respect to increasing instance (input)
sizes (e.g., for a graph, input size is the number of nodes n
and edges m)

* An algorithm is efficient if it has polynomial running
time.
— f(n) = a,n*+ a,_,nk1 + ... +a,n +a, is a polynomial of degree k.
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Algorithm running time

* An algorithm is efficient if it has polynomial running
time.

— f(n) =a,n*+a,_ n“'+ .. +a,n+a,is a polynomial of degree k.

— We care about highest order term and no coefficients:
algorithm polynomial runtime is O(n*), where k is a constant

* Of course, running time of n'% is clearly not great, and
a running time of n1+02(legn)js not clearly bad. But in
practice, polynomial time is generally good.

* In addition to being precise, this definition is also
negatable.

Algorithms, Game Theory & Risk-averse

Evdokia Nikolova Decision Making



P vs NP

* Pis the class of problems which can be
solved in polynomial time

* NP (“nondeterministic polynomial time”) is
the class of problems for which a candidate

solution can be verified in polynomial time
— Note: NP does not stand for “not polynomial”
— Pis a subset of NP
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P vs NP

Difference between solving a problem and verifying a
candidate solution:

* Solving a problem: is there a path in graph G from vertex u
to vertex v with at most k edges?

« Verifying a candidate solution: is vy, V4, ..., V,a path in
graph G from vertex u to vertex v with at most k edges?
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P vs NP

Difference between solving a problem and verifying a
candidate solution:

* Solving a problem: is there a path in graph G from vertex u
to vertex v with at most k edges?

« Verifying a candidate solution: is vy, V4, ..., V,a path in
graph G from vertex u to vertex v with at most k edges?

*
*x X *
Is there a path of * $
length at most k=57
* * * destination
*
smﬁe *’ * *

*
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P vs NP

Difference between solving a problem and verifying a
candidate solution:

* Solving a problem: is there a path in graph G from vertex u
to vertex v with at most k edges?

« Verifying a candidate solution: is vy, V4, ..., V,a path in
graph G from vertex u to vertex v with at most k edges?

*
*x X *
Is there a path of *
length at most k=57
* destination
*
source *
*
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P vs NP

* A Hamiltonian cycle in an undirected graph is a
cycle that visits every vertex exactly once.

e Solving a problem: is there a Hamiltonian cycle in
graph G?

* Verifying a candidate solution: IS Vg, V4, «.., V, 8
Hamiltonian cycle of graph G?
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P vs NP

A Hamiltonian cycle in an undirected graph is a
cycle that visits every vertex exactly once.

Solving a problem: is there a Hamiltonian cycle in
graph G?

* Verifying a candidate solution: is vy, V4, ..., V, 8
Hamiltonian Cycle of graph G?

6’ N /
l3/_1.4\’

\
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P vs NP

* Although poly time verifiability seems like a weaker
condition than poly time solvability, no one has been able
to prove that it is weaker (describes a larger class of
problems)

e Soitis unknown whether P = NP.

PNP ” P=NP ?
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NP-Complete problems

 NP-complete problems is class of "hardest" problems in NP.

 They have the property that if any NP-complete problem
can be solved in poly time, then all problems in NP can be,

and thus P = NP.

all problems all problems
NP
NPC or P=NP=NP(
r Pg

NPC = NP-complete
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NP-Complete problems

 NP-complete problems is class of "hardest" problems in NP.

* A decision problem is NP-complete if
— Itisin NP
— Itis “at least as hard as” some known NP-complete problem

First NP-Complete - - - Our
Problem (SAT) Problem 2 Problem3 ... Problem k Problem

* When given a new problem, a computer science theorist
first wants to understand whether the problem is in P, or
NP-complete, or another complexity class.
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Evdokia Nikolova

NP-Complete problems

NP-complete problems is class of "hardest" problems in NP.

They have the property that if any NP-complete problem
can be solved in poly time, then all problems in NP can be,

and thus P = NP.

Other complexity
classes:

EXPSPACE

EXPTIME

PSPACE = NPSPACE = IP
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P vs NP problem
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Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang-Mills equations.

But no proof of this property is known.

Riemann Hypothesis
The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the
average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part

1/2.

P vs NP Problem

If it is easy to check that a solution to a problem is correct, is it also easy to solve the problem? This is the essence of the P vs NP question. Typical
of the NP problems is that of the Hamiltonian Path Problem: given N cities to visit, how can one do this without visiting a city twice? If you give
me a solution, | can easily check that it is correct. But | cannot so easily find a solution.
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Pvs NP proble\m
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Suppose that you are organizing housing
accommodations for a group of four hundred
university students. Space is limited and only one
hundred of the students will receive places in the
dormitory. To complicate matters, the Dean has
provided you with a list of pairs of incompatible
students, and requested that no pair from this list

. X appear in your final choice. This is an example of

‘ ‘# \ Q what computer scientists call an NP-problem,
since it is easy to check if a given choice of one hundred students proposed by a coworker is satisfactory (i.e.,
no pair taken from your coworker's list also appears on the list from the Dean's office), however the task of
generating such a list from scratch seems to be so hard as to be completely impractical. Indeed, the total
number of ways of choosing one hundred students from the four hundred applicants is greater than the [ Minesweeper
number of atoms in the known universe! Thus no future civilization could ever hope to build a

supercomputer capable of solving the problem by brute force; that is, by checking every possible

combination of 100 students. However, this apparent difficulty may only reflect the lack of ingenuity of your Related Links:
programmer. In fact, one of the outstanding problems in computer science is determining whether

Rules for the Millennium
Prizes

Related Documents:

[4] Official Problem
Description
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P vs NP problem

* Open question since about 1970

* One of the seven "Millennium Prize Problems”
by the Clay Mathematics Institute (S1 million
prize for solving it)*

e Great theoretical interest

e Great practical importance:

— If your problem is NP-complete, then don't waste
time looking for an efficient algorithm

— Instead look for efficient approximations, heuristics,
etc.

* http://www.claymath.org/millennium-problems
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Approximation algorithms*

If we do not know how to solve a problem in
polynomial time, can we find a near-optimal

solution in polynomial time?

* An o-approximation algorithm for an
optimization problem
— runs in polynomial time
— always returns a candidate solution

— cost of returned solution is at most o times the cost
of the optimal solution (for a minimization problem)

*This semester: C5294-145 "Approximation Algorithms" instructor David Williamson.
Tue/Thu 3:30-5:00 in 310 Soda Hall.




Traveling Salesman Problem

* Given a set of cities, distances between all
pairs of cities, and a bound B, does there
exist a tour (sequence of cities to visit that
returns to the start and visits each city
exactly once) that requires at most distance
B to be traveled?

* TSP isin NP:

— given a candidate solution (a tour), add up all
the distances and check if total is at most B

Algorithms, Game Theory & Risk-averse
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TSP approximation algorithm

* |[nput: set of cities and distances b/w them
that satisfy the triangle inequality
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TSP approximation algorithm

* |[nput: set of cities and distances b/w them
that satisfy the triangle inequality

1) Compute MST
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TSP approximation algorithm
* |[nput: set of cities and distances b/w them
that satisfy the triangle inequality
" 1) Compute MST

2) Go around MST to
get a tour
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TSP approximation algorithm
* |[nput: set of cities and distances b/w them
that satisfy the triangle inequality
" 1) Compute MST

2) Go around MST to
get a tour

3) Remove duplicate
cities

.

Algorithms, Game Theory & Risk-averse

Evdokia Nikolova Decision Making



TSP approximation algorithm

* |[nput: set of cities and distances b/w them
that satisfy the triangle inequality

A 1) Compute MST
x 2) Go around MST to
B (©) get a tour
3) Remove duplicate
cities

* This is a 2-approximation
algorithm

\r
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Part Il: Game Theory






Game theory

* Games are thought experiments to help us learn how to
predict rational behavior in situations of conflict

* Situation of conflict: Everybody's actions affect others.
This is captured by the tabular game formalism.

* Rational Behavior: The players want to maximize their
own expected utility. No altruism, envy, masochism, or
externalities (if my neighbor %ets the money, he will buy
louder stereo, so | will hurt a little myself...).

* Predict: We want to know what happens in a game. Such
predictions are called solution concepts (e.g., Nash
equilibrium).

Algorithms, Game Theory & Risk-averse
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Travel time increases with congestion
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Example: Inefficiency of equilibria

Delay is 1.5 hours for
everybody at the unique
Nash equilibrium

Town A Town B

x/100_hours

Suppose 100 drivers leave from town A towards town B.

Every driver wants to minimize her own travel time.

What is the traffic on the network!?

In any unbalanced traffic pattern, all drivers on the most loaded
path have incentive to switch their path.
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Evdokia Nikolova Decision Making



Example: Inefficiency of equilibria

Delay is 2 hours for
everybody at the unique

x/100-hours Nash equilibrium

Town A Town B

x/100 hours

A benevolent mayor builds a superhighway connecting the fast
highways of the network.

What is now the traffic on the network!?

No matter what the other drivers are doing it is always better
for me to follow the zig-zag path.
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Example: Inefficiency of equilibria

VS
x/100 hours x/100 hours
1/2
Adding a fast road on a road-network is not always a good idea! 4/3

Braess’s paradox

In the RHS network there exists a traffic pattern where all players have
delay 1.5 hours.

PoA performance of system in worst Nash equilibrium
O —

optimal performance if drivers did not decide on their own

Price of Anarchy: measures the loss in system performance due

Evdokia Nikolova .
to free-will



Equilibrium

* “Travel times on used routes are equal and no
greater than travel times on unused routes.”

* Defines Wardrop Equilibrium, also called User
Equilibrium or Nash Equilibrium.

x/100-hours

Town A Town B

x/100 hours
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Social Optimum

 “The average [total] journey time is minimum.”

e Defines Social Optimum (SO)

Town A Town B

x/100_hours
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Social Optimum

 “[Modified] Travel times on used routes are equal
and no greater than travel times on unused
routes.”

e Defines Social Optimum (SO)

Town A Town B

x/100_hours
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Social Optimum

 “[Modified] Travel times on used routes are equal
and no greater than travel times on unused

routes.”

e Social Optimum (SO) is Equilibrium w.r.t travel
times plus tolls!

Town B

x/100.hours + 1/2
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Social Optimum

 “[Modified] Travel times on used routes are equal
and no greater than travel times on unused

routes.”

e Social Optimum (SO) is Equilibrium w.r.t travel
times plus tolls! = Mechanism design

Town B

x/100.hours + 1/2

, Note: both Equilibrium and Social optimum exist and can be computed efficiently.

E
pecision viaking



Price of Anarchy

* Price of anarchy: (Koutsoupias, Papadimitriou '99)

Equilibrium Cost

problem S0c1al Optimum Cost

mstances

* Measures the degradation of system performance
due to free will (selfish behavior)

* 4/3 in general graphs, linear delays as function of
traffic; 2 for quartic delays (Roughgarden, Tardos
'02; Correa, Schulz, Stier-Moses ‘04, 08)

Algorithms, Game Theory & Risk-averse
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Take-away points on congestion
games

* Shortest paths (and algorithmic questions in general)
can get complicated due to presence of more people

* Equilibrium and Social Optimum in nonatomic routing
games exist and can be found efficiently via convex
programes.

* Social optimum is an equilibrium with respect to
modified latencies = original latencies plus toll.

* Price of anarchy: 4/3 for linear delays, can be found
similarly for more general classes of delay functions.

Algorithms, Game Theory & Risk-averse
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Optimal route?

* Optimal route may differ with start time

30 or 60
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Optimal route?

* Optimal route may differ with start time

late

ontime
30 or 60 9:50

Departure time
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10:30 am



Optimal route?

* Optimal route may differ with start time

Departure time

Evdokia Nikolova Reliable route planning

10:30 am

‘ 50%
L ontime | late
30 or 60 9:30 9:50 10



Optimal route?

e Optimal route may differ with start time

Optimal route

30 or 60 9:50 10 10:30 am
Departure time

Evdokia Nikolova Reliable route planning



Implications of risk attitudes

* Uncertainty and risk can affect our design and
analysis of:

e Algorithms

* Algorithmic ‘. ‘f';’ ' v';;' |
Game Theory oty o= | R )

e Algorithmic
Mechanism
Design

P | - i . . et BOE, oA

& = — A ¥ ot P i
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What is risk?

Three main quantitative approaches to defining risk:

Evdokia Nikolova

Economics: Expected utility theory and alternatives
Finance: Markowitz mean-variance framework

Vodern risk theory: axiomatic approach to defining
risk (coherent & convex risk measures)

Systemic risk: will not talk about it today. See “A
Survey of Systemic Risk Analytics” by Bisias, Flood, Lo,
Valavanis, 2012.

Dynamic / multi-period risk

Algorithms, Game Theory & Risk-averse
Decision Making



Risk |: Expected Utility Theory

* Express preferences over random variables (lotteries) by
mapping each to a single number through a “utility function”.
[Bernoulli 1738]

Algorithms, Game Theory & Risk-averse
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Risk |: Expected Utility Theory

* Express preferences over random variables (lotteries) by
mapping each to a single number through a “utility function”.
[Bernoulli 1738]

e Utility exists assuming independence, continuity axioms

Algorithms, Game Theory & Risk-averse
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Risk |: Expected Utility Theory

* Express preferences over random variables (lotteries) by
mapping each to a single number through a “utility function”.
[Bernoulli 1738]

» Utility exists assuming independence, continuity axioms
* Experiment:

55,000 w.p. 33¢
$48,000 w.p. 66%
0

$55,000 w.p. 33%
0

$48,000 w.p. 34%
0 wW.p. 66%
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Risk |: Expected Utility Theory

* Express preferences over random variables (lotteries) by
mapping each to a single number through a “utility function”.
[Bernoulli 1738]

» Utility exists assuming independence, continuity axioms
* Experiment:

55,000 w.p. 33¢
$48,000 w.p. 66%
0

$55,000 w.p. 33%
0

$48,000 w.p. 34%
0 wW.p. 66%

Convex utility => risk-loving preference
Concave utility => risk-averse preference

Algorithms, Game Theory & Risk-averse
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Risk II: Mean-variance framework

* Ininvestment science, Markowitz (1952) identified risk with
the variance of a portfolio

 E.g.routing under uncertainty:
minimize (mean + standard deviation) of travel time
Related:
minimize variance s.t. mean is at most a threshold
minimize trip budget s.t. Prob (late) < 5% [value at risk]

* Criticisms
— Non-monotonicity (may prefer stochastically dominated solutions)
— Non-convexity (conflicts risk-diversification?)

Algorithms, Game Theory & Risk-averse
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Risk llI: Coherent risk measures

* Axiomatic approach to the construction of risk measures
(Artzner et al. 1999)
— A1 [Monotonicity]: X > 0 implies R(X) £0
— A2 [Convexity]: R(B X + (1-B) Y) < B R(X) + (1-B) R(Y)
— A3 [Positive homogeneity]: R(BX) = B R(X)
— A4 [Translation invariance]: R(X+c) = R(X) — c for all real c

* Example: Conditional Value at Risk, CVaR(X): the conditional
expectation of losses that exceed VaR,(X); X is continuous.

* Remark: when X is normally distributed, both VaR (X) and
CVaR,(X) are equal to E[X] — k Stdev(X) for appropriate
constants k.

Algorithms, Game Theory & Risk-averse
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Implications of risk attitudes

* Uncertainty and risk can affect our design and
analysis of:

e Algorithms

* Algorithmic ‘. ‘f';’ ' v';;' |
Game Theory oty o= | R ey

e Algorithmic
Mechanism
Design
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Algorithmic challenges

* E.g., Inshortest paths, optimal substructure (additivity)
property allows for efficient dynamic programming
algorithms (Dijkstra, Bellman-Ford, etc)

5
B
A C
5
6.9
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Algorithmic challenges

* Nonadditivity: in risk-averse shortest paths,
optimal substructure fails.

AB-top: mean + st.dev. =8
Mean 5 AB-bottom: mean + st.dev. =7.9
St.dev. 3
B
A C Optimal path

Mean 5
Mean 6.9 St.dev. 1
St.dev. 1 AC-top:  mean + st.dev. =10 + V10 = 13.2

AC-bottom: mean + st.dev. =11.9+V2 = 13.3

* Non-convex (concave) objective

Algorithms, Game Theory & Risk-averse
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Algorithmic insights

Insight 1: Concave objective

min path mean + r Vpath var
{paths}

Insight 2: Visualize on mean-
variance plane

Insight 3: Solution is an
extreme point on mean-
variance frontier

var

A Mean-Variance of Paths

AN ,

C mean

Exact algorithm for risk-averse shortest path has runtime n*O(log n).
[Nikolova, Kelner, Brand, Mitzenmacher 2006]
OPEN: Is risk-averse shortest path in P? On planar graphs?

Evdokia Nikolova
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Algorithmic insights

A Mean-Variance of Paths

Insight 1: Concave objective .

min risk-averse function
{feas.set}

Insight 2: Project on mean-
variance plane

Insight 3: Solution is an

extreme point \\
>

C mean
There is an (| +¢&)-approximation algorithm for risk-averse problem
that uses poly( [input|, I/£) queries to exact algorithm for
corresponding deterministic problem. [Nikolova 2010]
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Algorithmic challenges

* Challenge is nonlinear objective function over
combinatorial feasible set

Reactive power

 Example from electricity grid  acive power ‘

mn Y Re {(;bi (;qﬂ

667
Resistance

Successors of edge e
in spanning tree ST
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Implications of risk attitudes

* Uncertainty and risk can affect our design and
analysis of:

e Algorithms

e Algorithmic
Game Theory

e Algorithmic
Mechanism
Design
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Risk sensitivity of price of anarchy

* [Piliouras, Nikolova, Shamma 2013] consider routing games with
uncertain delays resulting from “uniform schedulers”

* Price of anarchy of linear congestion games under risk attitudes:

— Wald’s minimax cost 2

— Savage’s minimax regret [4/3, 1]

— Minimizing Expected cost 5/3

— Average case analysis 5/3

— Win-or-Go-Home unbounded
— Second moment method unbounded

* Conclusion: Risk critically affects predictions of system performance

* Related work on risk-aversion in routing games: Ordofez & Stier-
Moses’10, Boyles-Kockelman-Waller’10 (tolls), Nikolova & Stier-
Moses’11-"14, ‘15, Nie’11, Angelidakis-Fotakis-Lianeas’13, Cominetti-
Torico’13, Meir-Parkes’15, Lianeas-Nikolova-Stier-Moses’16, etc.
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Effect of Risk vs Selfish Behavior?

* Cost of traffic pattern C(x): central planner is risk-
neutral (although users are risk-averse), so we
consider the sum of expected travel times

* Price of Risk Aversion: captures inefficiency

introduced by user risk-aversion w.r.t. to
risk-neutral users

CK) o risk-averse equilibrium

SU
probl?m C(X 0 )

instances

risk-neutral equilibrium
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Risk-averse selfish routing™

* In graphs with general mean, variance functions where
users minimize (mean + r*variance):

Cost(Risk-averse eq.) < (1+nrk) Cost(Risk-neutral eq.)

* n=1 for series-parallel graphs, n=2 for Braess graph,
n< |V|/2 for a general graph

* Lianeas, Nikolova, Stier Moses. “Risk-averse selfish routing.”
Forthcoming in Mathematics of Operations Research.
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Risk-averse selfish routing™

* In graphs with general mean, variance functions where
users minimize (mean + r*variance):

Cost(Risk-averse eq.) < (1+nrk) Cost(Risk-neutral eq.)

* n=1 for series-parallel graphs, n=2 for Braess graph,
n< |V|/2 for a general graph

e Above bound is tight for general graphs.
 Bound can also be found w.r.t latency function classes:
Price of risk aversion £ (1+rk) PoA

* Lianeas, Nikolova, Stier Moses. “Risk-averse selfish routing.”

Evdokia Nikolova

Forthcoming in Mathematics of Operations Research.



Implications of risk attitudes

* Uncertainty and risk can affect our design and
analysis of:

e Algorithms

e Algorithmic
Game Theory

e Algorithmic
Mechanism
Design
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Effect of risk on mechanism design

* People respond better to lotteries (examples in
transportation, energy, recycling, etc.)

 What are the optimal lotteries? l.e. what is the optimal
mechanism design if people have given risk-averse or risk-
loving attitudes?

$48,000 w.p. 34%
w.p. 66%

55,000 w.p. 33¢ $55,000 w.p. 33%

0

5

%%
N W
'll’vi

$48,000 w.p. 66%

* Workin progrs on risk-loving mechanism sign with
Manolis Pountourakis, Ger Yang at UT Austin.
e Want to know more? Talk to Manolis (Simons Fellow)
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Conclusion

CS theorists like to prove theorems (and have guarantees
on algorithm runtimes, etc)

CS theorists like “clean formulations” that abstract away
many engineering details so as to find and understand

core algorithmic challenges (reduce to toy puzzles)

Open questions?

— Dynamic / Adaptive models? (streaming algorithms, learning
algorithms for real-time decision making)



